首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CD8+ T cells provide an important component of protection against intracellular infections and cancer. Immune responses by these T cells involve a primary phase of effector expansion and differentiation, followed by a contraction phase leading to memory formation and, if antigen is re-encountered, a secondary expansion phase with more rapid differentiation. Both primary and secondary phases of CD8+ T-cell immunity have been shown to depend on CD4+ T-cell help, although during certain infections the primary phase is variable in this requirement. One explanation for such variability relates to the strength of associated inflammatory signals, with weak signals requiring help. Here, we focus on our studies that have dissected the requirements for help in the primary phase of the CTL response to herpes simplex virus, elucidating intricate interactions and communications between CD4+ T cells, various dendritic cell subsets, and CD8+ T cells. We place our studies in the context of others and describe a simple model of help where CD40 signaling amplifies innate signals to enable efficient CD8+ T-cell expansion and differentiation. This model facilitates CTL induction to various different agents, without altering the qualitative innate signals that direct other important arms of immunity.  相似文献   

2.
Okoye IS  Wilson MS 《Immunology》2011,134(4):368-377
Over the past 10 years we have made great strides in our understanding of T helper cell differentiation, expansion and effector functions. Within the context of T helper type 2 (Th2) cell development, novel innate‐like cells with the capacity to secrete large amounts of interleukin‐5 (IL‐5), IL‐13 and IL‐9 as well as IL‐4‐producing and antigen‐processing basophils have (re)‐emerged onto the type 2 scene. To what extent these new players influence αβ+ CD4+ Th2 cell differentiation is discussed throughout this appraisal of the current literature. We highlight the unique features of Th2 cell development, highlighting the three necessary signals, T‐cell receptor ligation, co‐stimulation and cytokine receptor ligation. Finally, putting these into context, microbial and allergenic properties that trigger Th2 cell differentiation and how these influence Th2 effector function are discussed and questioned.  相似文献   

3.
Understanding the immune responses that explain why infants require multiple doses of pertussis vaccine to achieve protection against infection is a high priority. The objective of this study was to compare the function and phenotypes of antigen‐specific CD4+ T cells in adults (n = 12), compared to infants (n = 20), following vaccination with acellular pertussis (DTaP) vaccine. Peripheral blood mononuclear cells (PBMCs) were stimulated with pertussis toxoid (PT), pertactin (PRN) and filamentous haemagglutinin (FHA). Multi‐parameter flow cytometry was used to delineate CD4+ T cell populations and phenotypes producing interferon (IFN)‐γ, interleukin (IL)‐2, tumour necrosis factor (TNF)‐α and IL‐4. Based on surface CD69 expression, infants demonstrated activation of vaccine antigen‐specific CD4+ T cells similar to adults. However, among infants, Boolean combinations of gates suggested that type 1 (Th‐1) CD4+ T cell responses were confined largely to TNF‐α+IL‐2+IFN‐γ or TNF‐α+IL‐2IFN‐γ. A significantly lower percentage of polyfunctional T helper type 1 (Th1) responses (TNF‐α+IFN‐γ+IL‐2+) and type 2 (Th2) responses (IL‐4) were present in the infants compared to adults. Moreover, a significantly higher percentage of infants' functional CD4+ T cells were restricted to CD45RACCR7+CD27+ phenotype, consistent with early‐stage differentiated pertussis‐specific memory CD4+ T cells. We show for the first time that DTaP vaccination‐induced CD4+ T cells in infants are functionally and phenotypically dissimilar from those of adults.  相似文献   

4.
CD4 T-cell help is not a universal requirement for effective primary CD8 T cells but is essential to generate memory CD8 T cells capable of recall responses. This study examined how CD4 T cells affect primary and secondary anti-viral CD8 T-cell responses within the central nervous system (CNS) during encephalomyelitis induced by sublethal gliatropic coronavirus. CD4 T-cell depletion before infection did not impair peripheral expansion, interferon-γ production, CNS recruitment or initial CNS effector capacity of virus-specific CD8 T cells ex vivo. Nevertheless, impaired virus control in the absence of CD4 T cells was associated with gradually diminished CNS CD8 T-cell interferon-γ production. Furthermore, within the CD8 T-cell population short-lived effector cells were increased and memory precursor effector cells were significantly decreased, consistent with higher T-cell turnover. Transfer of memory CD8 T cells to reduce viral load in CD4-depleted mice reverted the recipient CNS CD8 T-cell phenotype to that in wild-type control mice. However, memory CD8 T cells primed without CD4 T cells and transferred into infected CD4-sufficient recipients expanded less efficiently and were not sustained in the CNS, contrasting with their helped counterparts. These data suggest that CD4 T cells are dispensable for initial expansion, CNS recruitment and differentiation of primary resident memory CD8 T cells as long as the duration of antigen exposure is limited. By contrast, CD4 T cells are essential to prolong primary CD8 T-cell function in the CNS and imprint memory CD8 T cells for recall responses.  相似文献   

5.
Human immunodeficiency virus (HIV)-1 protease is a known target of CD8+ T cell responses, but it is the only HIV-1 protein in which no fully characterized HIV-1 protease CD4 epitopes have been identified to date. We investigated the recognition of HIV-1 protease by CD4+ T cells from 75 HIV-1-infected, protease inhibitor (PI)-treated patients, using the 5,6-carboxyfluorescein diacetate succinimidyl ester-based proliferation assay. In order to identify putative promiscuous CD4+ T cell epitopes, we used the TEPITOPE algorithm to scan the sequence of the HXB2 HIV-1 protease. Protease regions 4-23, 45-64 and 73-95 were identified; 32 sequence variants of the mentioned regions, encoding frequent PI-induced mutations and polymorphisms, were also tested. On average, each peptide bound to five of 15 tested common human leucocyte antigen D-related (HLA-DR) molecules. More than 80% of the patients displayed CD4+ as well as CD8+ T cell recognition of at least one of the protease peptides. All 35 peptides were recognized. The response was not associated with particular HLA-DR or -DQ alleles. Our results thus indicate that protease is a frequent target of CD4+ along with CD8+ proliferative T cell responses by the majority of HIV-1-infected patients under PI therapy. The frequent finding of matching CD4(+) and CD8+ T cell responses to the same peptides may indicate that CD4+ T cells provide cognate T cell help for the maintenance of long-living protease-specific functional CD8+ T cells.  相似文献   

6.
Using T-cell receptor (TCR) transgenic mice, we demonstrate that TCR stimulation of naive CD4(+) T cells induces transient T-bet expression, interleukin (IL)-12 receptor beta2 up-regulation, and GATA-3 down-regulation, which leads to T helper (Th)1 differentiation even when the cells are stimulated with peptide-loaded I-A(b)-transfected Chinese hamster ovary cells in the absence of interferon-gamma (IFN-gamma) and IL-12. Sustained IFN-gamma and IL-12 stimulation augments naive T-cell differentiation into Th1 cells. Intriguingly, a significant Th1 response is observed even when T-bet(-/-) naive CD4(+) T cells are stimulated through TCR in the absence of IFN-gamma or IL-12. Stimulation of naive CD4(+) T cells in the absence of IFN-gamma or IL-12 with altered peptide ligand, whose avidity to the TCR is lower than that of original peptide, fails to up-regulate transient T-bet expression, sustains GATA-3 expression, and induces differentiation into Th2 cells. These results support the notion that direct interaction between TCR and peptide-loaded antigen-presenting cells, even in the absence of T-bet expression and costimulatory signals, primarily determine the fate of naive CD4(+) T cells to Th1 cells.  相似文献   

7.
Nucleotide-binding and oligomerization domain (NOD)-like receptors (NLRs) and retinoic acid-inducible gene (RIG)-like receptors (RLRs) are recently discovered cytosolic pattern-recognition receptors sensing mainly bacterial components and viral RNA, respectively. Their importance in various cells and disorders is becoming better understood, but their role in human tonsil-derived T lymphocytes remains to be elucidated. In this study, we evaluated expression and functional relevance of NLRs and RLRs in human tonsillar CD3(+) T lymphocytes. Immunohistochemistry, real-time RT-PCR and flow cytometry revealed expression of NOD1, NOD2, NALP1, NALP3, NAIP, IPAF, RIG-1, MDA-5 and LGP-2 at mRNA and protein levels. Because of the limited number of ligands (iE-DAP, MDP, Alum, Poly(I:C)/LyoVec), functional evaluation was restricted to NOD1, NOD2, NALP3 and RIG-1/MDA-5, respectively. Stimulation with the agonists alone was not enough to induce activation but upon triggering via CD3 and CD28, a profound induction of proliferation was seen in purified CD3(+) T cells. However, the proliferative response was not further enhanced by the cognate ligands. Nonetheless, in tonsillar mononuclear cells iE-DAP, MDP and Poly(I:C)/LyoVec were found to augment the CD3/CD28-induced proliferation of tonsillar mononuclear cells. Also, iE-DAP and MDP were found to promote secretion of interleukins 2 and 10 as well as to up-regulate CD69. This study demonstrates for the first time a broad range of NLRs and RLRs in human tonsillar T cells and that NOD1, NOD2 and RIG-1/MDA-5 act synergistically with αCD3 and αCD28 to induce proliferation of human T cells. Hence, these results suggest that these receptors have a role in T-cell activation.  相似文献   

8.
Macchia I  Gauduin MC  Kaur A  Johnson RP 《Immunology》2006,119(2):232-242
Circulating CD4+ CD8+ T lymphocytes have been described in the peripheral blood of humans and several animal species. However, the origin and functional properties of these cells remain poorly understood. In the present study, we evaluated the frequency, phenotype and function of peripheral CD4+ CD8+ T cells in rhesus macaques. Two distinct populations of CD4+ CD8+ T cells were identified: the dominant one was CD4hi CD8lo and expressed the CD8alphaalpha homodimer, while the minor population was CD4lo CD8hi and expressed the CD8alphabeta heterodimer. The majority of CD4hi CD8alphalo T cells exhibited an activated effector/memory phenotype (CCR5lo CD7- CD28- HLA-DR+) and expressed relatively high levels of granzyme B. Intracellular cytokine staining assays demonstrated that the frequency of cytomegalovirus-specific T cells was enriched five-fold in CD4hi CD8alphalo T cells compared to single-positive CD4+ T cells, whereas no consistent enrichment was observed for simian immunodeficiency virus (SIV)-specific T cells. Cross-sectional studies of SIV-infected animals demonstrated that the frequency of CD4hi CD8alphalo T cells was lower in wild-type SIV-infected animals compared to uninfected controls, although prospective studies of SIV-infected animals demonstrated depletion of CD4hi CD8alphalo lymphocytes only in a subset of animals. Taken together, these data suggest that CD4+ T cells expressing CD8alpha represent an effector/memory subset of CD4+ T cells and that this cell population can be depleted during the course of SIV infection.  相似文献   

9.
10.
Dendritic cells (DC) comprise a system of professional antigen-presenting cells, which induce the stimulation of very rare antigen-specific naive T cells. DC progenitors can be stimulated to differentiate into immature DC by various growth factors, including GM-CSF and IL-4. Here we show that IL-15, in combination with GM-CSF, is a growth factor for murine DC. Murine bone marrow cells, depleted of T cells, B cells, I-A+ cells and Gr-1+ granulocytes, and cultured in the presence of GM-CSF plus IL-15 (IL-15 DC), yielded DC expressing high levels of CD11c and MHC class II molecules, as well as CD11b. These cells expressed significant levels of CD40, CD80 and CD86, and could stimulate allogeneic CD4+ T cells efficiently. Interestingly, IL-15 DC were far superior to DC generated with GM-CSF plus IL-4 in stimulating allogeneic CD8+ T cells in vitro. Consistent with this, IL-15 DC induced much more potent antigen-specific CD8+ T cell responses with high levels of Th1 cytokines in vivo, compared to DC generated with GM-CSF plus IL-4, or with GM-CSF plus TGF-beta, or with GM-CSF alone. Together, these data suggest that IL-15 promotes the development of DC, which induce potent Th1 and Tc1 responses in vivo. This suggests potential roles for these IL-15 DC cells in the immunotherapy of tumors and infectious diseases.  相似文献   

11.
CD4+CD25+调节性T细胞(Tr)是同时具有免疫低反应性和免疫抑制性功能两大特征的T细胞.研究证实,CD4+ CD25+ Tr在抑制器官特异性自身免疫性疾病及GVHD是抗原特异性的,因此,应用器官特异性而不是多克隆性的Tr将大大促进以Tr为基础的免疫治疗.而具有调节活性的CD4+ CD25+ Tr仅占人类外周血CIM+ T细胞的1%~2%,因此,研究体外大量扩增的方法 对于以Tr基础的治疗至关重要.研究表明,树突状细胞(DC)作为机体强有力的专职抗原递呈细胞可以扩增具有抗原特异性的CD4+ CD25+ Tr且能增加后者的抑制活性,这为治疗自身免疫性疾病及GVHD提供了新的治疗前景.  相似文献   

12.
Cooperation between CD4(+) T cells can enhance the response and modulate the cytokine profile, and defining these parameters has become a major issue for multivalent-vaccine strategies.We explored cooperation using adoptive transfer of two populations of TCR transgenic T cells of different specificity. One was transferred without prior activation, whereas the second was activated for five days by antigen stimulation under polarizing culture conditions. Both populations were transferred into a single adoptive host and then primed by particle-mediated DNA delivery. Polarized Th1 cells (inducers) raised the frequency of IFN-gamma(+) cells within a naive (target) population, whereas Th2 inducers raised the frequency of IL-4(+) and reduced that of IL-2(+) cells. These effects were obtained when the genes for both antigens were on the same particle, favoring presentation by the same dendritic cell, but not when on different particles delivered to different dendritic cells. Autonomy of DC clusters allows linked sets of antigens (e.g. from a single pathogen) to maintain cytokine bias, but allows other independent responses, each with their own set of autonomous clusters.  相似文献   

13.
Although potentially autoreactive T cells are present even in healthy subjects, most individuals do not develop autoimmune disease. It has been well demonstrated that CD4+ CD25+ regulatory T cells play a significant role in controlling the expansion of autoreactive T cells in the periphery. However, some healthy individuals exhibit measurable responses to self peptide even in the presence of CD4+ CD25+ regulatory cells. This article describes the regulation of human CD4+ T cell responses to glutamic acid decarboxylase 65 (GAD65), an autoantigen implicated in type-1 diabetes, by autologous CD8+ suppressor T cells. In cells cultured from healthy individuals, the inclusion of autologous CD8+ T cells at physiological levels resulted in a dramatic decrease in the magnitude of in vitro CD4+ T cell responses to GAD65 peptide. Based on transwell experiments, the observed suppression was cell contact-dependent. However, antibody blocking studies indicated that suppression was mediated by IL-10. Cell fractionation studies suggested that CD8+ suppressor T cells originate from the CD45RA+ CD27- population. The suppression of CD4+ T cell responses to GAD65 in healthy individuals raises the possibility that CD8+ suppressor T cells play an important role in controlling potentially autoreactive T cells in the general population.  相似文献   

14.
Interleukin 4 (IL-4) and IL-2 have complementary or synergistic roles in many aspects of lymphocyte development. IL-2 supports the induction of cytolytic activity in cytotoxic T lymphocyte (CTL), natural killer (NK), and lymphokine-activated killer (LAK) cells. IL-4 has also been shown to support CTL and LAK in primary murine spleen cell culture. This report demonstrates that IL-4 selectively down-regulates IL-2 inducible murine CD8- precursors of NK cells. For maximal regulatory effect it is necessary to add IL-4 to cultures before 40 h. Enrichment for NK1.1+ cells failed to recover precursor cells which are down-regulated in overnight cultures or can be cultivated in vitro to yield NK cytolytic activity. Furthermore, phenotypic analysis of effector cells demonstrated a marked inhibition of development of NK1.1+ cells in cultures containing IL-4 plus IL-2 versus IL-2 alone. Thus, it appears that IL-4 down-regulates the precursors of murine NK cells by inhibiting proliferation and/or development. In addition, we show that IL-2-induced murine LAK activity mediated by CD8- precursor cells is unaffected by IL-4, while CD8(+)-derived LAK cells are up-regulated by co-culture with IL-4 and IL-2. Analysis of these data relative to reports documenting down-regulation of human LAK by IL-4 suggests that in vitro cultured, IL-2-activated murine NK cells are the correlates to what are commonly described as human LAK cells. The discrepancy may stem from differences in the characteristics of target cells used in the murine versus the human systems. These results clarify the conflicting reports on the effect of IL-4 on killing activity.  相似文献   

15.
The ganglioside GD3 has been described as a membrane component of human T cells which is involved in T cell growth. In the present study the activating function of GD3 for human CD4+ and CD8+ T cells was analyzed by five different monoclonal antibodies (mAb) directed against the GD3 molecule. Three mAb U5, Z21 and R24 induced strong proliferation of peripheral blood mononuclear cells and purified CD8+ and CD4+ T cells of normal donors containing less than 5% CD16+ natural killer (NK) cells. In contrast to CD4+ T cells, CD8+ T cells proliferated only weakly in the presence of 15% CD16+ NK cells. The proliferative response of purified CD4+ and CD8+ T cells (<5% NK cells) correlated with the antibody-dependent induction of integral and soluble interleukin-2 (IL-2) receptors and was reduced to 20% by an anti-IL-2 receptor antibody. Our results show, that the GD3 molecule represents an activation molecule for both CD4+ and CD8+ T cells and that CD16+ NK cells selectively inhibit anti-GD3 antibody-induced proliferation of CD8+ T cells.  相似文献   

16.
Dendritic cells (DC), in their role in initiation of the adaptive immune response, have been extensively studied for their capacity to interact and stimulate naive T cells. Subsets of mature murine DC isolated directly from the spleen have been shown to differ in their ability to induce proliferative responses in both primary CD4(+) and primary CD8(+) T cells; the myeloid-related CD8alpha(-) DC induce a more intense or prolonged proliferation of naive T cells than do the lymphoid-related DC bearing CD8alpha despite similar expression of MHC and co-stimulatory molecules. Here we examine the interaction of these DC subpopulations with T cells already in the activated or memory state which are known to have greater sensitivity to antigen stimulation and bear receptors with increased capacity for signal transduction. We show that influenza virus-specific CD4(+) T cell clones and splenic T cells from peptide-primed animals proliferated in response to antigen presented by separated splenic CD8(-) DC. In contrast, these T cells showed only weak, if any, proliferation in response to CD8(+) DC despite observable cluster formation in the cultures. The differential between the two DC types in inducing proliferation was even more pronounced than previously seen with primary T cells and did not reflect differential longevity of the DC in culture, altered response kinetics or deviation from IL-2 to IL-4 induction with CD8(+) DC, but was related to the levels of IL-2 induced. The deficiency in the CD8(+) DC was not overcome by using infectious virus rather than synthetic peptide as the antigen source. These results show that lymphoid-related CD8(+) splenic DC, despite their mature phenotype, fail to provide appropriate signals to secondary CD4(+) T cells to sustain their proliferation.  相似文献   

17.
The role of CD8(+) T cells in the development of allergic airway disease is controversial. On the one hand, CD8(+) T cells are known to inhibit the development of airway hyperreactivity (AHR) in murine models of asthma. In humans, IL-10-producing CD8(+) T cells were shown to act as regulatory cells, inhibiting both proliferation and cytokine secretion of T cells. On the other hand, CD8(+) T cells can promote IL-5-mediated eosinophilic airway inflammation and the development of AHR in animal models. To examine this, we investigated the role of CD8(+) T cells during the induction of allergen-induced AHR and demonstrated a protective effect of CD8(+) T cells. Depletion of CD8(+) T cells prior to the immunization led to increased Th2 responses and increased allergic airway disease. However, after development of AHR, CD8(+) T cells that infiltrated the lungs secreted high levels of IL-4, IL-5 and IL-10, but little IFN-gamma, whereas CD8(+) T cells in the peribronchial lymph nodes or spleen produced high levels of IFN-gamma, but little or no Th2 cytokines. These data demonstrate protective effects of CD8(+)T cells against the induction of immune responses and show a functional diversity of CD8(+) T cells in different compartments of sensitized mice.  相似文献   

18.
In this study we show the inheritance of a CD4+CD8+ peripheral T cell population in the H.B15 chicken strain. A large proportion of αβ T cells in peripheral blood (20–40%), spleen (10–20%) and intestinal epithelium (5–10%) co-express CD4 and CD8α, but not CD8β. CD4+ CD8αα cells are functionally normal T cells, since they proliferate in response to mitogens and signals delivered via the αβT cell receptor as well as via the CD28 co-receptor. These cells induce in vivo a graft versus host-reaction, providing further evidence for their function as CD4+ T cells. The CD4+CD8αα T cell population was found in 75% of the first progeny and in 100% of further progenies, demonstrating that co-expression of CD4 and CD8 on peripheral T cells is an inherited phenomenon. In addition, cross-breeding data suggest a dominant Mendelian form of inheritance. The hereditary expression of CD8α on peripheral CD4+ T cells in chicken provides a unique model in which to study the regulation of CD4 and CD8 expression.  相似文献   

19.
Summary Infection of mice with the gastrointestinal nematode Trichuris muris represents a valuable tool to investigate and dissect intestinal immune responses. Resistant mouse strains respond to T. muris infection by mounting a T helper type 2 response. Previous results have shown that CD4+ T cells play a critical role in protective immunity, and that CD4+ T cells localize to the infected large intestinal mucosa to confer protection. Further, transfer of CD4+ T cells from immune mice to immunodeficient SCID mice can prevent the development of a chronic infection. In the current study, we characterize the protective CD4+ T cells, describe their chemokine receptor expression and explore the functional significance of these receptors in recruitment to the large intestinal mucosa post‐T. muris infection. We show that the ability to mediate expulsion resides within a subpopulation of CD4+ T cells marked by down‐regulation of CD62L. These cells can be isolated from intestine‐draining mesenteric lymph nodes (MLN) from day 14 post‐infection, but are rare or absent in MLN before this and in spleen at all times post‐infection. Among CD4+ CD62Llow MLN cells, the two most abundantly expressed chemokine receptors were CCR6 and CXCR3. We demonstrate for the first time that CD4+ CD62Llow T‐cell migration to the large intestinal mucosa is dependent on the family of Gαi‐coupled receptors, to which chemokine receptors belong. CCR6 and CXCR3 were however dispensable for this process because neutralization of CCR6 and CXCR3 did not prevent CD4+ CD62Llow cell migration to the large intestinal mucosa during T. muris infection.  相似文献   

20.
We examined peripheral lymphocyte subsets in patients with autoimmune thyroid disease, or subacute thyroiditis, in the active stage when possible. During destructive thyrotoxicosis arising from alpha beta T cell receptor (TCR) negative T (WT31-CD3+) cells and CD8 (CD4-CD8+) cells decreased and those of CD4+CD8+ cells increased slightly, resulting in proportional increases in CD4 (CD4+CD8-) cells, non-T, non-B (CD5-CD19-) cells, and the CD4/CD8 cell ratio. Changes were similar in active subacute thyroiditis. During stimulative thyrotoxicosis in active Graves' disease, the numbers of such T lymphocyte subsets were not changed, but only the number of CD5+ B (CD5+CD19+) cells increased markedly, resulting in proportional decreases in total T (CD3+) cells, alpha beta+ TCR T (WT31+CD3+) cells, CD8 cells, and non-T, non-B cells. A serial study of some of the patients showed opposite changes in alpha beta TCR- T cells, the CD4/CD8 cell ratio, and CD5+ B cells between the active stages of Graves' and Hashimoto's diseases. alpha beta TCR- T cells were mostly gamma delta TCR+ T (IIF2+ CD3+) cells in these patients. These data suggest that alpha beta TCR-T (gamma delta TCR+ T), CD8, and CD4+ CD8+ cells are important in thyroid destruction in Hashimoto's disease and subacute thyroiditis, and that CD5+ B cells are important in thyroid stimulation in Graves' disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号