首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zhang S  Xia L  Kang CH  Xiao G  Ong SM  Toh YC  Leo HL  van Noort D  Kan SH  Tang HH  Yu H 《Biomaterials》2008,29(29):3993-4002
We have developed a hepatocyte sandwich culture with improved mass transport properties based on ultra-thin microfabricated porous silicon nitride (Si(3)N(4)) membranes. The dimensions and uniformity of the membrane pores can be configurable, which confers more control over the mass transport. Instead of collagen gels used in conventional sandwich culture, we utilized galactose ligands immobilized on the Si(3)N(4) membranes to support hepatocyte attachment and function in the sandwich culture. Diffusion studies using FITC-dextrans confirmed that mass transport of the microfabricated Si(3)N(4) membrane based sandwich was significantly better than conventional collagen gel sandwich and can be configured by varying the porosity of the Si(3)N(4) membrane. Hepatocytes cultured in the microfabricated Si(3)N(4) membrane based sandwich culture exhibited earlier apical repolarization and biliary excretion, improved differentiated functions and enhanced drug sensitivity compared to hepatocytes cultured in a collagen gel sandwich. The Si(3)N(4) membrane based sandwich culture allows for a systematic optimization of the mass transport properties of hepatocyte culture by changing the pore size and inter-pore distance. This will enable more effective drug testing applications where optimal mass transport is required for hepatocyte function maintenance and drug accessibility.  相似文献   

2.
This study investigated the orientation of fibroblasts and collagen cultured on microfabricated grooved or smooth titanium surfaces, as well as on tissue culture polystyrene, in the presence or absence of collagen gels. The gels were first added either to the confluent fibroblast culture on the surface (cell-gel condition) or to the fibroblasts were suspended within the collagen gel and then placed onto the surface (gel condition). Cells and collagen were observed with differential interference, polarization, and confocal laser scanning microscopy. Although the smooth surfaces had no effect on cell orientation in the gel for the first 2 weeks of culture, cells did orient with grooves regardless of the culture conditions. There was evidence for orthogonal multilayering of cells under the cell-gel condition at 4 weeks, and collagen alignment reflected cell alignment. The interaction of the collagen gel with the surface depended on whether the cell-gel or the gel condition was employed. In the former condition, the gel contracted toward the substratum, whereas the gel condition resulted in the formation of a ring of collagen loosely attached to the substratum. These results suggest that the order in which fibroblasts encounter substratum and extracellular matrix can influence the eventual matrix-cell interactions, and that substratum topography can influence matrix and cell orientation in zones not immediately in contact with the surface.  相似文献   

3.
Lee SJ  Choi JS  Park KS  Khang G  Lee YM  Lee HB 《Biomaterials》2004,25(19):4699-4707
Response of different types of cells on materials is important for the applications of tissue engineering and regenerative medicine. It is recognized that the behavior of the cell adhesion, proliferation, and differentiation on materials depends largely on surface characteristics such as wettability, chemistry, charge, rigidity, and roughness. In this study, we examined the behavior of MG63 osteoblast-like cells cultured on a polycarbonate (PC) membrane surfaces with different micropore sizes (0.2-8.0 microm in diameter). Cell adhesion and proliferation to the PC membrane surfaces were determined by cell counting and MTT assay. The effect of surface micropore on the MG63 cells was evaluated by cell morphology, protein content, and alkaline phosphatase (ALP) specific activity. It seems that the cell adhesion and proliferation were progressively inhibited as the PC membranes had micropores with increasing size, probably due to surface discontinuities produced by track-etched pores. Increasing micropore size of the PC membrane results in improved protein synthesis and ALP specific activity in isolated cells. There was a statistically significant difference (P<0.05) between different micropore sizes. The MG63 cells also maintained their phenotype under conditions that support a round cell shape. RT-PCR analysis further confirmed the osteogenic phenotype of the MG63 cells onto the PC membranes with different micropore sizes. In results, as micropore size is getting larger, cell number is reduced and cell differentiation and matrix production is increased. This study demonstrated that the surface topography plays an important role for phenotypic expression of the MG63 osteoblast-like cells.  相似文献   

4.
The pheochromocytoma cell line PC12 displays neuronal characteristics. PC12 cells differentiate their phenotype from a proliferating cell to a neurite-bearing neuron upon treatment with nerve growth factor (NGF). The neurite outgrowth of PC12 cells on polystyrene tissue culture flasks and extracellular matrix protein-adsorbed glass plates was reversibly controlled using visible light. The percentage of cells with neurites decreased with increasing light intensity. Furthermore, neurite outgrowth was dramatically suppressed with light intensities over 300 Lux (approximately 130 μW). Neurite outgrowth occurred in the absence of irradiation by visible light, but did not occur or was limited with irradiation, depending on the membranes on which PC12 cells were cultured. These results hold promise for the creation of patterned neuronal networks corresponding to patterned irradiation of visible light on nerve cells.  相似文献   

5.
The pheochromocytoma cell line PC12 displays neuronal characteristics. PC12 cells differentiate their phenotype from a proliferating cell to a neurite-bearing neuron upon treatment with nerve growth factor (NGF). The neurite outgrowth of PC12 cells on polystyrene tissue culture flasks and extracellular matrix protein-adsorbed glass plates was reversibly controlled using visible light. The percentage of cells with neurites decreased with increasing light intensity. Furthermore, neurite outgrowth was dramatically suppressed with light intensities over 300 Lux (approximately 130 microW). Neurite outgrowth occurred in the absence of irradiation by visible light, but did not occur or was limited with irradiation, depending on the membranes on which PC12 cells were cultured. These results hold promise for the creation of patterned neuronal networks corresponding to patterned irradiation of visible light on nerve cells.  相似文献   

6.
7.
The development of new techniques and modifications to overcome some of the disadvantages in cultured keratinocyte grafting has been motivated by several well-known drawbacks in the use of cultured epithelial autografts such as long culture periods, lack of adherence, difficulty in handling, lack of dermal substrates, and high costs. Two recent insights have influenced further research. On the one hand, it has been shown that the use of undifferentiated proliferative cells in fibrin glue suspensions is effective in epithelial reconstitution. On the other hand, the enzymatic release of cells from the culture surfaces is a critical step leading to at least temporary destruction of anchoring structures of the cultured cells. In this study, we tried to combine these two aspects in an attempt to modify common modalities of keratinocyte transplantation. To avoid dispase dissolving of the cultured cells, keratinocytes were seeded onto bovine collagen type I membranes without feeder layers and under serum-free culture conditions. Subconfluent monolayers of cultured human keratinocytes were transplanted as an upside-down graft on collagen membranes (keratinocyte collagen membrane grafts [KCMG], n = 12) after 3 days of culture or as membrane grafts alone (n = 12) onto standard nude mice full-thickness wounds. Fully differentiated epidermis was found at 21 days after grafting KCMG with persistence of human keratinocytes. This study demonstrates that upside-down grafts of undifferentiated monolayers of keratinocytes on non-cross-linked bovine type I collagen membranes do lead to an early reconstitution of multilayered squamous epithelium with enhanced wound healing compared to the control group. The upside down KCMG grafting technique is able to transfer actively proliferative keratinocytes and simplifies the application compared to conventional epithelial sheet grafting.  相似文献   

8.
Bhang SH  Lee TJ  Lim JM  Lim JS  Han AM  Choi CY  Kwon YH  Kim BS 《Biomaterials》2009,30(1):126-132
In this study, we tested the hypothesis that the amount of nerve growth factor (NGF) required for pheochromocytoma (PC12) cell culture can be dramatically reduced by controlled release of NGF from a collagen gel coating on the culture surface. Cells were cultured on collagen gels loaded with various amounts of NGF. As a control, PC12 cells were cultured on collagen gels with daily addition of various amounts of NGF to the culture medium. After an initial 12h burst, NGF was steadily released from the gels for 4 days. Apoptotic activity and cell viability were determined using terminal uridine nick end labeling and the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, respectively. Neuronal differentiation was determined using immunocytochemistry and Western blot analysis. Compared to 100 ng NGF daily addition (300 ng over 3 days), 1 ng NGF daily addition showed dramatically decreased cell viability and neuronal differentiation and increased apoptotic activity. In contrast, collagen gels loaded with 10 ng NGF yielded cell viability, apoptotic activity, and neuronal differentiation similar to those of culture with 100 ng NGF daily addition. Our method reduced the amount of NGF required for PC12 cell culture to 1/3th of that used in daily addition without affecting cell viability, apoptosis, or differentiation. This method could economize large-scale culture of stem cells by reducing the amount of costly growth factors needed.  相似文献   

9.
A major goal in orthopedic biomaterials research is to design implant surfaces, which will enhance osseointegration in vivo. Several microscale as well as nanoscale architectures have been shown to significantly affect the functionality of bone cells i.e., osteoblasts. In this work, nanoporous alumina surfaces fabricated by a two-step anodization process were used. The nanostructure of these surfaces can be controlled by varying the voltage used for anodization process. Marrow stromal cells were isolated from mice and seeded on nanoporous and amorphous (control) alumina surfaces. Cell adhesion, proliferation, and viability were investigated for up to 7 days of culture. Furthermore, the cell functionality was investigated by calcein staining. The cells were provided with differentiation media after 7 days of culture. The alkaline phosphatase (ALP) activity and matrix production were quantified using a colorimetric assay and X-ray photoelectron spectroscopy (XPS) for up to 3 weeks of culture (2 weeks after providing differentiation media). Further, scanning electron microscopy (SEM) was used to investigate osteoblast morphology on these nanoporous surfaces. Over the 3-week study, the nanoporous alumina surfaces demonstrated approximately 45% increase in cell adhesion, proliferation, and viability, 35% increase in ALP activity, and 50% increase in matrix production when compared with the control surfaces.  相似文献   

10.
Many different types of microelectrodes have been developed for use as a direct brain-machine interface (BMI) to chronically recording single-neuron action potentials from ensembles of neurons. Unfortunately, the recordings from these microelectrode devices are not consistent and often last for only on the order of months. For most microelectrode types, the loss of these recordings is not due to failure of the electrodes, but most likely due to damage to surrounding tissue that results in the formation of non-conductive glial scar. Since the extracellular matrix consists of nanostructured fibrous protein assemblies, we have postulated that neurons may prefer a more complex surface structure than the smooth surface typical of thin-film microelectrodes. This porous structure could then act as a drug-delivery reservoir to deliver bioactive agents to aid in the repair or survival of cells around the microelectrode, further reducing the glial scar. We, therefore, investigated the suitability of a nanoporous silicon surface layer to increase the biocompatibility of our thin film ceramic-insulated multisite electrodes. In vitro testing demonstrated increased extension of neurites from PC12 pheochromocytoma cells on porous silicon surfaces compared to smooth silicon surfaces. Moreover, the size of the pores and the pore coverage did not interfere with this bioactive surface property, suggesting that large highly porous nanostructured surfaces can be used for drug delivery. The most porous nanoporous surfaces were then tested in vivo and found to be more biocompatible than smooth surface, producing less glial activation and allowing more neurons to remain close to the device. Collectively, these results support our hypothesis that nanoporous silicon may be an ideal material to improve biocompatibility of chronically implanted microelectrodes. The next step in this work will be to apply these surfaces to active microelectrodes, use them to deliver bioactive agents, and test that they do improve neural recordings.  相似文献   

11.
采用静电纺丝技术制备胶原/壳聚糖复合纳米纤维膜,研究其作为引导骨再生生物膜的细胞生物相容性及诱导成骨性。以乙酸为溶剂,聚环氧乙烯(PEO)为增塑剂,采用静电纺丝技术制备胶原纳米纤维膜及不同比例的胶原/壳聚糖复合纳米纤维膜(胶原、壳聚糖、PEO质量比5∶1∶4,5∶2∶3,5∶4∶1),电子显微镜观察4种纳米纤维膜的表面形态;将骨髓间充质干细胞种植于胶原纳米纤维膜及表面形态较好的胶原/壳聚糖纳米纤维膜上,通过MTT法、碱性磷酸酶检测、细胞内胶原检测、免疫荧光染色及茜素红染色法观察,研究其细胞生物相容性及诱导成骨性。扫描电子显微镜观察胶原纳米纤维膜及质量比为5∶1∶4的胶原/壳聚糖复合纳米纤维膜的纤维光滑,直径均一。MTT法检测显示,胶原纳米纤维膜和胶原/壳聚糖复合纳米纤维膜均可促进骨髓间充质干细胞的粘附和增殖。细胞培养14 d后,胶原/壳聚糖复合纳米纤维膜上细胞内胶原含量检测为2.02 mg/gport,高于胶原纳米纤维膜组的1.63 mg/gport胶原含量(P<0.05),且胶原/壳聚糖复合纳米纤维膜上细胞内碱性磷酸酶、骨钙素及钙化结节的形成均高于胶原纳米纤维膜组。胶原/壳聚糖复合纳米纤维膜可促进骨髓间充质干细胞的增殖和分化,有望应用于骨再生的研究。  相似文献   

12.
Human mesenchymal stem cells (MSCs) were cultured on polystyrene surfaces modified with photoreactive azidophenyl-derivatives of three different chargeable polymers, poly(acrylic acid) (PAAc), polyallylamine (PAAm), and poly(ethylene glycol) (PEG). The MSCs adhered and spread both on a PAAm-modified surface and on PAAc-modified and polystyrene (control) surfaces. However, the cells adhered more easily to the PAAm-modified surface. The MSCs did not attach to the PEG-modified surface and aggregated to form pellets immediately after cell seeding. The cells proliferated on the PAAc-, PAAm-modified and control surfaces with culture time, formed a monolayer, and aggregated to form pellets. The cells in the pellets that formed on the PAAm- and PEG-modified surfaces after 2 weeks culture had a round morphology and the extracellular matrices were positively stained by safranin O and toluidine blue, while those that formed on the PAAc-modified and control surfaces had a spindle, fibroblast-like morphology and were not positively stained by safranin O and toluidine blue. The pellets that formed on the PAAm- and PEG-modified surfaces contained significantly higher levels of sulfated glycosaminoglycans than did those that formed on the PAAc-modified and control surfaces. Type II collagen and cartilage proteoglycan were immunohistologically detected in the pellets that formed on PAAm- and PEG-modified surfaces, but not those that formed on the PAAc-modified and control surfaces. The MSCs cultured on the PAAm- and PEG-modified surfaces expressed a high level of cartilaginous genes encoding type II collagen and aggrecan, while the MSCs cultured on the PAAc-modified and control surfaces did not express these genes. These results suggest that the PAAm-modified surface supported cell adhesion and proliferation and also promoted chondrogenic differentiation of the MSCs. The PAAc-modified and polystyrene surfaces supported cell adhesion and proliferation, but not chondrogenic differentiation. The PEG-modified surfaces did not support cell adhesion, but did promote chondrogenic differentiation. The adhesion, proliferation, and differentiation of the MSCs could be controlled by surface chemistry.  相似文献   

13.
The cell-biomaterial interaction is of extreme importance in regulating the numerous functions necessary for cell adhesion, growth, and differentiation. In the current study, electrophoresis was used to investigate the interactions between cells and biomaterials by measuring the change in electrophoretic mobility of pheochromocytoma (PC12) cells after they were cultured on the poly (vinyl alcohol) membranes modified with different diamines. Variations in cellular activity and electrophoretic mobility of cultured cells were compared. It was found that the intracellular metabolism and the cell surface charge properties were altered after cells contacting biomaterials and the variation of the latter occurred earlier than that of the former. Although the precise mechanism by which the variation of electrophoretic mobility of cultured PC12 cells was unknown, the biomaterials could influence the cell mobility within a short incubation time. It was hypothesized that changes in extracellular matrix components of cell surface may be in part responsible.  相似文献   

14.
The toxicity of semiconductor materials can significantly hinder their use for in vitro and in vivo applications. Gallium nitride (GaN) is a material with remarkable properties, including excellent chemical stability. This work demonstrated that functionalized and etched GaN surfaces were stable in aqueous environments and leached a negligible amount of Ga in solution even in the presence of hydrogen peroxide. Also, GaN surfaces in cell culture did not interfere with nearby cell growth, and etched GaN promoted the adhesion of cells compared to etched silicon surfaces. A model peptide, "IKVAV", covalently attached to GaN and silicon surfaces increased the adhesion of PC12 cells. Peptide terminated GaN promoted greater cell spreading and extension of neurites. The results suggest that peptide modified GaN is a biocompatible and non-toxic material that can be used to probe chemical and electrical stimuli associated with neural interfaces.  相似文献   

15.
We designed and fabricated silicon probe with nanophotonic force sensor to directly stimulate neurons (PC12) and measured its effect on neurite initiation and elongation. A single-layer pitch-variable diffractive nanogratings was fabricated on silicon nitride probe using e-beam lithography, reactive ion etching and wet-etching techniques. The nanogratings consist of flexure folding beams suspended between two parallel cantilevers of known stiffness. The probe displacement, therefore the force, can be measured through grating transmission spectrum. We measured the mechanical membrane characteristics of PC12 cells using the force sensors with displacement range of 10 mum and force sensitivity 8 muN/mum. Young's moduli of 425 +/- 30 Pa are measured with membrane deflection of 1% for PC12 cells cultured on polydimethylsiloxane (PDMS) substrate coated with collagen or laminin in Ham's F-12K medium. In a series of measurements, we have also observed stimulation of directed neurite contraction up to 6 mum on extended probing for a time period of 30 min. This method is applicable to measure central neurons mechanics under subtle tensions for studies on development and morphogenesis. The close synergy between the nano-photonic measurements and neurological verification can improve our understanding of the effect of external conditions on the mechanical properties of cells during growth and differentiation.  相似文献   

16.
In this study, we introduce a cellular differentiation cellular model based on dielectric spectroscopy that characterizes epithelial differentiation processes. Non-invasive cellular monitoring was achieved within a three-dimensional microenvironment consisting of a cell-containing collagen I gel seeded onto microfabricated scaffolds. In this proof-of-concept investigation, Madin-Darby canine kidney cells were cultured within microfabricated, geometrically controlled scaffolds and allowed us to differentiate to hollow cyst-like structures. This transformation within the three-dimensional environment is monitored and characterized through dielectric spectroscopy while maintaining cell culture in vitro.  相似文献   

17.
Summary Three-dimensional matrix culture procedures are gaining favor for analysis of epithelial cell function. However, it is difficult to determine the kinetics of ligand binding to cells cultured within a matrix. We have developed a procedure that allows analysis of ligand binding to mouse mammary epithelial cells cultured in collagen gels using membrane vesicles. Cells are first recovered from collagen gels by digestion with collagenase and subsequently washed with sucrose solution. The cells in suspension are then disrupted and membranes are isolated by two sequential centrifugations. These cell membranes are used for determination of receptor binding kinetics and the nuclear pellet is used to estimate the DNA content. This method circumvents the disadvantages of the inaccessibility of receptor sites on cells cultured inside the matrix. The procedures are adaptable to various cell types and matrix materials.  相似文献   

18.
Chondrocytes maintain their phenotype and form cartilagenous tissue when cultured on calcium polyphosphate (CPP) or titanium alloy (Ti alloy), porous three-dimensional materials. To understand how these materials may influence chondrocyte phenotype and matrix synthesis, the early interactions of cultured cells with CPP and titanium alloy were examined. These were compared to chondrocytes grown in monolayer culture on tissue culture polystyrene, conditions in which cultured chondrocytes dedifferentiate and do not form cartilagenous tissue. Scanning electron microscopy of cells up to 72 h in culture showed that bovine chondrocytes on CPP, Ti alloy, and polystyrene were an admixture of round and spread cells. The spread cells on CPP and titanium alloy were not entirely flattened but maintained a polygonal shape. In contrast, spread chondrocytes in monolayer culture were flatter and significantly larger, a difference that was maintained even in the absence of serum. All cells cultured on CPP and Ti alloy exhibited subcortical ring-like distribution of actin filaments whereas the flattened cells on polystyrene showed actin filaments distributed throughout the cytoplasm. Cells on CPP and Ti alloy synthesized significantly less collagen and proteoglycans than cells cultured on polystyrene at 72 h of culture. In summary the cells on the porous three-dimensional materials differed from those on polystyrene in terms of cell morphology and size, actin cytoskeleton organization, and synthesis of selected matrix macromolecules. The data suggests that CPP and titanium alloy may mediate their effect by limiting cell spreading in part by favoring the maintenance of a ring-like actin distribution.  相似文献   

19.
Lee JH  Kim HJ  Kim H  Lee SJ  Gye MC 《Biomaterials》2006,27(14):2845-2853
In an effort to improve in vitro spermatogenesis by potentiating the interactions between developing germ cells, somatic cells, and the extracellular matrix (ECM), the efficiency of the germ cell-somatic cell coculture in a three-dimensional (3D) collagen gel matrix was examined. Cells isolated from rat seminiferous tubules 18 days after birth were cultured for 22 days in a monolayer without ECM, collagen gel (CG), or collagen+Matrigel (CGM). After culture, the viabilities of the cultured cells in the monolayer, CG, and CGM culture were 42.8%, 70.7% and 76.1%, respectively. Occludin-positive cells in a cyst-like structure were found in the ECM gel matrix together with 3beta hydroxysteroid dehydrogenase-positive cells, suggesting the presence of functional Sertoli cells and Leydig cells, respectively. Flow cytometric analysis of DNA content revealed a significant increase in the haploid cell population in the CG and CGM compared to the monolayer culture. Transition protein 2 (TP2) and protamine 2-positive cells were found together with a significant increase in TP2 mRNA levels in cells cultured in CG and CGM over those in monolayer culture, suggesting the occurrence of the post-meiotic differentiation of spermatogenetic cells. Taken together, a 3D in vitro culture system for testicular cells using a collagen gel matrix could enhance viability, meiosis, and post-meiotic differentiation of germ cells to presumptive differentiating spermatids.  相似文献   

20.
The effect of surface modification of polyethylene (PE) film on differentiation of midbrain (MB) cells obtained from rat embryos was determined by their micromass culture system. When cultured on untreated PE film, cell differentiation was suppressed to approximately two-thirds of that observed in a control culture dish. On the contrary, type I collagen-immobilized PE film increased differentiated foci of the MB cells more than did the untreated PE film. RGDS (Arg-Gly-Asp-Ser) peptide immobilization onto PE film resulted in almost the same differentiation activity as the collagen immobilized PE film. Bovine serum albumin (BSA) immobilization onto PE film enhance the differentiation activity more than did the untreated PE film, but not up to the levels of collagen- and RGDS-immobilized PE. The number of differentiated foci of the MB cells on untreated PE film were increased by the addition of the condition medium prepared from the collagen-immobilized PE film. However, the number of foci was not increased by the addition of other condition media obtained from control dish, untreated, BSA-, and RGDS-immobilized PE. On the other hand, none of these condition media enhanced a differentiation of the neuronal cell line of PC12 cells, suggesting that some factors effectively differentiate midbrain cells, composed of neuronal epithelial and mesenchymal cells, but not the PC12 cells secreted in the condition media prepared from collagen-immobilized PE. In addition, it is probable that neural growth factor was not secreted in these condition media, which could not induce the differentiation of PC12 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号