首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
2.
In previous studies, stimulation of cultured enterocytes with IL-1beta resulted in production of IL-6 and complement component C3. The cellular mechanisms of these responses in the enterocyte are not fully understood. We tested the hypothesis that IL-1beta-induced C3 and IL-6 production is differentially regulated at the apical and basolateral membranes of the enterocyte. Caco-2 cells (a transformed human colonic carcinoma cell line) were grown in a 2-chamber system to full differentiation. The cells were treated with IL-1beta either at the apical or basolateral membrane, and C3 and IL-6 mRNA levels and release of C3 and IL-6 into the apical and basal chambers were determined. The release of C3 was greatest into the basal chamber regardless of whether the cells were stimulated at the apical or basolateral membrane. In contrast, the production of IL-6 was greatest at the cell membrane that was stimulated with IL-1beta. Stimulation of the Caco-2 cells with IL-1beta resulted in increased mRNA levels for C3 and IL-6 with no major differences noted when the cells were treated at the apical or basolateral membrane. The results suggest that enterocyte production and release of at least some acute phase proteins and cytokines are differentially regulated at the apical and basolateral membrane of the enterocyte after stimulation with IL-1beta.  相似文献   

3.
4.
5.
6.
Interleukin-1beta (IL-1beta) increases the production of complement component C3 in enterocytes. Heat shock regulates the response to cytokines and other inflammatory mediators in various cell types. We tested the hypothesis that the heat-shock response regulates IL-1beta-induced C3 production in the enterocyte. Cultured Caco-2 cells, a human intestinal epithelial cell line, were treated with sodium arsenite (10-500 microM) for 1 h or subjected to hyperthermia (43 degrees C) for 1-4 h, and allowed to recover for 1 h. The cells were then treated with IL-1beta (0.5 ng/ml) for up to 24 h, whereafter C3 levels were measured by ELISA and C3 mRNA by Northern blot analysis. Heat-shock protein of 72 kDa (hsp72) was determined by Western blot analysis. Treatment of the cells with sodium arsenite or subjecting them to hyperthermia induced the expression of hsp72. The IL-1beta-induced expression of C3 mRNA and C3 production were down-regulated by hyperthermia and sodium arsenite in a dose-dependent fashion. The results suggest that the stress response induced by hyperthermia or sodium arsenite decreases IL-1beta-induced C3 production in human enterocytes.  相似文献   

7.
8.
9.
10.
11.
Erythromycin and other macrolides are effective for the treatment of chronic inflammatory airway diseases such as diffuse panbronchiolitis (DPB) and chronic sinusitis. The effect of macrolides in DPB is suggested to be anti-inflammatory rather than antibacterial. We investigated the effects of clarithromycin on interleukin-8 (IL-8) production using human peripheral monocytes and the human monocytic leukaemia cell line, THP-1. Bacterial extracts from Escherichia coli, Pseudomonas aeruginosa and Helicobacter pylori, as well as E. coli-derived lipopolysaccharide (LPS), induced IL-8 production. Clarithromycin suppressed this production in a dose-dependent manner in both monocytes and THP-1 cells (49.3-75.0% inhibition at 10 mg/L). A luciferase reporter gene assay with plasmids containing a serially deleted IL-8 promoter fragment showed that both the activator protein-1 (AP-1) and/or the nuclear factor-kappa B (NF-kapp aB) binding sequences were responsible for the LPS and clarithromycin responsiveness of the IL-8 promoter. Consistently, in an electromobility shift assay, LPS increased the specific binding of both AP-1 and NF-kappaB, whereas clarithromycin suppressed it. Moreover, LPS and clarithromycin regulated three other promoters that have either the NF-kappa B or the AP-1 binding sequences: two synthetic (pAP-1-Luc and pNF-kappa B-Luc) and one naturally occurring (ELAM-Luc). Our results indicate that clarithromycin modified inflammation by sup-pressing IL-8 production and that clarithromycin may affect the expression of other genes through AP-1 and NF-kappa B. In addition to treatment of airway diseases, the anti-inflammatory effect of macrolides may be beneficial for the treatment of other inflammatory diseases such as chronic gastritis caused by H. pylori.  相似文献   

12.
13.
14.
15.
16.
17.
Substance P (SP) participates in acute intestinal inflammation via binding to the G-protein-coupled neurokinin-1 receptor (NK-1R) and release of nuclear factor kappa B (NF-kappaB)-driven proinflammatory cytokines from colonic epithelial cells. However, the signal transduction pathways by which SP-NK-1R interaction induces NF-kappaB activation and interleukin-8 (IL-8) production are not clear. Here, we examined participation of protein kinase C (PKC) in SP-induced IL-8 production in human nontransformed NCM460 colonocytes stably transfected with the human NK-1R (NCM460-NK-1R cells). SP (10(-7) M) induced an early (1 min) phosphorylation of the PKC isoforms PKCdelta, PKC, and PKCepsilon, followed by I-kappaB kinase, IkappaBalpha, and p65 phosphorylation. Depletion of PKC by phorbol-12-myristate-13-acetate (10 microM) blocked SP-induced IkappaBalpha and p65 phosphorylation and IL-8 production. The PKCdelta inhibitor rottlerin at a low concentration (1 microM), but not pseudosubstrate PKC and PKCepsilon inhibitors (10 microM), significantly reduced IL-8 secretion. PKCdelta silencing by RNA interference reduced PKCdelta protein expression and SP-induced PKCdelta phosphorylation that was associated with diminished IL-8 promoter and NF-kappaB luciferase activities in response to SP. Moreover, overexpression of wild-type PKCdelta increased SP-induced IL-8 promoter- and NF-kappaB-driven luciferase activities that were rottlerin-sensitive. We conclude that PKCdelta plays an important role in SP-induced proinflammatory signaling in human colonocytes.  相似文献   

18.
19.
Nitric oxide directly impairs intestinal barrier function   总被引:7,自引:0,他引:7  
Excess production of nitric oxide (NO) has been implicated in endotoxin-induced loss of gut barrier function in vivo. Thus, we tested the direct effect of NO on the barrier function of intestinal mucosal membranes suspended ex vivo in Ussing chambers and on IEC-6 enterocyte monolayers. In these experiments, ex vivo-mounted ileal membranes or IEC-6 cell enterocyte monolayers were exposed to the NO donor, S-nitroso-N-acetyl-penicillamine (SNAP) over a dose range (10 microm to 2 mM) or medium. SNAP at concentrations of 1 or 2 mM, but not 10 or 100 microM, increased the rates of bacterial translocation (BT) across both the ileal membranes and the IEC-6 monolayers by >1 log (P < 0.05), as well as the permeability of the IEC-6 monolayers to phenol red (P < 0.05). The ileal membranes exposed to 1 or 2 mM SNAP for 3 h manifested histologic evidence of mucosal injury and decreases in electrical resistance and potential difference values (P < 0.05), while the IEC-6 cells exposed to SNAP for 18 h had increased levels of cell death (P < 0.05). Since NO produced locally by stimulated enterocytes could contribute to barrier dysfunction, NO production, iNOS mRNA levels, and monolayer permeability were measured in enterocytes (IEC-6 and Caco-2) exposed to medium, endotoxin (lipopolysaccharide [25 microg/mL]) or a cytokine mixture (IL-1beta 10 ng/mL, TNF-alpha 10 ng/mL, and INF-gamma 250 U/mL) for 6 or 24 h. Endotoxin increased NO production, iNOS mRNA expression, and monolayer permeability in the IEC-6, but not the Caco-2 cells, while exposure to the cytokine mixture increased both NO production, iNOS mRNA expression, and monolayer permeability in both the IEC-6 and Caco-2 cell lines. Based on the results of these studies it appears that NO can directly increase ileal mucosal membrane and enterocyte monolayer permeability and BT and that increased NO production and iNOS mRNA expression is associated with endotoxin- and/or cytokine-induced loss of enterocyte monolayer barrier function.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号