首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
OBJECTIVE: To investigate the molecular mechanisms of the anti-apoptotic action of hepatocyte growth factor (HGF), a novel angiogenic growth factor that may have a pivotal role in the regulation of endothelial cells, on human aortic endothelial cells. METHODS: An index of cell number and death was determined using a water-soluble tetrazolium salt dye assay, DNA fragmentation enzyme-linked immunosorbent assay, and non-confocal fluorescence microscopy of nuclear staining with Hoechst 33258 and propidium iodide. Extracellular-signal-regulated protein kinase (ERK) and the p38 mitogen-activated protein kinase (p38MAPK) were analysed by Western blotting using a phospho-specific antibody. RESULTS: Treatment of quiescent endothelial cells with HGF resulted in significant dose-dependent increases in cell numbers and decreases in lactate dehydrogenase (LDH) release. Moreover, HGF significantly attenuated endothelial cell death induced by culture in serum-free conditions. We therefore focused on the signal transduction system, and in particular on ERK and p38MAPK. ERK was markedly phosphorylated by HGF. The contribution of ERK to cell growth was supported by the observation that addition of PD98059, a specific inhibitor of MAPK kinase, significantly attenuated the increase in endothelial cell numbers induced by HGF, in a dose-dependent manner. Similarly, PD98059 also attenuated the decrease in LDH release and DNA fragmentation by HGF under serum-free conditions. Interestingly, ERK was re-phosphorylated at 12 h after stimulation. Re-phosphorylation of ERK was the result of induction of endogenous HGF by exogenously added HGF, as addition of neutralizing anti-HGF antibody to the conditioned medium attenuated re-phosphorylation of ERK at 12 h. In contrast, although p38MAPK was also phosphorylated by HGF, SB203580, a specific inhibitor of p38MAPK, failed to change the endothelial cell growth induced by HGF. CONCLUSION: We have demonstrated that the anti-apoptotic action of HGF against endothelial cell death was mainly through phosphorylation of ERK on human endothelial cells.  相似文献   

3.
OBJECTIVES: Hepatocyte growth factor (HGF) is an angiogenic mitogen which stimulates migration in various cell types and has been shown to induce the production of nitric oxide (NO) in epithelial cells. Conflicting data exist on the effect of NO on endothelial cell migration. The aim of this study was to investigate a possible role for NO in HGF-stimulated endothelial cell motility. METHODS: The study was performed primarily using an endothelial cell line derived from adult human saphenous vein. Transient transfection experiments were additionally performed using an adult human coronary artery endothelial cell line. Nitric oxide synthase expression was examined by western blot analysis. Time-lapse digital image microscopy was used to measure cell motility. A DNA construct was used in transient transfections to over-express inducible nitric oxide synthase (iNOS) as an N-terminal fusion to enhanced green fluorescent protein (EGFP). RESULTS: HGF upregulated the expression of iNOS but not constitutive endothelial nitric oxide synthase (eNOS). Treatment of cells with the specific iNOS inhibitor 1400 W revealed that functional iNOS was required for HGF-stimulated endothelial cell motility. HGF-induced iNOS expression was partially abrogated in the presence of the phosphatidylinositol 3-kinase (PI 3-kinase) inhibitor LY294002, but not the Src kinase inhibitor, PP1. Endothelial cell motility increased significantly (P<0.0001) in the presence of the exogenous NO donor spermine-NO and cells expressing the iNOS-EGFP fusion protein exhibited significantly greater (P=0.0038) motility than those expressing EGFP alone. CONCLUSIONS: These combined data show that elevated NO production is sufficient to stimulate endothelial cell motility and link HGF and NO, both previously implicated in modulating motility, in a common signalling pathway.  相似文献   

4.
Background Hyperoxic exposure in vivo (> 95% oxygen) attenuates ischemia-reperfusion injury, but the signaling mechanisms of this cardioprotection are not fully determined. We studied a possible role of nitric oxide (NO) and mitogen activated protein kinases (MAPK) in hyperoxic protection. Methods Mice (n = 7–9 in each group) were kept in normoxic or hyperoxic environments for 15 min prior to harvesting the heart and Langendorff perfusion with global ischemia (45 min) and reperfusion (60 min). Endpoints were cardiac function and infarct size. Additional hearts were collected to evaluate MAPK phosphorylation (immunoblot). The nitric oxide synthase inhibitor L-NAME, the ERK1/2 inhibitor PD98059 and the p38 MAPK inhibitor FR167653 were injected intraperitoneally before hyperoxia or normoxia. Results Hyperoxia improved postischemic functional recovery and reduced infarct size (p < 0.05). Hyperoxic exposure caused cardiac phosphorylation of the MAPK family members p38 and ERK1/2, but not JNK. L-NAME, PD98059 and FR167653 all reduced the protection afforded by hyperoxic exposure, but did not influence performance or infarction in hearts of normoxic mice. The hyperoxia-induced phosphorylation of ERK1/2 and p38 was reduced by L-NAME and both MAPK inhibitors. Conclusion Nitric oxide triggers hyperoxic protection, and ERK1/2 and p38 MAPK are involved in signaling of protection against ischemia-reperfusion injury.  相似文献   

5.
Formation of lymphatic capillaries by lymphatic endothelial cells (LECs) occurs both in normal tissues as well as in pathological processes including tumor metastasis. Interleukin-6 (IL-6), a potent pro-inflammatory cytokine, has been shown to be highly elevated in various cancers. IL-6 has also been shown to increase tumor lymphangiogenesis through vascular endothelial growth factor-C (VEGF-C) induction in tumor cells. Although lymphangiogenesis is associated with lymph node metastasis and also resistance to conventional therapy in various cancers, the precise mechanisms of lymphangiogenesis in LECs remain unclear. This study aimed to investigate the signaling cascade involved in IL-6-induced VEGF-C expression in murine LECs (SV-LEC). The VEGF-C mRNA and protein levels were increased in SV-LECs exposed to IL-6. IL-6 time-dependently induced Src phosphorylation and downstream phosphorylation of ERK1/2 and p38MAPK. In contrast, PP2, an inhibitor of Src signaling, abrogated IL-6′s effects on ERK1/2 and p38MAPK phosphorylation. IL-6 exposure also led to increase in VEGF-C promoter-luciferase activity as well as C/EBPβ- and κB-luciferase activities. VEGF-C promoter-, C/EBPβ- and κB-luciferase activities were all suppressed by Src, ERK1/2 or p38MAPK signaling blockades despite presence of IL-6. Finally, C/EBPβ and p65 binding to the VEGF-C promoter region were increased after IL-6 exposure in SV-LECs. Taken together, we report a Src-mediated ERK1/2 and p38MAPK activation resulting in C/EBPβ and p65 binding to the promoter region of VEGF-C, leading to VEGF-C expression in IL-6-exposed SV-LECs.  相似文献   

6.
Recent studies suggest that ischemia activates Src and members of the mitogen-activated protein (MAP) kinase superfamily and their downstream effectors, including big MAP kinase 1 (BMK1) and p90 ribosomal S6 kinase (p90RSK). It has also been reported that adenosine is released during ischemia and involved in triggering the protective mechanism of ischemic preconditioning. To assess the roles of Src and adenosine in ischemia-induced MAP kinases activation, we utilized the Src inhibitor PP2 (4-Amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine) and the adenosine receptor antagonist 8-(p-sulfophenyl) theophylline (SPT) in perfused guinea pig hearts. PP2 (1 microm) inhibited ischemia-induced Src, BMK1 and JNK activation but not JAK2 and p38 activation. SPT inhibited ischemia-mediated p38 and JNK activation. These results demonstrate that Src family kinase and adenosine regulate MAP kinases by parallel pathways. Preconditioning significantly improved both recovery of developed pressure and dp/dt in isolated guinea pig hearts. Since the protective effect of preconditioning was blocked by PP2 (1 microm) and SPT (50 microm), we next investigated the regulation of Src, MAP kinases and p90RSK during preconditioning. The activity and time course of ERK1/2 was not changed, but p90RSK activation by reperfusion was completely inhibited by preconditioning. In contrast, the activation by ischemia of Src, BMK1, p38 and JNK was significantly faster in preconditioned hearts. Maximal BMK1 activation by ischemia was also significantly enhanced by preconditioning. These data suggest important roles for Src family kinases and adenosine in mediating preconditioning, and suggest specific roles for individual MAP kinases in preconditioning.  相似文献   

7.
8.
目的探讨p38MAPK信号通路在胰高血糖素样肽1(GLP-1)拮抗人脐静脉内皮细胞凋亡中的作用。方法实验分为对照组、糖基化终末产物(AGE)组、GLP-1组、AGE+GLP-1组、AGE+SB203580组、AGE+GLP-1+SB203580组及AGE+GLP-1+L-NAME组,Western blot检测p-p38MAPK/p38MAPK、磷酸化内皮型一氧化氮合酶/内皮型一氧化氮合酶(p-eNOS/eNOS)蛋白表达情况,NO检测试剂盒(一步法)检测NO含量,DCFH-DA荧光探针检测细胞活性氧(ROS)含量,Annexin V/PI流式检测细胞凋亡率。结果与AGE组相比,GLP-1预处理可诱导p-p38MAPK蛋白表达下降(P=0.000);与对照组比较,GLP-1或p38 MAPK抑制剂(SB203580)预处理后,受AGE抑制的eNOS蛋白表达或诱导的ROS水平分别显著升高(P=0.004)或下降(P=0.000);GLP-1预处理后,因AGE诱导的细胞凋亡率显著降低(P=0.000),而加入L-NAME后,GLP-1的抗凋亡作用显著减弱(P=0.002);GLP-1预处理后,细胞NO含量较单纯AGE组明显升高(P=0.000),而予以L-NAME后,细胞NO含量显著降低(P=0.011)。结论GLP-1可抑制p38 MAPK信号通路的活化,拮抗AGE对血管内皮细胞的氧化损伤;上调eNOS蛋白的表达,拮抗AGE诱导的内皮细胞NO生成障碍及细胞凋亡,从而延缓糖尿病合并动脉粥样硬化的发生发展。  相似文献   

9.
Previous studies have suggested that heterotrimeric G proteins and tyrosine kinases may be involved in lipopolysacchaide (LPS) signaling events. Signal transduction pathways activated by LPS we examined in human pomonocytic THP-l cells. We hypothesized that Gi proteins and Src tyrosine kinase differentially affect mitogen-activated protein (MAP) kinases (MAPK) and nuclear factor kappa(NF-kappaB) activation. Post-receptor coupling to Ga, proteins were examined using pertussis toxin (PTx),which inhibits Galpha i receptor-coupling. The involvement of the Src family of tyrosine kinases was examined using the selective Src tyrosine kinase inhibitor pyrazolopyrimidine-2 (PP2). Pretreatment of THP-1 cells with PTx attenuated LPS-induced activation of c-Jun-N-terminal kinase (JNK) and p38 kinase, and production of tumor necrosis factor-alpha (TN-alpha) and thromboxane B2 (TXB2). Pretreatment with PP2 inhibited TNF-alpha and TxB2 production, but had no effect on p38 kinase or JNK signaling. Therefore, the Ga i-coupled signaling pathways and Src tyrosine kinase-coupled signaling pathways are necessary for LPS-induced TNF-alpha and TxB2 production, but differ in their effects on MAPK activation. Neither PTx nor PP2 inhibited LPS-induced activation of interleukin receptor activated kinase (IRAK) or inhibited translocation of NF-kappaB. However, PP2 inhibited LPS-induced NF-kappaB transactivation of a luciferase reporter gene construct in a concentration-dependent manner. Thus, LPS induction of Src tyrosine kinases may be essential in downstream NF-kappaB tansactivation of genes following DNA binding. PTx had no effect on NF-kaapaB activation of the reporter construct. These data suggest upstream divergence in signaling through Galpha i,pathways leading to MAPK activation and other signaling events leading to IkappaBalpha degradation and NF-kaapaB DNA binding.  相似文献   

10.
Lysophosphatidylcholine (lysoPC) is a component of oxidized low density lipoprotein (LDL) and is involved in the pathogenesis of atherosclerosis and inflammation. Previous studies demonstrated that lysoPC can induce various protein kinases including tyrosine kinases, protein kinase C (PKC), and mitogen-activated protein kinases (MAPK) in vascular endothelial cells. However, the role of lysoPC-activated kinases remains undefined. In this study, we examined the effect of lysoPC on apoptosis and investigated the role of lysoPC-activated protein kinases in human umbilical vein endothelial cells (HUVEC). The presence of apoptosis was evaluated by morphological criteria, MTT assay, and electrophoresis of DNA fragments showing the characteristic apoptotic ladder, TUNEL analysis, and quantified as the proportion of hypodiploid cells by flow cytometry. The lysoPC induced apoptosis in a time- and dose-dependent manner. It stimulated the phosphorylation of extracellular signal-regulated kinase1/2 (ERK1/2) and p38-MAPK in HUVEC. The use of specific pharmacologic inhibitors indicated that the p38-MAPK-signaling pathway (SB203580) is required for lysoPC-induced apoptotic signals. Furthermore, lysoPC-induced apoptosis was inhibited by DEVD-FMK (a caspas-3/CPP32 inhibitor), suggesting involvement of an important segment in the apoptosis. These results demonstrate that lysoPC induces apoptosis in human endothelial cells through a p38-MAPK-dependent pathway.  相似文献   

11.
The excessive proliferation and migration of vascular smooth muscle cells (SMCs) participate in the growth and instability of atherosclerotic plaque. We examined the direct role of a newly developed chemical inhibitor of cholesteryl ester transfer protein, JTT-705, on SMC proliferation and angiogenesis in endothelial cells (ECs). JTT-705 inhibited human coronary artery SMC proliferation. JTT-705 induced the phosphorylation of p38 mitogen-activated protein kinase (MAPK) and extracellular-signal-regulated kinases (ERK) in SMCs. In addition, the anti-proliferative effects of JTT-705 in SMCs were blocked by p38 MAPK inhibitor. JTT-705 induced the upregulation of p-p21(waf1), and this effect was blocked by dominant-negative Ras (N17), but not by inhibitors of p38 MAPK or ERK. In addition, JTT-705 also induced the upregulation of p27(kip1), and this effect was blocked by p38 MAPK inhibitor. Interestingly, culture medium from JTT-705-treated SMCs blocked human coronary artery EC tube formation in an in vitro model of angiogenesis indirectly via a decrease in vascular endothelial growth factor (VEGF) from SMCs and directly via an anti-proliferative effect in ECs. JTT-705 blocked the proliferation of SMCs through the activation of p38 kinase/p27(kip1) and Ras/p21(waf1) pathways, and simultaneously blocked EC tube formation associated with a decrease in VEGF production from SMCs and an anti-proliferative effect in ECs. Our results indicate that JTT-705 may induce a direct anti-atherogenic effect in addition to its inhibitory effect of CETP activity.  相似文献   

12.
目的探讨软脂酸(PA)诱导的血管内皮细胞凋亡中丝裂原活化蛋白激酶(MAPK)通路的作用。方法将人脐静脉内皮细胞(HUVEC)分对照组、PA组、MAPK通路干预组[分别先用p38抑制剂SB203580、氨基末端激酶(JNK)抑制剂PD98059、细胞外信号调节激酶(ERK)抑制剂SP600125干预]再分为PA+SB组、PA+PD组、PA+SP组。流式细胞仪检测细胞凋亡率;Western blot法检测caspase-3、磷酸化p38、JNK和ERK1/2表达水平;分光光度法检测caspase-3的活性。结果与对照组比较,PA组、PA+SB组、PA+PD组、PA+SP组HUVEC凋亡及caspase-3表达和活性明显增加,PA组磷酸化p38MAPK表达明显增加(P<0.05)。与PA组比较,PA+SB组HUVEC细胞凋亡率、caspase-3表达和活性明显降低(P<0.05);而PA+PD组和PA+SP组HUVEC凋亡率、caspase-3表达和活性无明显变化(P>0.05)。结论 PA通过p38MAPK通路促进内皮细胞凋亡。  相似文献   

13.
Lysophosphatidylcholine (LPC), a major lipid component of oxidized low-density lipoprotein, is a bioactive lipid molecule involved in numerous biological processes including the progression of atherosclerosis. Recently orphan G protein-coupled receptors were identified as high-affinity receptors for LPC. Although several G protein-coupled receptor ligands transactivate receptor tyrosine kinases, LPC-stimulated transactivation of receptor tyrosine kinase has not yet been reported. Here we observed for the first time that LPC treatment of human umbilical vein endothelial cells (HUVECs) induces tyrosyl phosphorylation of vascular endothelial growth factor receptor 2 [fetal liver kinase-1/kinase-insert domain-containing receptor, Flk-1/KDR)]. Flk-1/KDR transactivation by LPC was inhibited by vascular endothelial growth factor receptor tyrosine kinase inhibitors, SU1498 and 4-[(4'-chloro-2'-fluoro) phenylamino]6,7-dimethoxyquinazoline (VTKi) in immunoprecipitation. Furthermore, we examined the effects of the Src family kinases inhibitors, herbimycin A and 4-amino-5-(4-chlorophenyl)-7-(t-butyl) pyrazolo[3,4-d] pyrimidine (PP2), on LPC-induced Flk-1/KDR transactivation. Results from Western blots, c-Src is involved in LPC-induced Flk-1/KDR transactivation because herbimycin A and PP2 inhibited this transactivation. Kinase-inactive (KI) Src transfection also inhibited LPC-induced Flk-1/KDR transactivation. In addition, results from Western blots, ERK1/2 and Akt, which are downstream effectors of Flk-1/KDR, were also activated by LPC, and this was inhibited by SU1498, VTKi, herbimycin A, PP2, and KI Src transfection in HUVECs. LPC-induced stimulation of HUVEC proliferation was shown to be secondary to transactivation because it was suppressed by SU1498, VTKi, herbimycin A, PP2, and KI Src transfection in dimethylthiazoldiphenyltetra-zoliumbromide assay. These findings suggest that LPC-induced Flk-1/KDR transactivation via c-Src may have important implications for the progression of atherosclerosis.  相似文献   

14.
We have investigated the role of the different classes of MAPKs, i.e. ERKs, c-Jun N-terminal kinases (JNKs), and p38 MAPK in the proliferation of dog and human thyroid epithelial cells (thyrocytes) in primary cultures. In these cells, TSH, acting through cAMP, epidermal growth factor, hepatocyte growth factor (HGF), and phorbol 12-myristate 13-acetate induce DNA synthesis. With the exception of HGF, all of these factors require the presence of insulin for mitogenic effects to be expressed. We found that TSH and forskolin are without effect on the phosphorylation and activity of the different classes of MAPKs. In contrast, all the cAMP-independent growth factors, whereas without effect on the phosphorylation and activity of JNKs and p38 MAPK, stimulated the ERKs. This effect was strong and sustained in response to HGF, epidermal growth factor and 12-myristate 13-acetate but weak and transient in response to insulin. Moreover, whereas in stimulated cells DNA synthesis was inhibited by PD 098059, an inhibitor of MAPK kinase 1 and consequently of ERKs, it was not modified by SB 203580, an inhibitor of p38 MAPK. Taken together, these data 1) exclude a role of JNKs and p38 MAPK in the proliferation of dog and human thyrocytes; 2) suggest that the mitogenic action of the cAMP-independent agents requires a strong and sustained activation of both ERKs and phosphatidylinositol 3-kinase/protein kinase B as realized by HGF alone or by the other agents together with insulin; and 3) show that TSH and cAMP do not activate ERKs but that the weak activation of ERKs by insulin is nevertheless necessary for DNA synthesis to occur.  相似文献   

15.
Kumar P  Amin MA  Harlow LA  Polverini PJ  Koch AE 《Blood》2003,101(10):3960-3968
Angiogenesis plays an important role in a variety of pathophysiologic processes, including tumor growth and rheumatoid arthritis. We have previously shown that soluble E-selectin (sE-selectin) is an important angiogenic mediator. However, the mechanism by which sE-selectin mediates angiogenesis is still unknown. In this study, we show that sE-selectin is a potent mediator of human dermal microvascular endothelial cell (HMVEC) chemotaxis, which is predominantly mediated through the Src and the phosphatidylinositiol 3-kinase (PI3K) pathways. Further, sE-selectin induced a 2.2-fold increase in HMVEC tube formation in the Matrigel in vitro assay. HMVECs pretreated with the Src inhibitor (PP2) and the PI3K inhibitor (LY294002) or transfected with Src antisense oligonucleotides or Akt dominant-negative mutants significantly inhibited sE-selectin-mediated HMVEC tube formation. In contrast, HMVECs transfected with an extracellular signal-related kinase 1/2 (ERK1/2) mutant or pretreated with the mitogen-activated protein kinase (MAPK) inhibitor PD98059 failed to show sE-selectin-mediated HMVEC tube formation. Similarly, in the Matrigel-plug in vivo assay, sE-selectin induced a 2.2-fold increase in blood vessel formation, which was significantly inhibited by PP2 and LY294002 but not by PD98059. sE-selectin induced a marked increase in Src, ERK1/2, and PI3K phosphorylation. PI3K and ERK1/2 phosphorylation was significantly inhibited by PP2, thereby suggesting that both of these pathways may be activated via Src kinase. Even though the ERK1/2 pathway was activated by sE-selectin in HMVECs, it seems not to be essential for sE-selectin-mediated angiogenesis. Taken together, our data clearly show that sE-selectin-induced angiogenesis is predominantly mediated through the Src-PI3K pathway.  相似文献   

16.
OBJECTIVE: To characterise the effects of exogenous H(2)O(2) on sarcolemmal Na(+)/H(+) exchanger (NHE) activity and determine the roles of extracellular signal-regulated kinase (ERK), p38 mitogen-activated protein kinase (p38 MAPK) and protein kinase C (PKC) in observed effects. METHODS: Sarcolemmal H(+) efflux rate (J(H)) was determined by microepifluorescence at a pH(i) of 6.70 in adult rat ventricular myocytes, after two consecutive acid pulses in HCO(3)(-)-free medium; before the second pulse, cells (n=7-10/group) were exposed to H(2)O(2) or vehicle and the change in J(H) (DeltaJ(H)) was used to quantify the change in NHE activity. ERK and p38 MAPK activities were determined by immunoblotting with phosphospecific antibodies. RESULTS: Relative to control, DeltaJ(H) was increased by a 10-min exposure to 100, but not 1 or 10 microM H(2)O(2) (1000 microM was not tolerated); 3 or 6 min exposure to 100 microM H(2)O(2) was without effect. ERK and p38 MAPK activities were both increased by 100 microM H(2)O(2) (peak at 6 min); the ERK kinase inhibitor PD98059 (10 microM), but not the p38 MAPK inhibitor SB203580 (1 microM), inhibited the H(2)O(2)-induced increase in DeltaJ(H). H(2)O(2)-induced ERK activation was inhibited not only by PD98059 (10 microM), but also by the non-selective tyrosine kinase inhibitor genistein (3-100 microM), the EGF receptor kinase inhibitor AG1478 (3-300 nM) and the Src family kinase inhibitor PP2 (0.1-10 microM). The PKC inhibitors GF109203X (0.3-10 microM) and chelerythrine (1-30 microM) were without effect on ERK activation, although the former abolished the H(2)O(2)-induced increase in DeltaJ(H). CONCLUSIONS: Our data demonstrate that, in adult rat ventricular myocytes, (i) hydrogen peroxide stimulates sarcolemmal NHE activity, (ii) this response requires activation of ERK and PKC, but not p38 MAPK, (iii) ERK activation occurs through tyrosine kinase-mediated, but PKC-independent, mechanisms  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号