首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human papillomavirus type 16 E5 protein as a therapeutic target   总被引:5,自引:0,他引:5  
Cervical cancer is a progressive disease with an onset of one to two decades on average. During the productive replication stage, the Human papillomavirus (HPV) genome is maintained episomally in the infected cervical epithelium and early gene products, including E5, are expressed. Therefore, E5 has a potential to contribute to the HPV-associated carcinogenic process. In invasive malignancies, the HPV genomes are commonly integrated into the host genome, and E6 and E7 genes remain intact. However, the E5 is lost or, if present, under-expressed as compared with the E6 and E7 proteins. This suggests that E5 may play a critical role in the genesis of cervical cancer but less of a role in its persistence or progression. In the initiation of neoplasia and the premalignant stage, there are fewer malignant cells than in the invasive malignancies. Moreover, cells in the invasive malignant stage are found to have a very low level of MHC class I and II, which could hamper the presentation of the antigen and lead to a decreased immune response. Since the E5 protein is likely to play a role during the early tumorigenesis stage, a therapeutic vaccine to target and eliminate the E5-expressing cells may be a good strategy to prevent premalignant lesions from progressing toward invasive cervical cancers. This paper provides an overview of HPV-induced cervical carcinogenesis and strategies for designing prophylactic and therapeutic vaccines to prevent and cure the cervical cancer. In particular, focus will be on the rationale of targeting the E5 protein to develop therapeutic vaccines.  相似文献   

2.
The human papillomavirus (HPV) E7 oncoprotein shares functional similarities with such proteins as adenovirus E1A and SV40 large tumor antigen. As one of only two viral proteins always expressed in HPV-associated cancers, E7 plays a central role in both the viral life cycle and carcinogenic transformation. In the HPV viral life cycle, E7 disrupts the intimate association between cellular differentiation and proliferation in normal epithelium, allowing for viral replication in cells that would no longer be in the dividing population. This function is directly reflected in the transforming activities of E7, including tumor initiation and induction of genomic instability.  相似文献   

3.
E7 is the major oncoprotein of high-risk human papillomaviruses (HPV) which causes cervical cancer. To date E7 oncoproteins have not been investigated in cervical adenocarcinoma. In this study we generated a rabbit monoclonal anti-HPV-16 E7 antibody, RabMab42-3, which recognizes a conformational epitope in the E7 carboxy-terminal zinc-finger resulting in a strong increase in the sensitivity for the detection of cell-associated HPV-16 E7 protein relative to conventional polyclonal anti-HPV-16 E7 antibodies. Using RabMab42-3, we show that the subcellular localization of endogenous HPV-16 E7 oncoprotein varies during the cell cycle in cervical cancer cells. Moreover, we demonstrate for the first time that the HPV-16 E7 oncoprotein is abundantly expressed in cervical adenocarcinoma in situ and adenocarcinoma, suggesting an important role of HPV-16 E7 for the development of these tumors. Our findings suggest that the HPV-16 E7 oncoprotein could be a useful marker for the detection of cervical adenocarcinoma and their precursors.  相似文献   

4.
Yu Y  Munger K 《Virology》2012,432(1):120-126
The mitotic spindle assembly checkpoint (SAC) ensures faithful chromosome segregation during mitosis by censoring kinetochore-microtubule interactions. It is frequently rendered dysfunctional during carcinogenesis causing chromosome missegregation and genomic instability. There are conflicting reports whether the HPV16 E7 oncoprotein drives chromosomal instability by abolishing the SAC. Here we report that degradation of mitotic cyclins is impaired in cells with HPV16 E7 expression. RNAi-mediated depletion of Mad2 or BubR1 indicated the involvement of the SAC, suggesting that HPV16 E7 expression causes sustained SAC engagement. Mutational analyses revealed that HPV16 E7 sequences that are necessary for retinoblastoma tumor suppressor protein binding as well as sequences previously implicated in binding the nuclear and mitotic apparatus (NuMA) protein and in delocalizing dynein from the mitotic spindle contribute to SAC engagement. Importantly, however, HPV16 E7 does not markedly compromise the SAC response to microtubule poisons.  相似文献   

5.
Angeline M  Merle E  Moroianu J 《Virology》2003,317(1):13-23
E7, the major transforming protein of high-risk human papillomavirus (HPV), type 16, binds and inactivates the retinoblastoma protein (pRb), and the Rb-related proteins p107 and p130. HPV16 E7 is a nuclear protein lacking a classical basic nuclear localization signal. In this study we investigated the nuclear import of HPV16 E7 oncoprotein in digitonin-permeabilized HeLa cells. HPV16 E7 nuclear import was independent of pRb, as an E7(DeltaDLYC) variant defective in pRb binding was imported into the nuclei of digitonin-permeabilized cells as efficiently as wild-type E7 in the presence of exogenous cytosol. Interestingly, we discovered that HPV16 E7 is imported into the nuclei via a novel pathway different from those mediated by Kap alpha2beta1 heterodimers, Kap beta1, or Kap beta2. Nuclear accumulation of E7 required Ran and was not inhibited by the RanG19V-GTP variant, an inhibitor of Kap beta mediated import pathways. Together the data suggest that HPV16 E7 translocates through the nuclear pores via a nonclassical Ran-dependent pathway, independent of the main cytosolic Kap beta import receptors.  相似文献   

6.
We demonstrate that HPV-16 E7 forms a complex with Miz-1. UV-induced expression of the CDK-inhibitor p21Cip1 and subsequent cell cycle arrest depends upon endogenous Miz-1 in HPV-negative C33A cervical cancer cells containing mutated p53. Transient expression of E7 in C33A inhibits UV-induced expression of p21Cip1 and overcomes Miz-1-induced G1-phase arrest. The C-terminal E7Δ79LEDLL83-mutant with reduced Miz-1-binding capacity was impaired in its capability to repress p21Cip1 expression; whereas the pRB-binding-deficient E7C24G-mutant inhibited p21Cip1 expression similar to wild-type E7. Using ChIP, we demonstrate that endogenous E7 is bound to the endogenous p21Cip1 core-promoter in CaSki cells and RNAi-mediated knock down of Miz-1 abrogates E7-binding to the p21Cip1 promoter. Co-expression of E7 with Miz-1 inhibited Miz-1-induced p21Cip1 expression from the minimal-promoter via Miz-1 DNA-binding sites. Co-expression of E7Δ79LEDLL83 did not inhibit Miz-1-induced p21Cip1 expression. E7C24G retained E7-wild-type capability to inhibit Miz-1-dependent transactivation. These findings suggest that HPV-16 E7 can repress Miz-1-induced p21Cip1 gene expression.  相似文献   

7.
The role of the human papillomavirus oncoprotein E7 in carcinogenesis has been extensively studied. While the role of HPV E7 in the viral life cycle has also been studied, certain disparities exist, indicating that genotype differences may influence the role that E7 plays in the viral life cycle. In this study, we investigated the role of HPV18 E7 in the viral life cycle in order to gain a further understanding of this issue. To determine the role that HPV18 E7 plays in the viral life cycle, a translation termination substitution mutant of E7 in the context of the full HPV18 genome was created. We introduced linearized HPV18 E7-deficient genomic DNA into primary keratinocytes, where it recircularized and was maintained episomally at a range of five to several hundred copies of HPV genomic DNA. The mutant genomes failed to amplify following epithelial stratification and differentiation in organotypic culture. Moreover, virion morphogenesis did not occur. We found that the expression of HPV16 or HPV18 E7 in trans was able to rescue the amplification defect but not the defect in virion morphogenesis. These studies indicate that HPV18 E7 plays a critical role in the productive stage of the viral life cycle. In addition, these studies add further proof to the hypothesis that genotype differences exist for the role of E7 during the viral life cycle.  相似文献   

8.
Kwang-Jin Oh 《Virology》2010,396(1):118-2385
The HPV oncoprotein E7 promotes proteasomal degradation of the tumor suppressor protein Rb. In this study, we analyzed the regulation of E7-induced Rb proteolysis in HPV-containing Caski cervical cancer cells. We show that the Rb proteolysis is cell cycle dependent; in S phase Rb is stable while in post-mitotic early G1 phase cells and in differentiated cells, Rb is unstable. Similarly, the in vivo Rb/E7 interaction is not detected in S-phase cells, but is readily detected in differentiating Caski cells. The ubiquitinating enzymes involved in Rb proteolysis have not been identified. We find that the E3 ligase MDM2 is not involved in the Rb proteolysis in Caski cells. An in vivo analysis using multiple catalytic site mutant dominant negative E2 enzymes show that the C92A E2-25K most effectively blocks E7-induced Rb proteolysis. Taken together, these results show that E7 induces Rb proteolysis in growth-arrested cells and E2-25K is involved in the proteolysis.  相似文献   

9.
Xiaobo Zhou 《Virology》2009,385(1):192-98
Expression of oncogenes, such as the human papillomavirus type 16 (HPV16) E7 oncoprotein, promotes aberrant cell proliferation. In the absence of concurrent mitogenic stimuli, this triggers a cell-intrinsic defense mechanism, the “trophic sentinel response”, which eliminates such aberrant cells. The molecular pathways that elicit this response, however, remain obscure. We set up an experimental system to investigate the trophic sentinel pathway triggered by HPV16 E7 expression in normal human keratinocytes, the natural host cells of HPVs. Keratinocytes expressing HPV16 E7 cultured in E-medium undergo cell death and show increased sub-G1 DNA content when grown to confluence or under conditions of serum deprivation. Moreover, HPV16 E7 expressing human keratinocytes express higher levels of the autophagy marker, LC3-II, which can be abrogated by 3-methyladenine, an autophagy inhibitor. These findings indicate that even under normal culture conditions, HPV16 E7 expression triggers metabolic stress that may result in autophagy, a pathway implicated in carcinogenesis.  相似文献   

10.
High-risk human papillomaviruses (HPVs) contribute to cervical and other anogenital cancers, and they are also linked etiologically to a subset of head and neck squamous cell carcinomas (HNSCC). We previously established a model for HPV-associated HNSCC in which we treated transgenic mice expressing the papillomaviral oncoproteins with the chemical carcinogen 4-nitroquinoline-1-oxide (4-NQO). We found that the HPV-16 E7 oncoprotein was highly potent in causing HNSCC, and its dominance masked any potential oncogenic contribution of E6, a second papillomaviral oncoprotein commonly expressed in human cancers. In the current study, we shortened the duration of treatment with 4-NQO to reduce the incidence of cancers and discovered a striking synergy between E6 and E7 in causing HNSCC. Comparing the oncogenic properties of wild-type versus mutant E6 genes in this model for HNSCC uncovered a role for some but not other cellular targets of E6 previously shown to contribute to cervical cancer.  相似文献   

11.
HPV type 58 (HPV-58) is the third most common HPV type in cervical cancer from Eastern Asia, yet little is known about how it promotes carcinogenesis. In this study, we demonstrate that HPV-58 E7 significantly promoted the proliferation and extended the lifespan of primary human keratinocytes (PHKs). HPV-58 E7 abrogated the G1 and the postmitotic checkpoints, although less efficiently than HPV-16 E7. Consistent with these observations, HPV-58 E7 down-regulated the cellular tumor suppressor pRb to a lesser extent than HPV-16 E7. Similar to HPV-16 E7 expressing PHKs, Cdk2 remained active in HPV-58 E7 expressing PHKs despite the presence of elevated levels of p53 and p21. Interestingly, HPV-58 E7 down-regulated p130 more efficiently than HPV-16 E7. Our study demonstrates a correlation between the ability of down-regulating pRb/p130 and abrogating cell cycle checkpoints by HPV-58 E7, which also correlates with the biological risks of cervical cancer progression associated with HPV-58 infection.  相似文献   

12.
Human papillomaviruses (HPVs) cause cervical cancer and are associated with the development of non-melanoma skin cancer. A suitable animal model for papillomavirus-associated skin carcinogenesis is the infection of domestic rabbits with the cottontail rabbit papillomavirus (CRPV). As the immortalizing activity of CRPV genes in the natural target cells remains unknown, we investigated the properties of CRPV E6 and E7 in rabbit keratinocytes (RK) and their influence on the cell cycle. Interestingly, CRPV E7 immortalized RK after a cellular crisis but showed no such activity in human keratinocytes. Co-expressed CRPV E6 prevented cellular crisis. The HPV16 or CRPV E7 protein reduced rabbit pRb levels thereby causing rabbit p19(ARF) induction and accumulation of p53 without affecting cellular proliferation. Both CRPV E6 proteins failed to degrade rabbit p53 in vitro or to bind E6AP; however, p53 was still inducible by mitomycin C. In summary, CRPV E7 immortalizes rabbit keratinocytes in a species-specific manner and E6 contributes to immortalization without directly affecting p53.  相似文献   

13.
E5 oncoprotein activity from high risk human papillomaviruses (HPVs) is associated with growth factor receptor signaling, but the function of this protein is not well understood. In this study, we investigated the role of HPV-16 E5 on the cell cycle progression during EGF-stimulation. Wild-type and NIH 3T3 cells over-expressing human EGF-receptor were transfected with HPV-16 E5 gene and the cell cycle progression was characterized. This analysis showed that the E5-expressing cells increased DNA synthesis (S-phase) by around 40%. Cell cycle protein analysis of E5-expressing cells showed a reduction in the half-life of p27Kip1 protein as compared to control cells (18.4 vs. 12.7 h), an effect that was enhanced in EGF-stimulated cells (12.8 vs. 3.6 h). Blockage of EGF-receptor activity abrogated E5 signals as well as p27Kip1 down-regulation. These results suggest that E5 and the EGF-receptor cooperate to enhance cell cycle entry and progression through regulating p27Kip1 expression at protein level.  相似文献   

14.
目的 优化HPV-16 E6癌基因特异的U6质粒表达的siRNA,抑制HPV癌基因表达及其对子宫颈癌细胞生长繁殖的影响。方法 选择4个分别针对HPV-16 E6 mRNA外显子和内含子序列为靶序列,合成DNA链,构建表达HPV-16 E6短发卡样dsRNA的重组pSilencer1.0-U6载体,导入HPV-16DNA阳性的宫颈癌细胞株CaSki中,观察该细胞中HPV-16 E6、E7基因表达水平及其蛋白含量的变化,并观察细胞生长被抑制的情况。结果 4种HPV-16 E6 siRNA均能降低宫颈癌细胞CaSki的生长速率。通过细胞生长曲线观察到HPV-16 E6 shRNA表达质粒导入细胞0-96h内,可降低细胞生长速度。荧光定量RT-PCR检测HPV-16 E6 siRNA可使宫颈癌细胞株CaSki中HPV-16 E6、E7基因转录的mRNA水平降低,其中针对E6 mRNA内含子的重组shRNA只抑制E6基因的表达水平。Western blot分析表明,4个HPV-16 E6 siRNA作用72h后,未能检测到宫颈癌细胞中HPV-16 E6蛋白。结论 HPV-16 E6 siRNA能使宫颈癌细胞CaSki生长缓慢;选择针对E6内含子的siRNA作用位点,特异性抑制E6表达;而针对E6外显子的siRNA作用位点,可抑制E6和E7基因的表达,是用于治疗HPV阳性宫颈癌细胞的理想靶位。  相似文献   

15.
The paper describes a method to use filamentous phage to display specific regions of proteins for immunization in order to direct the immune response towards a pre-defined region of the protein. The method called site-specific immunization (SSI) was evaluated using the E7 protein of oncogenic (high-risk) human papillomavirus (HPV) type 16 as a model system. This protein consists of sequence blocks also present in other viral and cellular proteins and in the corresponding protein of low-risk HPVs. A fragment of the HPV16 E7 oncoprotein specific for a group of high-risk viruses was identified by sequence comparison and displayed on filamentous phages in fusion with the major phage coat protein VIII. The recombinant phages triggered an immune response in mice against the full-length HPV16 E7 protein. Fusion of B-lymphocytes from the immunized animals with myeloma cells resulted in three hybridomas producing monoclonal antibodies (MAbs) with reactivity against the endogenous E7 protein. The specificity of the MAbs for the HPV16 E7 protein in cancer cell lines was confirmed by Western blot analyses and immunocytochemistry. The epitope of each MAb was roughly mapped by determining the reactivity against overlapping E7 fragments displayed on phage particles. The mimotopes of the MAbs were further determined by biopanning against a randomized peptide library displayed on phage and found to be unique for a sub-set of high-risk HPV E7 proteins. The combination of different phage display techniques for immunization and epitope mapping was efficient for generation and characterization of highly specific MAbs.  相似文献   

16.
目的研究癌基因的特异性反义RNA对癌细胞生长繁殖和恶性程度的影响。方法用逆转录病毒载体将人乳头瘤病毒(HPV)-16E6E7反义RNA导入HPV-16DNA阳性的宫颈癌细胞株CaSki中,观察该细胞在导入反义RNA后其表型特征和在裸鼠体内致癌能力的变化。结果HPV-16E6E7反义RNA能降低宫颈癌细胞CaSki的生长速率,抑制其在软琼脂上的集落形成能力,并能明显地抑制其在裸鼠体内的致癌能力。Westernblot分析发现HPV-16E6E7反义RNA能使宫颈癌细胞中病毒HPV-16E6基因的表达水平降低。结论HPV-16E6E7反义RNA能使宫颈癌细胞CaSki恶性表型逆转;由其引起的癌细胞中HPV-16癌基因表达水平的降低可能是癌细胞表型逆转的原因之所在;HPV-16癌基因的表达水平对维持癌细胞的恶性表型起着重要作用。  相似文献   

17.
王鹤  于继云  李力 《中国免疫学杂志》2011,27(12):1088-1092
目的:构建pIRES-neo-HPV58E6E7真核表达载体,稳定转染入小鼠黑色素瘤B16细胞,建立稳定表达HPV58E6E7基因的B16细胞系。方法:采用PCR方法扩增出HPV58E6E7融合基因的全长序列,利用DNA重组技术将其定向插入到真核表达载体pIRES-neo中,并加入酶切位点和6×his标签,构建重组真核表达质粒pIRES-neo-HPV58E6E7。利用阳离子脂质体介导法将其转染入小鼠黑色素瘤B16细胞,经G418加压筛选出稳定转染的阳性克隆。利用Western blot、流式细胞术、免疫荧光等检测方法验证HPV58E6E7融合基因在稳定转染的B16细胞株中的表达。结果:经PCR、限制性内切酶鉴定及测序分析,pIRES-neo-HPV58E6E7重组质粒构建正确,转染B16细胞株后,经过Western blot、流式细胞术和免疫荧光等检测显示B16细胞株能够稳定、高效表达HPV58E6E7融合基因,表明B16-HPV58E6E7稳定转染细胞系构建成功。结论:成功构建了pIRES-neo-HPV58E6E7真核表达载体,建立了可以高效、稳定表达HPV58E6E7融合基因的B16细胞系。该稳定转染细胞系的建立为进一步研究HPV58治疗性基因疫苗的功能提供了良好的靶细胞,为其在肿瘤免疫治疗中的应用奠定了研究基础。  相似文献   

18.
Wilson R  Ryan GB  Knight GL  Laimins LA  Roberts S 《Virology》2007,362(2):453-460
Activation of the productive phase of the human papillomavirus (HPV) life cycle in differentiated keratinocytes is coincident with high-level expression of E1E4 protein. To determine the role of E1E4 in the HPV replication cycle, we constructed HPV18 mutant genomes in which expression of the full-length E1E4 protein was abrogated. Undifferentiated keratinocytes containing mutant genomes showed enhanced proliferation when compared to cells containing wildtype genomes, but there were no differences in maintenance of viral episomes. Following differentiation, cells with mutant genomes exhibited reduced levels of viral DNA amplification and late gene expression, compared to wildtype genome-containing cells. This indicates that HPV18 E1E4 plays an important role in regulating HPV late functions, and it may also function in the early phase of the replication cycle. Our finding that full-length HPV18 E1E4 protein plays a significant role in promoting viral genome amplification concurs with a similar report with HPV31, but is in contrast to an HPV11 study where viral DNA amplification was not dependent on full-length E1E4 expression, and to HPV16 where only C-terminal truncations in E1E4 abrogated vegetative genome replication. This suggests that type-specific differences exist between various E1E4 proteins.  相似文献   

19.
20.
To analyze the antigenic properties of the human papillomavirus type 16 E7 oncoprotein, two monoclonal antibodies, VD6 and IB10, that have different reactivities to the E7 protein were generated. While the VD6 antibody reacted strongly with E7 protein in CaSki cell extracts, the other antibody, IB10, showed much weaker reactivity with E7. This reactivity increased in a dose-dependent manner in the presence of the casein kinase II-specific inhibitor DRB (5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole). Antigenic site estimation and an in vitro phosphorylation assay, using bacterially expressed E7 protein, demonstrated that the weak reactivity of IB10 was related to the phosphorylation status of the E7 protein. Phosphorylation of E7 reduced considerably the reactivity of IB10 but did not affect the reactivity of VD6, which reacts with the N-terminal portion of E7. In immunoprecipitation (IP) assays, IB10 precipitated weakly the E7 protein from CaSki cell extracts. Together, these data suggest that unphosphorylated E7 protein shows distinct antigenic character compared to its phosphorylated form under denaturing conditions; however, under native conditions, the phosphorylated and nonphosphorylated E7 proteins have some antigenic cross-reactivity. J. Med. Virol. 54:129–134, 1998. © 1998 Wiley-Liss,Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号