首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
We investigated whether co-expression of Neurog 1 and Atoh 1 in common neurosensory precursors could explain the loss of hair cells in Neurog 1 null mice. Analysis of terminal mitosis, using BrdU, supports previous findings regarding timing of exit from cell cycle. Specifically, we show that cell cycle exit occurs in spiral sensory neurons in a base-to-apex progression followed by cell cycle exit of hair cells in the organ of Corti in an apex-to-base progression, with some overlap of cell cycle exit in the apex for both hair cells and spiral sensory neurons. Hair cells in Neurog 1 null mice show cell cycle exit in an apex-to-base progression about 1-2 days earlier. Atoh 1 is expressed in an apex-to-base progression rather then a base-to-apex progression as in wildtype littermates. We tested the possible expression of Atoh1 in neurosensory precursors using two Atoh 1-Cre lines. We show Atoh 1-Cre mediated beta-galactosidase expression in delaminating sensory neuron precursors as well as undifferentiated epithelial cells at E11 and E12.5. PCR analysis shows expression of Atoh 1 in the otocyst as early as E10.5, prior to any histology-based detection techniques. Combined, these data suggest that low levels of Atoh 1 exist much earlier in precursors of hair cells and sensory neurons, possibly including neurosensory precursors. Analysis of Atoh 1-Cre expression in E18.5 embryos and P31 mice reveal beta-galactosidase stain in all hair cells but also in vestibular and cochlear sensory neurons and some supporting cells. A similar expression of Atoh 1-LacZ exists in postnatal and adult vestibular and cochlear sensory neurons, and Atoh 1 expression in vestibular sensory neurons is confirmed with RT-PCR. We propose that the absence of NEUROG 1 protein leads to loss of sensory neuron formation through a phenotypic switch of cycling neurosensory precursors from sensory neuron to hair cell fate. Neurog 1 null mice show a truncation of clonal expansion of hair cell precursors through temporally altered terminal mitosis, thereby resulting in smaller sensory epithelia.  相似文献   

4.
The forkhead genes are involved in patterning, morphogenesis, cell fate determination, and proliferation. Several Fox genes (Foxi1, Foxg1) are expressed in the developing otocyst of both zebrafish and mammals. We show that Foxg1 is expressed in most cell types of the inner ear of the adult mouse and that Foxg1 mutants have both morphological and histological defects in the inner ear. These mice have a shortened cochlea with multiple rows of hair cells and supporting cells. Additionally, they demonstrate striking abnormalities in cochlear and vestibular innervation, including loss of all crista neurons and numerous fibers that overshoot the organ of Corti. Closer examination shows that some anterior crista fibers exist in late embryos. Tracing these fibers shows that they do not project to the brain but, instead, to the cochlea. Finally, these mice completely lack a horizontal crista, although a horizontal canal forms but comes off the anterior ampulla. Anterior and posterior cristae, ampullae, and canals are reduced to varying degrees, particularly in combination with Fgf10 heterozygosity. Compounding Fgf10 heterozygotic effects suggest an additive effect of Fgf10 on Foxg1, possibly mediated through bone morphogenetic protein regulation. We show that sensory epithelia formation and canal development are linked in the anterior and posterior canal systems. Much of the Foxg1 phenotype can be explained by the participation of the protein binding domain in the delta/notch/hes signaling pathway. Additional Foxg1 effects may be mediated by the forkhead DNA binding domain.  相似文献   

5.
Afferent innervation patterns of the saccule in pigeons   总被引:3,自引:0,他引:3  
The innervation patterns of vestibular saccular afferents were quantitatively investigated in pigeons using biotinylated dextran amine as a neural tracer and three-dimensional computer reconstruction. Type I hair cells were found throughout a large portion of the macula, with the highest density observed in the striola. Type II hair cells were located throughout the macula, with the highest density in the extrastriola. Three classes of afferent innervation patterns were observed, including calyx, dimorph, and bouton units, with 137 afferents being anatomically reconstructed and used for quantitative comparisons. Calyx afferents were located primarily in the striola, innervated a number of type I hair cells, and had small innervation areas. Most calyx afferent terminal fields were oriented parallel to the anterior-posterior axis and the morphological polarization reversal line. Dimorph afferents were located throughout the macula, contained fewer type I hair cells in a calyceal terminal than calyx afferents and had medium sized innervation areas. Bouton afferents were restricted to the extrastriola, with multi-branching fibers and large innervation areas. Most of the dimorph and bouton afferents had innervation fields that were oriented dorso-ventrally but were parallel to the neighboring reversal line. The organizational morphology of the saccule was found to be distinctly different from that of the avian utricle or lagena otolith organs and appears to represent a receptor organ undergoing evolutionary adaptation toward sensing linear motion in terrestrial and aerial species.  相似文献   

6.
The inner ear develops from a simple epithelium (otic placode) into the complex structures specialized for balance (vestibule) and sound (cochlea) detection. Abnormal vestibular and cochlear development is associated with many birth defects. During recent years, considerable progress has been made in understanding the molecular bases of these conditions. To determine the biological function of two closely related GTPase activating proteins for the Cdc42/Rac GTPases, Abr and Bcr, we generated a mouse strain deficient in both of these proteins. Double null mutant mice exhibit hyperactivity, persistent circling, and are unable to swim. These phenotypes are typically found in mice with vestibular defects. Indeed, adult double null mutants display abnormal dysmorphic structures of both the saccule and utricle. Moreover, a total loss of otoconia can be seen in the utricle, whereas in the saccule, otoconia are either missing or their number is drastically decreased and they are abnormally large. Interestingly, both the cochlea and semicircular canals are normal and the double null mutant mice are not deaf. These data demonstrate that Abr and Bcr play important complementary roles during vestibular morphogenesis and that a function of Cdc42/RacGAPs and, therefore, that of the small Rho-related GTPases is critically important for balance and motor coordination.  相似文献   

7.
8.
The mechanosensory hair cells of the utricle and semicircular canals of the trout inner ear are morphologically similar to type II hair cells of the avain and mammalian vestibular end organs. These cells are innervated by two types of nerve terminals. The nonvesiculated terminals are considered to be afferent, and the vesiculated endings are presumed to be efferent. The presumptive efferent endings contain numerous clear, round vesicles and a few that are dense-cored. Histocytochemical, electron microscopic analysis has localized acetylcholinesterase activity to plasma membranes of vesiculated, presumptive efferent nerve terminals in sensory epithelia of the utricle and semicircular canals. No reaction product was observed at the receptoneural synapse or found in nonvesiculated, presumptive afferent endings. Control specimens incubated in the presence of eserine sulfate, an inhibitor of acetylcholinesterase, were devoid of reaction product. These results support the tenet that vesiculated nerve endings in the sensory epithelia of the utricle and semicircular canals of the trout are cholinergic. © 1993 Wiley-Liss, Inc.  相似文献   

9.
The basic helix-loop-helix (bHLH) gene Hes6 is known to promote neural differentiation in vitro. Here, we report the expression and functional studies of Hes6 in the inner ear. The expression of Hes6 appears to be parallel to that of Math1 (also known as Atoh1), a bHLH gene necessary and sufficient for hair cell differentiation. Hes6 is expressed initially in the presumptive hair cell precursors in the cochlea. Subsequently, the expression of Hes6 is restricted to morphologically differentiated hair cells. Similarly, the expression of Hes6 in the vestibule is in the hair cell lineage. Hes6 is dispensable for hair cell differentiation, and its expression in inner ear hair cells is abolished in the Math1-null animals. Furthermore, the introduction of Hes6 into the cochlea in vitro is not sufficient to promote sensory or neuronal differentiation. Therefore, Hes6 is downstream of Math1 and its expression in the inner ear delineates the sensory lineage. However, the role of Hes6 in the inner ear remains elusive.  相似文献   

10.
Osteopontin (OPN) is considered to be a non-collagenous bone matrix protein that is involved in the ossification process. However, OPN has recently been observed in ectopic sites such as the kidney and nervous tissue. In the present study, the expression of OPN mRNA was examined in the rat and mouse inner ear by nonradioisotopic in situ hybridization. Signals of OPN mRNA were observed in the marginal cells of the stria vascularis, spiral ganglion cells, vestibular sensory hair cells, and vestibular dark cells. OPN protein was detected only in the otoconia by immunohistochemistry. The presence of OPN mRNA in the cochlea and vestibular dark cells may indicate that OPN is involved in the regulation of ions in the inner ear fluid. Findings in the saccule and utricle suggest that OPN is one of the protein components of the rodent otoconia and that the vestibular sensory hair cells are involved in the production of otoconia.  相似文献   

11.
We have investigated the expression of FGF10 during ear development and the effect of an FGF10 null mutation on ear development. Our in situ hybridization data reveal expression of FGF10 in all three canal crista sensory epithelia and the cochlea anlage as well as all sensory neurons at embryonic day 11.5 (E11.5). Older embryos (E18.5) displayed strong graded expression in all sensory epithelia. FGF10 null mutants show complete agenesis of the posterior canal crista and the posterior canal. The posterior canal sensory neurons form initially and project rather normally by E11.5, but they disappear within 2 days. FGF10 null mutants have no posterior canal system at E18.5. In addition, these mutants have deformations of the anterior and horizontal cristae, reduced formation of the anterior and horizontal canals, as well as altered position of the remaining sensory epithelia with respect to the utricle. Hair cells form but some have defects in their cilia formation. No defects were detected in the organ of Corti at the cellular level. Together these data suggest that FGF10 plays a major role in ear morphogenesis. Most of these data are consistent with earlier findings on a null mutation in FGFR2b, one of FGF10's main receptors.  相似文献   

12.
Neurotrophins (NTs) and their signal transducing Trk receptors play a critical role in the development and maintenance of specific neuronal populations in the nervous system of higher vertebrates. They are responsible for the innervation of the inner ear cochlear and vestibular sensory epithelia. Neurotrophins and Trks are also present in teleosts but their distribution in the inner ear is unknown. Thus, in the present study, we used Western-blot analysis and immunohistochemistry to investigate the expression and cell localization of both NTs and Trk receptors in the inner ear of alevins of Salmo salar and Salmo trutta. Western-blot analysis revealed the occurrence of brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3), but not nerve growth factor (NGF), as well as all three Trk receptors, i.e. TrkA, TrkB and TrkC, the estimated molecular weights of which were similar to those expected for mammals. Specific immunoreactivity for neurotrophins was detected mainly in the sensory epithelia. In particular, BDNF immunoreactivity was found in the maculae of the utricle and saccule, whereas NT-3 immunoreactivity was present in the sensory epithelium of the cristae ampullaris. As a rule the sensory epithelia of the inner ear lacked immunoreactivity for Trks, thus excluding possible mechanisms of autocrinia and/or paracrinia. By contrast, overlapping subpopulations of neurons in the statoacoustic ganglion expressed TrkA (about 15%), TrkB (about 65%) and TrkC (about 45%). The present results demonstrate that, as in mammals and birds, the inner ear of teleosts expresses the components of the neurotrophin-Trk system, but their roles remain to be elucidated.  相似文献   

13.
Efferent innervation of the cochlea undergoes extensive modification early in development, but it is unclear if efferent synapses are modified by age, hearing loss, or both. Structural alterations in the cochlea affecting information transfer from the auditory periphery to the brain may contribute to age-related hearing deficits. We investigated changes to efferent innervation in the vicinity of inner hair cells (IHCs) in young and old C57BL/6 mice using transmission electron microscopy to reveal increased efferent innervation of IHCs in older animals. Efferent contacts on IHCs contained focal presynaptic accumulations of small vesicles. Synaptic vesicle size and shape were heterogeneous. Postsynaptic cisterns were occasionally observed. Increased IHC efferent innervation was associated with a smaller number of afferent synapses per IHC, increased outer hair cell loss, and elevated auditory brainstem response thresholds. Efferent axons also formed synapses on afferent dendrites but with a reduced prevalence in older animals. Age-related reduction of afferent activity may engage signaling pathways that support the return to an immature state of efferent innervation of the cochlea.  相似文献   

14.
15.
Apoptosis in the developing inner ear tissue of human (Carnegie stage 14 to 21, approximately 5 to 8 weeks of gestation) and mouse (10.5 to 14 days of gestation) embryos was systematically analyzed by a computer-assisted three-dimensional reconstruction of the serial histological sections and by the TUNEL method. Morphogenetic events such as folding between the utricular portion and endolymphatic duct, constriction of the junction of the saccule with the cochlea and folding of the vestibular portion to form the semicircular ducts were accompanied by a localized distribution of apoptosis. The apoptosis was also related to the innervation of the cochlear and vestibular epithelia from the sensory ganglion of the eighth cranial nerve and the differentiation of the otic epithelia into the sensory epithelia. These results suggest that apoptosis plays an important role in the development of the inner ear.  相似文献   

16.
17.
太空发育鸡胚的前庭感受器细胞形态学研究   总被引:4,自引:0,他引:4  
为了探讨太空微重力对鸡胚前庭感觉上皮细胞的形态发育的影响 ,选取在航天飞机 (STS-2 9)发育鸡胚和地面发育鸡胚各两只 ,利用计算机显微测量技术分别测量椭圆囊和球囊的毛细胞、支持细胞核的切面面积、周长、形状系数。太空发育鸡胚的球囊支持细胞核的切面面积、周长显著大于地面组 ,形状系数无差异 ;太空发育鸡胚的椭圆囊支持细胞核的切面面积、周长、形状系数以及椭圆囊和球囊毛细胞的切面面积、周长与地面发育鸡胚相比无明显差异。微重力可能对球囊支持细胞核的体积发育有影响 ,对椭圆囊和球囊的毛细胞以及椭圆囊支持细胞核的形态发育无影响。  相似文献   

18.
The bronx waltzer (vb) mutation in the mouse results in the degeneration of most but not all of the primary auditory receptors, the inner hair cells, and their afferent neurons. We analyzed the ultrastructure of 94 inner hair cells in the intact postnatal mutant mouse and in neonatal cochleas in culture to understand the pathogenesis of hair cell death and to detect factors that may prevent it. The vb spiral neurons of the bronx waltzer display two distinctive features: some of them continue to divide mitotically for at least seven postnatal days, and the type I radial fibers that innervate inner hair cells display a deficiency in immunoexpression of GAD. The growing endings of spiral neurons converge around the inner hair cells or, in their absence, invade the outer hair cell region. Their profuse sprouting among inner spiral sulcus cells contributes to the characteristic ultrastructural picture of the bv cochlea. During the first three days after birth, 40% of the inner hair cells appear normal and innervated, 40% are mostly denervated and degenerating, and 20% are immature, with minimal or no neuronal appositions. However, in mutants 6 days and older only a few inner hair cells survive, and these show either normal or superfluous afferent innervation and axosomatic GABAergic efferent innervation. Degeneration of inner hair cells begins with a distention of the nuclear envelope and the ribosomal endoplasmic reticulum. The outer nuclear membrane eventually breaks, and exudate fills the cell interior. The cellular edema leads to cell death. We propose that success or failure in synaptic acquisition is a decisive factor in the survival or decline of the mutant inner hair cells. We also suggest that the developmental delay in maturation of the spiral ganglion neurons (type I) and the failure in their synaptogenesis may be caused by an impairment in neurotrophin (NT3/BDNF) synthesis by their mutant receptor cells.  相似文献   

19.
Dependency of taste buds and taste papillae on innervation has been debated for a long time. Previous research showed neurotrophins, brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3), play an important role for the establishment of the lingual gustatory and somatosensory innervation. BDNF null mutant mice showed severe deficits in gustatory innervation and loss of taste buds while NT-3 null mutation reduced lingual somatosensory innervation to tongue papillae. These results proved BDNF or NT-3 null mutations affected different sensory modalities (i.e. gustatory and somatosensory, respectively). In this study, we analyzed taste bud development in BDNF × NT-3 double knockout mice to examine the relationship between taste bud development and gustatory/somatosensory innervation. Our results demonstrate that, at the initial stage, before nerve fibers reached the appropriate areas in the papilla, taste bud formation did not require innervation. However, at the synaptogenic stage, after nerve fibers ramified into the apical epithelium, innervation was required and played an essential role in the development of taste buds/papillae.  相似文献   

20.
The hearing of fishes is transduced by the otolithic end-organs of the eighth nerve. In several nonostariophysine fish, the nerve innervation and hair cell orientation in the saccule, one otolithic organ, suggest that directionality is encoded by a set of mutually perpendicular sensory epithelia. The anterior saccular branch innervates only the hair cell groups oriented along the rostrocaudal body axis which are located at the anterior of the saccule. The posterior saccular branches innervate the hair cell groups oriented along the dorsoventral body axis and are found at the posterior of the saccule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号