首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 985 毫秒
1.
On site evaluation of three flat panel detectors for digital radiography   总被引:2,自引:0,他引:2  
During a tender we evaluated the image performance of three commercially available active matrix flat panel imagers (AMFPI) for general radiography, one based on direct detection method (Se photoconductor) the other two on indirect detection method (CsI phosphor). Basic image quality parameters (MTF, NNPS, DQE) were evaluated with particular attention to dose and energy dependence. As it is known, presampling modulation transfer function (MTF) of selenium based detector is very high (at 70 kV, 2 cycles/mm, 2.5 microGy, about 0.80). Indirect detection panels exhibit a comparable (lower) resolution (at 70 kV, 2 cycles/mm, 2.5 microGy, MTF is about 0.34 for both the systems analyzed) and a more pronounced energy and dose dependence could also be noted in one of them. As a consequence of the very high resolution, the normalized noise power spectrum (NNPS) of the direct system is substantially flat, very similar to a white noise. Considering that the sensitive layer of all detectors is the same (0.5 mm), the relatively higher NNPS values are related to selenium absorption properties (lower Z respect to CsI:Tl) and detector inherent noise. NNPSs of the other systems, at low frequencies, are comparable but the frequency dependence is significantly different. At 70 kV, 2.5 microGy, 0.5 cycles/mm detective quantum efficiency (DQE) is about 0.35 for the direct detection system, and about the same (0.6) for the indirect ones. The combined effect of additive and multiplicative noise components makes DQE dependence on dose not monotonic. DQE present a maximum for an intermediate exposure. This complex behavior may be useful to characterize the systems in terms of the monodimensional integral over the frequency of DQE (IDQE). Both visual contrast-detail experiment and the direct evaluation of the signal-to-noise ratio confirmed, at least in a qualitative way, the system performances predicted by IDQE.  相似文献   

2.
The aim of this study was to characterize the effect of an image processing algorithm (FineView) on both quantitative image quality parameters and the threshold contrast detail response of the GE Senographe DS full-field digital mammography system. The system was characterized using signal transfer property, pre-sampling modulation transfer function (MTF), normalized noise power spectrum (NNPS) and detective quantum efficiency (DQE) of the system. An algorithmic modulation transfer function (MTF(a)) was calculated from images acquired at a reduced detector air kerma (DAK) and with the FineView algorithm enabled. Two sets of beam conditions were used: Mo/Mo/28 kV and Rh/Rh/29 kV, both with 2 mm added Al filtration at the x-ray tube. Images were acquired with and without FineView at four DAK levels from 14 to 378 μGy. The threshold contrast detail response was assessed using the CDMAM contrast-detail test object which was imaged under standard clinical conditions with and without FineView at three DAK levels from 24 to 243 μGy. The images were scored by both human observers and by automated scoring software. Results indicated an improvement of up to 125% at 5 mm?1 in MTF(a) when FineView was activated, particularly at high DAK levels. A corresponding increase of up to 425% at 5 mm?1 was also seen in the NNPS, again with the same DAK dependence. FineView did not influence DQE, an indication that the signal to noise ratio transfer of the system remained unchanged. FineView did not affect the threshold contrast detectability of the system, a result that is consistent with the DQE results.  相似文献   

3.
Quantitative image quality results in the form of the modulation transfer function (MTF), normalized noise power spectrum (NNPS) and detective quantum efficiency (DQE) are presented for nine full field digital mammography (FFDM) systems. These parameters are routinely measured as part of the quality assurance (QA) programme for the seven FFDM units covered by our centre. Just one additional image is required compared to the standard FFDM protocol; this is the image of an edge, from which the MTF is calculated. A variance image is formed from one of the flood images used to measure the detector response and this provides useful information on the condition of the detector with respect to artefacts. Finally, the NNPS is calculated from the flood image acquired at a target detector air kerma (DAK) of 100 microGy. DQE is then estimated from these data; however, no correction is currently made for effects of detector cover transmission on DQE. The coefficient of variation (cov) of the 50% point of the MTF for five successive MTF results was 1%, while the cov for the 50% MTF point for an a-Se system over a period of 17 months was approximately 3%. For four a-Se based systems, the cov for the NNPS at 1 mm(-1) for a target DAK of 100 microGy was approximately 4%; the same result was found for four CsI based FFDM units. With regard to the stability of NNPS over time, the cov for four NNPS results acquired over a period of 12 months was also approximately 4%. The effect of acquisition geometry on NNPS was also assessed for a CsI based system. NNPS data acquired with the antiscatter grid in place showed increased noise at low spatial frequency; this effect was more severe as DAK increased. DQE results for the three detector types (a-Se, CsI and CR) are presented as a function of DAK. Some reduction in DQE was found for both the a-Se and CsI based systems at a target DAK of 12.5 microGy when compared to DQE data acquired at 100 microGy. For the CsI based systems, DQE at 1 mm(-1) fell from 0.49 at 100 microGy to 0.38 at 12.5 microGy. For the a-Se units, there was a slightly greater reduction in average DQE at 1 mm(-1), from 0.53 at 100 microGy to 0.31 at 12.5 microGy. Somewhat different behaviour was seen for the CR unit; DQE (at 1 mm(-1)) increased from 0.40 at 100 microGy to 0.49 at 12.5 microGy; however, DQE fell to 0.30 at 420 microGy. DQE stability over time was assessed using the cov of DQE at 1 mm(-1) and a target DAK of 100 microGy; the cov for data acquired over a period of 17 months for an a-Se system was approximately 7%. For comparison with conventional testing methods, the cov was calculated for contrast-detail (cd) data acquired over the same period of time for this unit. The cov for the threshold contrast results (averaged for disc diameters between 0.1 mm and 2 mm) was 6%, indicating similar stability.  相似文献   

4.
This paper presents pre-sampling modulation transfer function (MTF), normalized noise power spectrum (NNPS) and detective quantum efficiency (DQE) results for an amorphous selenium (a-Se) full field digital mammography system. MTF was calculated from the image of an angled 0.5 mm thick Cu edge, acquired without additional beam filtration. NNPS data were acquired at detector air-kerma levels ranging from 9.1 microGy to 331 microGy, using a standard mammography x-ray spectrum of 28 kV, Mo/Mo target/filter combination and 4 cm of PMMA additional filtration. Prior to NNPS estimation, the image statistics were assessed using a variance image. This method was able to easily identify a detector artefact and should prove useful in routine quality assurance (QA) measurements. Detector DQE, calculated from the NNPS and MTF data, dropped to 0.3 for low detector air-kerma settings but reached an approximately constant value of 0.6 above 50 microGy at the detector. Subjective image quality data were also obtained at these detector air-kerma settings using the CDMAM contrast-detail (c-d) test object. The c-d data reflected the trend seen in DQE, with threshold contrast increasing at low detector air-kerma values. The c-d data were then compared against predictions made using two established models, the Rose model and a standard signal detection theory model. Using DQE(0), the Rose model gave results within approximately 15% on average for all the detector air-kerma values studied and for detail diameters down to 0.2 mm. Similar agreement was also found between the measured c-d data and the signal detection theory results, which were calculated using an ideal human visual response function and a system magnification of unity. The use of full spatial frequency DQE improved the agreement between the calculated and observer results for detail sizes below 0.13 mm.  相似文献   

5.
The purpose of this study was to evaluate and compare the physical characteristics of five clinical systems for digital mammography (GE Senographe 2000D, Lorad Selenia M-IV, Fischer Senoscan, Agfa DM 1000, and IMS Giotto) currently in clinical use. The basic performances of the mammography systems tested were assessed on the basis of response curve, modulation transfer function (MTF), noise power spectrum, noise equivalent quanta (NEQ), and detective quantum efficiency (DQE) in an experimental setting closely resembling the clinical one. As expected, all the full field digital mammography systems show a linear response curve over a dynamic range from 3.5 to 500 microGy (0.998相似文献   

6.
The purpose of this study was to perform a complete evaluation of three pieces of clinical digital mammography equipment. Image quality was assessed by performing physical characterization and contrast-detail (CD) analysis. We considered three different FFDM systems: a computed radiography unit (Fuji "FCR 5000 MA") and two flat-panel units, the indirect conversion a-Si based GE "Senographe 2000D" and the direct conversion a-Si based IMS "Giotto Image MD." The physical characterization was estimated by measuring the MTF, NNPS, and DQE of the detectors with no antiscatter grid and over the clinical range of exposures. The CD analysis was performed using a CDMAM 3.4 phantom and custom software designed for automatic computation of the contrast-detail curves. The physical characterization of the three digital systems confirms the excellent MTF properties of the direct conversion flat-panel detector (FPD). We performed a relative standard deviation (RSD) analysis, for investigating the different components of the noise presented by the three systems. It turned out that the two FPDs show a significant additive component, whereas for the CR system the statistical noise is dominant. The multiplicative factor is a minor constituent for all the systems. The two FPDs demonstrate better DQE, with respect to the CR system, for exposures higher than 70 microGy. The CD analysis indicated that the three systems are not statistically different for detail objects with a diameter greater than 0.3 mm. However, the IMS system showed a statistically significant different response for details smaller than 0.3 mm. In this case, the poor response of the a-Se detector could be attributed to its high-frequency noise characteristics, since its MTF, NEQ, and DQE are not inferior to those of the other systems. The CD results were independent of exposure level, within the investigated clinical range. We observed slight variations in the CD results, due to the changes in the visualization parameters (window/level and magnification factor). This suggests that radiologists would benefit from viewing images using varied window/level and magnification.  相似文献   

7.
This paper describes objective and subjective image quality measurements acquired as part of a routine quality assurance (QA) programme for an amorphous selenium (a-Se) full field digital mammography (FFDM) system between August-04 and February-05. During this period, the FFDM detector developed a fault and was replaced. A retrospective analysis of objective image quality parameters (modulation transfer function (MTF), normalized noise power spectrum (NNPS) and detective quantum efficiency (DQE)) is presented to try and gain a deeper understanding of the detector problem that occurred. These measurements are discussed in conjunction with routine contrast-detail (c-d) results acquired with the CDMAM (Artinis, The Netherlands) test object. There was significant reduction in MTF over this period of time indicating an increase in blurring occurring within the a-Se converter layer. This blurring was not isotropic, being greater in the data line direction (left to right across the detector) than in the gate line direction (chest wall to nipple). The initial value of the 50% MTF point was 6 mm(-1); for the faulty detector the 50% MTF points occurred at 3.4 mm(-1) and 1.0 mm(-1) in the gate line and data line directions, respectively. Prior to NNPS estimation, variance images were formed of the detector flat field images. Spatial distribution of variance was not uniform, suggesting that the physical blurring process was not constant across the detector. This change in variance with image position implied that the stationarity of the noise statistics within the image was limited and that care would be needed when performing objective measurements. The NNPS measurements confirmed the results found for the MTF, with a strong reduction in NNPS as a function of spatial frequency. This reduction was far more severe in the data line direction. A somewhat tentative DQE estimate was made; in the gate line direction there was little change in DQE up to 2.5 mm(-1) but at the Nyquist frequency the DQE had fallen to approximately 35% of the original value. There was severe attenuation of DQE in the data line direction, the DQE falling to less than 0.01 above approximately 3.0 mm(-1). C-d results showed an increase in threshold contrast of approximately 25% for details less than 0.2 mm in diameter, while no reduction in c-d performance was found at the largest detail diameters (1.0 mm and above). Despite the detector fault, the c-d curve was found to pass the European protocol acceptable c-d curve.  相似文献   

8.
Empirical and theoretical investigations of the performance of a small-area, high-spatial-resolution, active matrix flat-panel imager, operated under mammographic conditions, is reported. The imager is based on an indirect detection array incorporating a continuous photodiode design, as opposed to the discrete photodiode design employed in conventional flat-panel imagers. Continuous photodiodes offer the prospect of higher fill factors, particularly for arrays with pixel pitches below approximately 100 microm. The array has a pixel-to-pixel pitch of 75 microm and a pixel format of 512 x 512, resulting in an active area of approximately 3.8 x 3.8 cm2. The array was coupled to two commercially available, structured CsI: Tl scintillators of approximately 150 microm thickness: one optimized for high light output (FOS-HL) and the other for high spatial resolution (FOS-HR), resulting in a pair of imager configurations. Measurements of sensitivity, modulation transfer function (MTF), noise power spectra (NPS), and detective quantum efficiency (DQE) were performed with a 26 kVp mammography beam at exposures ranging from approximately 0.5 to approximately 19 mR. MTF results from both CsI:Tl scintillators show that the array demonstrates good spatial resolution, indicating effective isolation between adjacent pixels. The effect of additive noise of the system on DQE was observed to be significantly higher for the FOS-HR scintillator compared to the FOS-HL scintillator due to lower sensitivity of the former. For the FOS-HL scintillator, DQE performance was generally high at high exposures, limited by the x-ray quantum efficiency, Swank factor and the MTF of the scintillators. For both scintillators, the DQE performance degrades at lower exposures due to the relatively large contribution of additive noise. Theoretical calculations based on a cascaded systems model were found to be in general agreement with the empirically determined NPS and DQE values. Finally, such calculations were used to predict potential DQE performance for hypothetical 50 microm pixel pitch imagers, employing similar continuous photodiode design and realistic inputs derived from the empirical measurements.  相似文献   

9.
An objective analysis of image quality parameters was performed for six digital mammography systems. The presampled modulation transfer function (MTF), normalized noise power spectrum (NNPS), and detective quantum efficiency (DQE) for the systems were determined at different doses, for 28 kVp with a Mo/Mo or W/Al target/filter combination and 2 mm of additional aluminium filtration. The flat-panel units have higher MTF and DQE in the mid to high frequency range than standard CR systems. The highest DQE, over the whole dose range, is for the slit-scanning direct photon counting system. Dual-side read CR can overcome the inherent x-ray absorption and signal collection limitations of standard CR mammography, improving the low-frequency DQE by 40%, to the same level as full-field systems, but it does not improve the poor spatial resolution of phosphor.  相似文献   

10.
This paper describes a digital radiography (DR) quality control protocol for DR detectors from the forthcoming report from the Institute of Physics and Engineering in Medicine (IPEM). The protocol was applied to a group of six identical caesium iodide (CsI) digital x-ray detectors to assess reproducibility of methods, while four further detectors were assessed to examine the wider applicability. Twelve images with minimal spatial frequency processing are required, from which the detector response, lag, modulation transfer function (MTF), normalized noise power spectrum (NNPS) and threshold contrast-detail (c-d) detectability are calculated. The x-ray spectrum used was 70 kV and 1 mm added copper filtration, with a target detector air kerma of 2.5 μGy for the NNPS and c-d results. In order to compare detector performance with previous imaging technology, c-d data from four screen/film systems were also acquired, at a target optical density of 1.5 and an average detector air kerma of 2.56 μGy. The DR detector images were typically acquired in 20 min, with a further 45 min required for image transfer and analysis. The average spatial frequency for the 50% point of the MTF for six identical detectors was 1.29 mm(-1) ± 0.05 (3.9% coefficient of variation (cov)). The air kerma set for the six systems was 2.57 μGy ± 0.13 (5.0% cov) and the NNPS at this air kerma was 1.42 × 10(-5) mm(2) (6.5% cov). The detective quantum efficiency (DQE) measured for the six identical detectors was 0.60 at 0.5 mm(-1), with a maximum cov of 10% at 2.9 mm(-1), while the average DQE was 0.56 at 0.5 mm(-1) for three CsI detectors from three different manufacturers. Comparable c-d performance was found for these detectors (5.9% cov) with an average threshold contrast of 0.46% for 11 mm circular discs. The average threshold contrast for the S/F systems was 0.70% at 11 mm, indicating superior imaging performance for the digital systems. The protocol was found to be quick, reproducible and gave an in-depth assessment of performance for a range of digital x-ray detectors.  相似文献   

11.
The use of cadmium tungstate (CdWO4) and cesium iodide [CsI(Tl)] scintillation detectors is studied in megavoltage computed tomography (MVCT). A model describing the signal acquired from a scintillation detector has been developed which contains two steps: (1) the calculation of the energy deposited in the crystal due to MeV photons using the EGSnrc Monte Carlo code; and (2) the transport of the optical photons generated in the crystal voxels to photodiodes using the optical Monte Carlo code DETECT2000. The measured detector signals in single CdWO4 and CsI(Tl) scintillation crystals of base 0.275 x 0.8 cm2 and heights 0.4, 1, 1.2, 1.6 and 2 cm were, generally, in good agreement with the signals calculated with the model. A prototype detector array which contains 8 CdWO4 crystals, each 0.275 x 0.8 x 1 cm3, in contact with a 16-element array of photodiodes was built. The measured attenuation of a Cobalt-60 beam as a function of solid water thickness behaves linearly. The frequency dependent modulation transfer function [MTF(f)], noise power spectrum [NPS(f)], and detective quantum efficiency [DQE(f)] were measured for 1.25 MeV photons (in a Cobalt-60 beam). For 6 MV photons, only the MTF(f) was measured from a linear accelerator, where large pulse-to-pulse fluctuations in the output of the linear accelerator did not allow the measurement of the NPS(f). A two-step Monte Carlo simulation was used to model the detector's MTF(f), NPS(f) and DQE(f). The DQE(0) of the detector array was found to be 26% and 19% for 1.25 MeV and 6 MV photons, respectively. For 1.25 MeV photons, the maximum discrepancies between the measured and modeled MTF(f), relative NPS(f) and the DQE(f) were found to be 1.5%, 1.2%, and 1.9%, respectively. For the 6 MV beam, the maximum discrepancy between the modeled and the measured MTF(f) was found to be 2.5%. The modeling is sufficiently accurate for designing appropriate detectors for MVCT.  相似文献   

12.
In many European countries, image quality for digital x-ray systems used in screening mammography is currently specified using a threshold-detail detectability method. This is a two-part study that proposes an alternative method based on calculated detectability for a model observer: the first part of the work presents a characterization of the systems. Eleven digital mammography systems were included in the study; four computed radiography (CR) systems, and a group of seven digital radiography (DR) detectors, composed of three amorphous selenium-based detectors, three caesium iodide scintillator systems and a silicon wafer-based photon counting system. The technical parameters assessed included the system response curve, detector uniformity error, pre-sampling modulation transfer function (MTF), normalized noise power spectrum (NNPS) and detective quantum efficiency (DQE). Approximate quantum noise limited exposure range was examined using a separation of noise sources based upon standard deviation. Noise separation showed that electronic noise was the dominant noise at low detector air kerma for three systems; the remaining systems showed quantum noise limited behaviour between 12.5 and 380 μGy. Greater variation in detector MTF was found for the DR group compared to the CR systems; MTF at 5 mm(-1) varied from 0.08 to 0.23 for the CR detectors against a range of 0.16-0.64 for the DR units. The needle CR detector had a higher MTF, lower NNPS and higher DQE at 5 mm(-1) than the powder CR phosphors. DQE at 5 mm(-1) ranged from 0.02 to 0.20 for the CR systems, while DQE at 5 mm(-1) for the DR group ranged from 0.04 to 0.41, indicating higher DQE for the DR detectors and needle CR system than for the powder CR phosphor systems. The technical evaluation section of the study showed that the digital mammography systems were well set up and exhibiting typical performance for the detector technology employed in the respective systems.  相似文献   

13.
There is significant interest in using computed tomography (CT) for in vivo imaging applications in mouse models of disease. Most commercially available mouse x-ray CT scanners utilize a charge-coupled device (CCD) detector coupled via fibre optic taper to a phosphor screen. However, there has been little research to determine if this is the optimum detector for the specific task of in vivo mouse imaging. To investigate this issue, we have evaluated four detectors, including an amorphous selenium (a-Se) detector, an amorphous silicon (a-Si) detector with a gadolinium oxysulphide (GOS) screen, a CCD with a 3:1 fibre taper and a GOS screen, and a CCD with a 2:1 fibre taper and both GOS and thallium-doped caesium iodide (CsI:Tl) screens. The detectors were evaluated by measuring the modulation transfer function (MTF), noise power spectrum (NPS), detective quantum efficiency (DQE), stability over multiple exposures, and noise in reconstructed CT images. The a-Se detector had the best MTF and the highest DQE (0.6 at 0 lp mm(-1)) but had the worst stability (45% reduction after 2000 exposure frames). The a-Si detector and the CCD with the 3:1 fibre, both of which used the GOS screen, had very similar performance with a DQE of approximately 0.30 at 0 lp mm(-1). For the CCD with the 2:1 fibre, the CsI:Tl screen resulted in a nearly two-fold improvement in DQE over the GOS screen (0.4 versus 0.24 at 0 lp mm(-1)). The CCDs both had the best stability, with less than a 1% change in pixel values over multiple exposures. The pixel values of the a-Si detector increased 5% over multiple exposures due to the effects of image lag. Despite the higher DQE of the a-Se detector, the reconstructed CT images acquired with the a-Si detector had lower noise levels, likely due to the blurring effects from the phosphor screen.  相似文献   

14.
Zhao W  Ristic G  Rowlands JA 《Medical physics》2004,31(9):2594-2605
Columnar structured cesium iodide (CsI) scintillators doped with Thallium (Tl) have been used extensively for indirect x-ray imaging detectors. The purpose of this paper is to develop a methodology for systematic investigation of the inherent imaging performance of CsI as a function of thickness and design type. The results will facilitate the optimization of CsI layer design for different x-ray imaging applications, and allow validation of physical models developed for the light channeling process in columnar CsI layers. CsI samples of different types and thicknesses were obtained from the same manufacturer. They were optimized either for light output (HL) or image resolution (HR), and the thickness ranged between 150 and 600 microns. During experimental measurements, the CsI samples were placed in direct contact with a high resolution CMOS optical sensor with a pixel pitch of 48 microns. The modulation transfer function (MTF), noise power spectrum (NPS), and detective quantum efficiency (DQE) of the detector with different CsI configurations were measured experimentally. The aperture function of the CMOS sensor was determined separately in order to estimate the MTF of CsI alone. We also measured the pulse height distribution of the light output from both the HL and HR CsI at different x-ray energies, from which the x-ray quantum efficiency, Swank factor and x-ray conversion gain were determined. Our results showed that the MTF at 5 cycles/mm for the HR type was 50% higher than for the HL. However, the HR layer produces approximately 36% less light output. The Swank factor below K-edge was 0.91 and 0.93 for the HR and HL types, respectively, thus their DQE(0) were essentially identical. The presampling MTF decreased as a function of thickness L. The universal MTF, i.e., MTF plotted as a function of the product of spatial frequency f and CsI thickness L, increased as a function of L. This indicates that the light channeling process in CsI improved the MTF of thicker layers more significantly than for the thinner ones.  相似文献   

15.
Mackenzie A  Honey ID 《Medical physics》2007,34(8):3345-3357
The performances of two generations of computed radiography (CR) were tested and compared in terms of resolution and noise characteristics. The main aim was to characterize and quantify the noise sources in the images. The systems tested were (1) Agfa CR 25.0, a flying spot reader with powder phosphor image plates (MD 40.0); and (2) the Agfa DX-S, a line-scanning CR reader with needle crystal phosphor image plates (HD 5.0). For both systems, the standard metrics of presampled modulation transfer function (MTF), normalized noise power spectra (NNPS) and detective quantum efficiency (DQE) were measured using standard radiation quality RQA5 as defined by the International Electrotechnical Commission. The various noise sources contributing to the NNPS were separated by using knowledge of their relationship with air kerma, MTF, absorption efficiency and antialiasing filters. The DX-S MTF was superior compared with the CR 25.0. The maximum difference in MTF between the DX-S scan and CR 25.0 subscan directions was 0.13 at 1.3 mm(-1). For a nominal detector air kerma of 4 microGy, the peak DQE of the DX-S was 43 (+/-3)%, which was over double that of the CR 25.0 of 18 (+/-2)%. The additive electronic noise was negligible on the CR 25.0 but calculated to be constant 3.4 x 10(-7) (+/-0.4 x 10(-7)) mm2 at 3.9 microGy on the DX-S. The DX-S has improved image quality compared with a traditional flying spot reader. The separation of the noise sources indicates that the improvements in DQE of the DX-S are due not only to the higher quantum, efficiency and MTF, but also the lower structure, secondary quantum, and excess noise.  相似文献   

16.
The purpose of this study was to measure experimentally the physical performance of a prototype mammographic imager based on a direct detection, flat-panel array design employing an amorphous selenium converter with 70 microm pixels. The system was characterized for two different anode types, a molybdenum target with molybdenum filtration (Mo/Mo) and a tungsten target with rhodium filtration (W/Rh), at two different energies, 28 and 35 kVp, with approximately 2 mm added aluminum filtration. To measure the resolution, the presampled modulation transfer function (MTF) was measured using an edge method. The normalized noise power spectrum (NNPS) was measured by two-dimensional Fourier analysis of uniformly exposed mammograms. The detective quantum efficiencies (DQEs) were computed from the MTFs, the NNPSs, and theoretical ideal signal to noise ratios. The MTF was found to be close to its ideal limit and reached 0.2 at 11.8 mm(-1) and 0.1 at 14.1 mm(-1) for images acquired at an RQA-M2 technique (Mo/Mo anode, 28 kVp, 2 mm Al). Using a tungsten technique (MW2; W/Rh anode, 28 kVp, 2 mm Al), the MTF went to 0.2 at 11.2 mm(-1) and to 0.1 at 13.3 mm(-1). The DQE reached a maximum value of 54% at 1.35 mm(-1) for the RQA-M2 technique at 1.6 microC/kg and achieved a peak value of 64% at 1.75 mm(-1) for the tungsten technique (MW2) at 1.9 microC/kg. Nevertheless, the DQE showed strong exposure and frequency dependencies. The results indicated that the detector offered high MTFs and DQEs, but structured noise effects may require improved calibration before clinical implementation.  相似文献   

17.
This work compares the detector performance and image quality of the new Kodak Min-R EV mammography screen-film system with the Fuji CR Profect detector and with other current mammography screen-film systems from Agfa, Fuji and Kodak. Basic image quality parameters (MTF, NPS, NEQ and DQE) were evaluated for a 28 kV Mo/Mo (HVL = 0.646 mm Al) beam using different mAs exposure settings. Compared with other screen-film systems, the new Kodak Min-R EV detector has the highest contrast and a low intrinsic noise level, giving better NEQ and DQE results, especially at high optical density. Thus, the properties of the new mammography film approach those of a fine mammography detector, especially at low frequency range. Screen-film systems provide the best resolution. The presampling MTF of the digital detector has a value of 15% at the Nyquist frequency and, due to the spread size of the laser beam, the use of a smaller pixel size would not permit a significant improvement of the detector resolution. The dual collection reading technology increases significantly the low frequency DQE of the Fuji CR system that can at present compete with the most efficient mammography screen-film systems.  相似文献   

18.
Electronic portal imaging devices (EPIDs) based on indirect detection, active matrix flat panel imagers (AMFPIs) have become the technology of choice for geometric verification of patient localization and dose delivery in external beam radiotherapy. However, current AMFPI EPIDs, which are based on powdered-phosphor screens, make use of only approximately 2% of the incident radiation, thus severely limiting their imaging performance as quantified by the detective quantum efficiency (DQE) (approximately 1%, compared to approximately 75% for kilovoltage AMFPIs). With the rapidly increasing adoption of image-guided techniques in virtually every aspect of radiotherapy, there exist strong incentives to develop high-DQE megavoltage x-ray imagers, capable of providing soft-tissue contrast at very low doses in megavoltage tomographic and, potentially, projection imaging. In this work we present a systematic theoretical and preliminary empirical evaluation of a promising, high-quantum-efficiency, megavoltage x-ray detector design based on a two-dimensional matrix of thick, optically isolated, crystalline scintillator elements. The detector is coupled with an indirect detection-based active matrix array, with the center-to-center spacing of the crystalline elements chosen to match the pitch of the underlying array pixels. Such a design enables the utilization of a significantly larger fraction of the incident radiation (up to 80% for a 6 MV beam), through increases in the thickness of the crystalline elements, without loss of spatial resolution due to the spread of optical photons. Radiation damage studies were performed on test samples of two candidate scintillator materials, CsI(Tl) and BGO, under conditions relevant to radiotherapy imaging. A detailed Monte Carlo-based study was performed in order to examine the signal, spatial spreading, and noise properties of the absorbed energy for several segmented detector configurations. Parameters studied included scintillator material, septal wall material, detector thickness, and the thickness of the septal walls. The results of the Monte Carlo simulations were used to estimate the upper limits of the modulation transfer function, noise power spectrum and the DQE for a select number of configurations. An exploratory, small-area prototype segmented detector was fabricated by infusing crystalline CsI(Tl) in a 2 mm thick tungsten matrix, and the signal response was measured under radiotherapy imaging conditions. Results from the radiation damage studies showed that both CsI(Tl) and BGO exhibited less than approximately 15% reduction in light output after 2500 cGy equivalent dose. The prototype CsI(Tl) segmented detector exhibited high uniformity, but a lower-than-expected magnitude of signal response. Finally, results from Monte Carlo studies strongly indicate that high scintillator-fill-factor configurations, incorporating high-density scintillator and septal wall materials, could achieve up to 50 times higher DQE compared to current AMFPI EPIDs.  相似文献   

19.
A micro-angiographic detector was designed and its performance was previously tested to evaluate its feasibility as an improvement over current x-ray detectors for neuro-interventional imaging. The detector was shown to have a modulation transfer function value of about 2% at the Nyquist frequency of 10 cycles/mm and a zero frequency detective quantum efficiency [DQE(0)] value of about 55%. An assessment of the system was required to evaluate whether the current system was performing at its full potential and to determine if any of its components could be optimized to further improve the output. For the purpose, in this study, the parallel cascade theory was used to analyze the performance of the detector under neuro-angiographic conditions by studying the output at the various stages in the imaging chain. A simple model for the spread of light in the CsI(Tl) entrance phosphor was developed and the resolution degradation due to K-fluorescence absorption was calculated. The total gain of the system was found to result in 21 e(-) (rms) detected at the charge coupled device per absorbed x-ray photon. The gain and the spread of quanta in the imaging chain were used to calculate theoretically the DQE using the parallel cascade model. The results of the model-based calculations matched fairly well with the experimental data previously obtained. This model was then used to optimize the phosphor thickness for the detector. The results showed that the area under the DQE curve had a maximum value at 150 microm of CsI(Tl), though when weighted by the squared signal in frequency space of a 100-microm-diam iodinated vessel, the integral DQE reached a maximum at 250 microm of CsI(Tl). Further, possible locations for gain increase in the imaging chain were determined, and the output of the improved system was simulated. Thus a theoretical analysis for the micro-angiographic detector was performed to better assess its potential.  相似文献   

20.
The results of an empirical and theoretical investigation of the performance of a high-resolution, active matrix flat-panel imager performed under mammographic conditions are reported. The imager is based upon a prototype, indirect detection active matrix array incorporating a discrete photodiode in each pixel and a pixel-to-pixel pitch of 97 microm. The investigation involved three imager configurations corresponding to the use of three different x-ray converters with the array. The converters were a conventional Gd2O2S-based mammographic phosphor screen (Min-R) and two structured CsI:Tl scintillators: one optimized for high spatial resolution (FOS-HR) and the other for high light output (FOS-HL). Detective quantum efficiency for mammographic exposures ranging from approximately 2 to approximately 40 mR at 26 kVp were determined for each imager configuration through measurements of x-ray sensitivity, modulation transfer function (MTF), and noise power spectrum (NPS). All configurations were found to provide significant presampling MTF at frequencies beyond the Nyquist frequency of the array, approximately 5.2 mm(-1) , consistent with the high spatial resolution of the converters. In addition, the effect of additive electronic noise on the NPS was found to be significantly larger for the configuration with lower system gain (FOS-HR) than for the configurations with higher gain (Min-R, FOS-HL). The maximum DQE values obtained with the CsI:Tl scintillators were considerably greater than those obtained with the Min-R screen due to the significantly lower Swank noise of the scintillators. Moreover, DQE performance was found to degrade with decreasing exposure, although this exposure-dependence was considerably reduced for the higher gain configurations. Theoretical calculations based on the cascaded systems model were found to be in generally good agreement with these empirically determined NPS and DQE values. In this study, we provide an example of how cascaded systems modeling can be used to identify factors limiting system performance and to examine trade-offs between factors toward the goal of maximizing performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号