首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
BACKGROUND: Patients with schizophrenia show deficits in early-stage visual processing, potentially reflecting dysfunction of the magnocellular visual pathway. The magnocellular system operates normally in a nonlinear amplification mode mediated by glutamatergic (N-methyl-D-aspartate) receptors. Investigating magnocellular dysfunction in schizophrenia therefore permits evaluation of underlying etiologic hypotheses. OBJECTIVES: To evaluate magnocellular dysfunction in schizophrenia, relative to known neurochemical and neuroanatomical substrates, and to examine relationships between electrophysiological and behavioral measures of visual pathway dysfunction and relationships with higher cognitive deficits. DESIGN, SETTING, AND PARTICIPANTS: Between-group study at an inpatient state psychiatric hospital and outpatient county psychiatric facilities. Thirty-three patients met DSM-IV criteria for schizophrenia or schizoaffective disorder, and 21 nonpsychiatric volunteers of similar ages composed the control group. MAIN OUTCOME MEASURES: (1) Magnocellular and parvocellular evoked potentials, analyzed using nonlinear (Michaelis-Menten) and linear contrast gain approaches; (2) behavioral contrast sensitivity measures; (3) white matter integrity; (4) visual and nonvisual neuropsychological measures, and (5) clinical symptom and community functioning measures. RESULTS: Patients generated evoked potentials that were significantly reduced in response to magnocellular-biased, but not parvocellular-biased, stimuli (P = .001). Michaelis-Menten analyses demonstrated reduced contrast gain of the magnocellular system (P = .001). Patients showed decreased contrast sensitivity to magnocellular-biased stimuli (P<.001). Evoked potential deficits were significantly related to decreased white matter integrity in the optic radiations (P<.03). Evoked potential deficits predicted impaired contrast sensitivity (P = .002), which was in turn related to deficits in complex visual processing (P< or =.04). Both evoked potential (P< or =.04) and contrast sensitivity (P = .01) measures significantly predicted community functioning. CONCLUSIONS: These findings confirm the existence of early-stage visual processing dysfunction in schizophrenia and provide the first evidence that such deficits are due to decreased nonlinear signal amplification, consistent with glutamatergic theories. Neuroimaging studies support the hypothesis of dysfunction within low-level visual pathways involving thalamocortical radiations. Deficits in early-stage visual processing significantly predict higher cognitive deficits.  相似文献   

2.
BACKGROUND: Abnormalities in early-stage visual processing might contribute to observed higher neurocognitive deficits in schizophrenia, but to date no clear link has been established. Schizophrenia has been associated with deficits in the magnocellular visual pathway, suggesting a relative bias for processing elemental (local) as opposed to configural (global) aspects of a hierarchical stimulus; however, global-local paradigm studies in schizophrenia have yielded mixed results. METHODS: In the current study, global-local and event-related potential (ERP) procedures were concomitantly used to assess temporal and spatial characteristics of hierarchical visual stimulus processing abnormalities. RESULTS: Patients (n = 24) had slower and less accurate responses to global stimuli than a healthy comparison group (n = 29). They exhibited a marked decrement in N150 ERP amplitude, which correlated with speed of response to global stimuli. They also failed to show an augmented P300 response to local stimuli. CONCLUSIONS: Behavioral and physiological data are consistent and support a global visual processing deficit in schizophrenia. This is manifest at a relatively early stage of visual processing and might relate to physiological disturbances in areas V3/V3a of the extrastriate cortex.  相似文献   

3.
Dysfunction of early-stage visual processing in schizophrenia.   总被引:10,自引:0,他引:10  
OBJECTIVE: Schizophrenia is associated with deficits in higher-order processing of visual information. This study evaluated the integrity of early visual processing in order to evaluate the overall pattern of visual dysfunction in schizophrenia. METHOD: Steady-state visual-evoked potential responses were recorded over the occipital cortex in patients with schizophrenia and in age- and sex-matched comparison volunteers. Visual-evoked potentials were obtained for stimuli composed of isolated squares that were modulated sinusoidally in luminance contrast, number of squares, or chromatic contrast in order to emphasize magnocellular or parvocellular visual pathway activity. RESULTS: Responses of patients to magnocellular-biased stimuli were significantly lower than those of comparison volunteers. These lower response levels were observed in conditions using both low luminance contrast and large squares that biased processing toward the magnocellular pathway. In contrast, responses to stimuli that biased processing toward the parvocellular pathway were not significantly different between schizophrenia patients and comparison volunteers. A significant interaction of group and stimulus type was observed in the condition using low luminance contrast. CONCLUSIONS: These findings suggest a dysfunction of lower-level visual pathways, which was more prominent for magnocellular than parvocellular biased stimuli. The magnocellular pathway helps in orienting toward salient stimuli. A magnocellular pathway deficit could contribute to higher-level visual cognitive deficits in schizophrenia.  相似文献   

4.
Magnocellular contributions to impaired motion processing in schizophrenia   总被引:2,自引:0,他引:2  
Patients with schizophrenia show impairments in motion processing, along with deficits in lower level processing primarily involving the magnocellular visual pathway. The present study investigates potential magnocellular contributions to impaired motion processing in schizophrenia using a combined neurophysiological and behavioral approach. As compared to prior motion studies in schizophrenia, thresholds were determined for both incoherent and coherent visual motion. In this study, velocity discrimination thresholds were measured for schizophrenia patients (n=14) and age-matched normal control subjects (n=16) using a staircase procedure. Early visual processing was evaluated using steady-state visual evoked potentials (ssVEP), with stimuli biased toward activation of either the magnocellular or parvocellular visual pathways through luminance contrast manipulation. Patients with schizophrenia showed poor velocity discrimination for both incoherent and coherent motion, with no significant group x task interaction. Further, when coherent motion performance was measured at individually determined incoherent motion thresholds, accuracy levels for patients were similar to controls, also indicating similarity of deficit for incoherent vs. coherent motion discrimination. Impairments in velocity discrimination correlated significantly with reduced amplitude of ssVEP elicited by magnocellular -- but not parvocellular -- selective stimuli. This study demonstrates that deficits in motion processing in schizophrenia are significantly related to reduced activation of the magnocellular visual system. Further, this study supports and extends prior reports of impaired motion processing in schizophrenia, and indicates significant bottom-up contributions to higher-order cognitive impairments.  相似文献   

5.
Both emotion and visual processing deficits are documented in schizophrenia, and preferential magnocellular visual pathway dysfunction has been reported in several studies. This study examined the contribution to emotion-processing deficits of magnocellular and parvocellular visual pathway function, based on stimulus properties and shape of contrast response functions. Experiment 1 examined the relationship between contrast sensitivity to magnocellular- and parvocellular-biased stimuli and emotion recognition using the Penn Emotion Recognition (ER-40) and Emotion Differentiation (EMODIFF) tests. Experiment 2 altered the contrast levels of the faces themselves to determine whether emotion detection curves would show a pattern characteristic of magnocellular neurons and whether patients would show a deficit in performance related to early sensory processing stages. Results for experiment 1 showed that patients had impaired emotion processing and a preferential magnocellular deficit on the contrast sensitivity task. Greater deficits in ER-40 and EMODIFF performance correlated with impaired contrast sensitivity to the magnocellular-biased condition, which remained significant for the EMODIFF task even when nonspecific correlations due to group were considered in a step-wise regression. Experiment 2 showed contrast response functions indicative of magnocellular processing for both groups, with patients showing impaired performance. Impaired emotion identification on this task was also correlated with magnocellular-biased visual sensory processing dysfunction. These results provide evidence for a contribution of impaired early-stage visual processing in emotion recognition deficits in schizophrenia and suggest that a bottom-up approach to remediation may be effective.  相似文献   

6.
In humans, visual information is processed via parallel channels: the parvocellular (P) pathway analyzes color and form information, whereas the magnocellular (M) stream plays an important role in motion analysis. Individuals with autism spectrum disorder (ASD) often show superior performance in processing fine detail, but impaired performance in processing global structure and motion information. To date, no visual evoked potential (VEP) studies have examined the neural basis of atypical visual performance in ASD. VEPs were recorded using 128-channel high density EEG to investigate whether the P and M pathways are functionally altered in ASD. The functioning of the P and M pathways within primary visual cortex (V1) were evaluated using chromatic (equiluminant red–green sinusoidal gratings) and achromatic (low contrast black–white sinusoidal gratings) stimuli, respectively. Unexpectedly, the N1 component of VEPs to chromatic gratings was significantly prolonged in ASD patients compared to controls. However, VEP responses to achromatic gratings did not differ significantly between the two groups. Because chromatic stimuli preferentially stimulate the P-color but not the P-form pathway, our findings suggest that ASD is associated with impaired P-color pathway activity. Our study provides the first electrophysiological evidence for P-color pathway impairments with preserved M function at the V1 level in ASD.  相似文献   

7.
BACKGROUND: Schizophrenia is associated with well-documented deficits in high-order cognitive processes such as attention and executive functioning. The integrity of sensory-level processing, however, has been evaluated only to a limited degree. Our study evaluated the ability of patients with schizophrenia to recognize complete objects based on fragmentary information, a process termed perceptual closure. Perceptual closure processes are indexed by closure negativity (N(cl)), a recently defined event-related potential (ERP) component that is generated within the visual association cortex. This study assessed the neural integrity of perceptual closure processes in schizophrenia by examining N(cl) generation. Generation of the preceding positive (P1) and negative (N1) ERP components was also examined. METHODS: We evaluated 16 patients with chronic schizophrenia and 16 healthy comparison subjects. Successively less fragmented images were presented during high-density ERP recording, which permitted the monitoring of brain activity during perceptual closure processes prior to object recognition. Analyses were performed at parieto-occipital and occipitotemporal sites consistent with dorsal and ventral stream generators of P1, N1, and N(cl). RESULTS: Patients with schizophrenia showed significant impairment in the ability to recognize fragmented objects, along with impaired generation of N(cl). The amplitude of visual P1 was significantly reduced, particularly over dorsal stream sites. In contrast, the generation of visual N1 was intact. CONCLUSIONS: Patients with schizophrenia are profoundly impaired in perceptual closure as indicated by both impaired performance and impaired N(cl) generation. The selective impairment in dorsal stream P1 is consistent with prior reports of impaired magnocellular processing in schizophrenia. By contrast, intact ventral N1 generation suggests that the initial stages of ventral stream processing are relatively preserved and that impaired magnocellular dorsal stream functioning in schizophrenia may lead to secondary dysregulation of ventral stream object recognition processing.  相似文献   

8.
Patients with schizophrenia have repeatedly shown deficits in visual processing. These deficits have been well documented using visual backward masking (VBM). The VBM deficit in schizophrenia is thought to be due to aberrant interactions between magnocellular (M) and parvocellular (P) visual pathways. To date, no study has studied these claims with rigorous stimuli isolating M and P pathway responses. This study examined the function of each pathway and their interactions by creating M- and P-biased targets based on their known physiological properties. The M system responds to very low luminance contrast whereas the P system does not, and the P system responds to color contrast whereas the M system generally does not. Thus, to activate the P system, target letters and masks utilized color contrast, and to activate the M system, target letters and masks utilized very low luminance contrast. Four conditions were presented such that M- and P-biased targets were paired with both M- and P-biased masks. A significant Group x Mask Condition interaction was found when a P target was used in combination with an M or P mask, but not when an M target was used. In particular, schizophrenia patients needed significantly longer interstimulus intervals (ISIs) than controls to escape from masking in the P target/M mask condition, but not in any of the other three conditions. In addition, the critical stimulus durations (CSDs) for unmasked stimuli were significantly increased for both M and P targets in patients relative to controls.These findings demonstrate a significant impairment in M, but not P pathway, function in patients with schizophrenia. Furthermore, deficits of letter identification, including those of P targets, may also reflect impairment of the M pathway given the priming function of the dorsal stream.  相似文献   

9.
《Clinical neurophysiology》2021,132(4):872-885
ObjectiveCognitive deficits and visual impairment in the magnocellular (M) pathway, have been independently reported in schizophrenia. The current study examined the association between neuropsychological (NPS) performance and visual evoked potentials (VEPs: N80/P1 to M- and P(parvocellular)-biased visual stimuli) in schizophrenia and healthy controls.MethodsNPS performance and VEPs were measured in n = 44 patients and n = 34 matched controls. Standardized NPS-scores were combined into Domains and a PCA (Principal Component Analysis) generated Composite. Group differences were assessed via (M)ANOVAs, association between NPS and VEP parameters via PCA, Pearson’s coefficient and bootstrapping. Logistic regression was employed to assess classification power.ResultsPatients showed general cognitive impairment, whereas group differences for VEP-parameters were non-significant. In patients, N80 latency across conditions loaded onto one factor with cognitive composite, showed significant negative correlations of medium effect sizes with NPS performance for M/P mixed stimuli and classified low and high performance with 70% accuracy.ConclusionThe study provides no evidence for early visual pathway impairment but suggests a heightened association between early visual processing and cognitive performance in schizophrenia.SignificanceOur results lend support to bottom-up models of cognitive function in schizophrenia and implicate visual N80 latency as a potential biomarker of cognitive deficits in schizophrenia.  相似文献   

10.
PURPOSE OF REVIEW: While cognitive dysfunction including memory and attentional deficits are well known in schizophrenia, recent work has also shown basic sensory processing deficits. Deficits are particularly prominent in the visual system and may be related to cognitive deficits and outcome. This article reviews studies of early-stage visual processing in schizophrenia published during the past year. These studies reflect the growing interest and importance of sensory processing deficits in schizophrenia. RECENT FINDINGS: The visual system is divided into magnocellular and parvocellular pathways which project to dorsal and ventral visual areas. Recent electrophysiological and behavioral investigations have found preferential magnocellular/dorsal stream dysfunction, with some deficits in parvocellular function as well. These early-stage deficits appear to be related to higher level cognitive, social, and community function. Structural studies of occipital cortex and particularly optic radiations provide anatomical support for early visual processing dysfunction. SUMMARY: These findings highlight the importance of sensory processing deficits, in addition to higher cognitive dysfunction, for understanding the pathophysiology of schizophrenia. Understanding the nature of sensory processing deficits may provide insight into mechanisms of pathology in schizophrenia, such as N-methyl-D-aspartate dysfunction or impaired signal amplification, and could lead to treatment strategies including sensory processing rehabilitation that may improve outcome.  相似文献   

11.
12.
Visual processing studies have repeatedly shown impairment in patients with schizophrenia compared to healthy controls. Electroencephalography (EEG) and, specifically, visual evoked potential (VEP) studies have identified an early marker of this impairment in the form of a decrement in the P1 component of the VEP in patients and their clinically unaffected first-degree relatives. Much behavioral and neuroimaging research has implicated specific dysfunction of either the subcortical magnocellular pathway or the cortical visual dorsal stream in this impairment. In this study, EEG responses were obtained to the contrast modulation of checkerboard stimuli using the VESPA (Visual Evoked Spread Spectrum Analysis) method. This was done for a high contrast condition and, in order to bias the stimuli towards the magnocellular pathway, a low contrast condition. Standard VEPs were also obtained using high contrast pattern reversing checkerboards. Responses were measured using high-density electrical scalp recordings in 29 individuals meeting DSM-IV criteria for schizophrenia and in 18 control subjects. Replicating previous research, a large (Cohen's d=1.11) reduction in the P1 component of the VEP was seen in patients when compared with controls with no corresponding difference in the VESPA response to high contrast stimuli. In addition, the low-contrast VESPA displayed no difference between patients and controls. Furthermore, no differences were seen between patients and controls for the C1 components of either the VEP or the high-contrast VESPA. Based on the differing acquisition methods between VEP and VESPA, we discuss these results in terms of contrast gain control and the possibility of dysfunction at the cortical level with initial afferent activity into V1 along the magnocellular pathway being intact when processing is biased towards that pathway using low contrast stimuli.  相似文献   

13.
OBJECTIVE: Little is known about the physiological properties of the major components of steady-state visual evoked potentials (VEPs). Based on the hypothesis that isoluminant color and high contrast pattern differentially activate the parvo- and magnocellular pathways, we studied difference in spatial frequency function between chromatic and achromatic VEPs to sinusoidal gratings. METHODS: Steady-state VEPs to isoluminant chromatic (red-green) and high contrast (90%) achromatic (black-white) sinusoidal gratings with nine spatial frequencies (0.5 to 8.0 cycles/degrees (cpd)) at 4 Hz (8 reversals/s) were recorded in 13 normal subjects. VEPs were Fourier analyzed to obtain phase and amplitude of the second (2F) and fourth (4F) harmonic responses. RESULTS: The 2F amplitude of chromatic VEPs decreased above 4.0 cpd in a low-pass function while that of achromatic VEPs showed a band-pass function with a peak at 4.0 cpd. The 4F amplitude of chromatic VEPs was not affected significantly by spatial frequency whereas that of achromatic VEPs exhibited a high-pass function. The phases of 2F and 4F showed a non-monotonic function of spatial frequency in both chromatic and achromatic stimuli with peaks at middle spatial frequencies. CONCLUSION: Chromatic and achromatic visual stimuli differently affected 2F and 4F components, which thus suggests that 2F and 4F components are generated from different neuronal subgroups largely in the parvocellular pathway.  相似文献   

14.
Paired associates learning is impaired in both schizophrenia and amnestic mild cognitive impairment (aMCI), which may reflect hippocampal pathology. In addition, schizophrenia is characterized by the dysfunction of the retino-geniculo-striatal magnocellular (M) visual pathway. The purpose of this study was to investigate the interaction between visual perceptual and memory dysfunctions. We administered a modified version of the CANTAB paired associates learning task to patients with schizophrenia (n=20), aMCI (n=20), and two groups of matched healthy controls (n=20 for each patient group). The stimuli in the paired associates learning task biased information processing toward the M pathways (low contrast, low spatial frequency) and parvocellular (P) pathways (high contrast, high spatial frequency). Results revealed that patients with schizophrenia exhibited a more pronounced learning deficit for M-biased relative to P-biased stimuli. In aMCI, there were similar memory deficits for both types of stimuli. Orientation discrimination for M- and P-biased stimuli was intact in both groups of patients. The number of errors in the M-biased memory condition significantly and inversely correlated with the volume of the right hippocampus in schizophrenia. These results suggest an interaction between M-biased perceptual processing and short-term relational memory in schizophrenia, which may be associated with the structural alteration of the right hippocampus.  相似文献   

15.
A number of studies show deficits in early-stage visual processing in schizophrenia. Deficits are also seen at more complex levels, such as ability to discriminate faces. This study investigated the "face inversion" effect, which reflects intrinsic cortical processing within the ventral visual stream, as well as contrast sensitivity, which reflects low-level visual processing, in order to evaluate integrity of specific stages of face processing in schizophrenia. Patients with schizophrenia and controls discriminated between pairs of upright or inverted faces or houses that had been manipulated to differ in the shape of the parts or the spatial distance among parts. The duration threshold for above chance performance on upright stimuli was obtained for patients using a house discrimination task. Contrast sensitivity was assessed for gratings of three spatial frequencies ranging from 0.5 to 21 cycles/degree. Patients needed significantly longer time to obtain 70% correct for upright stimuli and showed decreased contrast sensitivity. Increased duration threshold correlated with reduced contrast sensitivity to low (magnocellular-biased) but not medium or high spatial frequency stimuli. Using increased durations, patients showed significant inversion effects that were equivalent to those of controls on the face part and spacing tasks. Like controls, patients did not show inversion effects on the house tasks. These findings show that patients have difficulty integrating visual information as shown by increased duration thresholds. However, when faces were presented at these longer duration thresholds, patients showed the same relative processing ability for upright vs. inverted faces as controls, suggesting preserved intrinsic processing within cortical face processing regions. Similar inversion effects for face part and spacing for both groups suggest that they are using the same holistic face processing mechanism.  相似文献   

16.
Amplitude reduction of the P300 event-related potential has long been suggested as a marker for schizophrenia. However, recent research has shown that this reduction in the P300 amplitude is not specific to schizophrenia as it can also be observed in related illnesses such as bipolar disorder. Due to this lack of specificity the P300 elicited using traditional oddball paradigms may be a less valuable endophenotypic marker. The current study employed a cognitively demanding three-stimulus oddball paradigm to elicit the P300 to visual target and distracting stimuli. Patients with schizophrenia showed amplitude reductions of P300 components to targets, distractors and frequent stimuli. The P300 in patients with bipolar disorder was not significantly different from either group. The pattern of results may further the understanding of the nature of the impairment in schizophrenia.  相似文献   

17.
OBJECTIVE: To evaluate the reliability of visual evoked potentials obtained with a set of multiple chromatic and achromatic patterns (C-VEPs) in differentiating asymptomatic perifoveal retinal impairment from central conduction impairment. METHODS: We propose a set of colored pattern stimuli that allows relatively differential activation of the magnocellular and parvocellular pathways. The system runs on a standard Pentium PC with peripherals that present stimuli and collect, analyze and print data. P1 latencies of C-VEPs obtained with achromatic (black/white) and chromatic (blue/black and red/black isocontrast) checkerboards were evaluated in normal subjects and patients with subclinical retinal impairment (glaucoma suspects) or mild neural conduction impairment (optic neuritis), none of whom had subjective visual defects. RESULTS: The procedure evoked robust cortical signals and statistically distinguished the 3 groups of subjects. The achromatic and chromatic stimuli used distinguished controls from glaucoma suspects and patients with optic neuritis. Glaucoma suspects had greater impairment of C-VEPs to blue/black checkerboards whereas patients with optic neuritis had greater impairment of responses to red/black stimuli. CONCLUSIONS: Our data suggest that chromatic patterns (color/ black, red and blue), that may activate the parvocellular and magnocellular systems differentially but not selectively, can distinguish between mild perifoveal or foveal conduction impairment. They have the additional advantage of evoking large, stable responses across all the subjects.  相似文献   

18.
1. Subjects with schizophrenia have an impairment very early in visual information processing, requiring a longer minimal stimulus duration than normal controls to identify a target stimulus. Subjects with schizophrenia have a deficit in visual backward masking, identifying fewer target stimuli than normal controls when the target is briefly obscured by a second visual stimulus When interstimulus interval is increased parametrically, subjects with schizophrenia have trouble identifying target stimuli at intervals that do not affect the performance of normal controls. 2. The visual backward masking deficit: is trait-related; is associated with negative symptoms but has also been associated with measures of thought disorder; may or may not be related to treatment with neuroleptic medication or other neurocognitive deficits of schizophrenia; is of unclear etiology, though researchers have speculated that it involves magnocellular channels and/or the cortical dorsal visual processing stream; has been shown to be heritable in one study. 3. If visual information processing deficits are observed in the unaffected siblings of schizophrenic patients, it may be a candidate intermediate phenotype.  相似文献   

19.
The effects of ablating the visual pathway that passes through the parvocellular (dorsal) LGN were tested in 2 macaque monkeys by measuring acuity and both luminance and chromatic contrast sensitivity. Thresholds were tested monocularly before and after ibotenic acid was used to lesion parvocellular layers 4 and 6 of the contralateral geniculate. The injections were centered at the representation of 6 degrees in the temporal field on the horizontal meridian, and vision was tested with localized stimuli at this location. In addition, in one of the monkeys, a lesion was made in magnocellular layer 1 of the opposite geniculate, and the same thresholds were tested. Physiological and anatomical reconstructions demonstrated complete destruction of the target layers in 1 parvocellular lesions and in the magnocellular lesion, and sparing of the nontarget layers in the tested region. Parvocellular lesions caused a 3-4-fold reduction in visual acuity within the affected part of the visual field, while the magnocellular lesion did not affect acuity. Both luminance and chromatic contrast sensitivity, tested with stationary gratings of 2 c/degree, were severely reduced by parvocellular lesions, but not affected by the magnocellular lesion. However, when luminance contrast sensitivity was tested with 1 c/degree gratings, counterphase modulated at 10 Hz, it was reduced by both parvocellular and magnocellular lesions. This study demonstrates that the parvocellular pathway dominates chromatic vision, acuity, and contrast detection at low temporal and high spatial frequencies, while the magnocellular pathway may mediate contrast detection at higher temporal and lower spatial frequencies.  相似文献   

20.
Koh HC  Milne E  Dobkins K 《Neuropsychologia》2010,48(14):4046-4056
The magnocellular (M) pathway hypothesis proposes that impaired visual motion perception observed in individuals with Autism Spectrum Disorders (ASD) might be mediated by atypical functioning of the subcortical M pathway, as this pathway provides the bulk of visual input to cortical motion detectors. To test this hypothesis, we measured luminance and chromatic contrast sensitivity, thought to tap M and Parvocellular (P) pathway processing, respectively. We also tested the hypothesis that motion processing is impaired in ASD using a novel paradigm that measures motion processing while controlling for detectabilty. Specifically, this paradigm compares contrast sensitivity for detection of a moving grating with contrast sensitivity for direction-of-motion discrimination of that same moving grating. Contrast sensitivities from adolescents with ASD were compared to typically-developing adolescents, and also unaffected siblings of individuals with ASD (SIBS). The results revealed significant group differences on P, but not M, pathway processing, with SIBS showing higher chromatic contrast sensitivity than both participants with ASD and TD participants. This atypicality, unique to SIBS, suggests the possible existence of a protective factor in these individuals against developing ASD. The results also revealed impairments in motion perception in both participants with ASD and SIBS, which may be an endophenotype of ASD. This impairment may be driven by impairments in motion detectors and/or by reduced input from neural areas that project to motion detectors, the latter possibility being consistent with the notion of reduced connectivity between neural areas in ASD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号