首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
《Acta biomaterialia》2014,10(1):508-519
Colloidal gels are a particularly attractive class of hydrogels for applications in regenerative medicine, and allow for a “bottom-up” fabrication of multi-functional biomaterials by employing micro- or nanoscale particles as building blocks to assemble into shape-specific bulk scaffolds. So far, however, the synthesis of colloidal composite gels composed of both organic and inorganic particles has hardly been investigated. The current study has focused on the development of injectable colloidal organic–inorganic composite gels using calcium phosphate (CaP) nanoparticles and gelatin (Gel) nanospheres as building blocks. These novel Gel–CaP colloidal composite gels exhibited a strongly enhanced gel elasticity, shear-thinning and self-healing behavior, and gel stability at high ionic strengths, while chemical – potentially cytotoxic – functionalizations were not necessary to introduce sufficiently strong cohesive interactions. Moreover, it was shown in vitro that osteoconductive CaP nanoparticles can be used as an additional tool to reduce the degradation rate of otherwise fast-degradable gelatin nanospheres and fine-tune the control over the release of growth factors. Finally, it was shown that these colloidal composite gels support attachment, spreading and proliferation of cultured stem cells. Based on these results, it can be concluded that proof-of-principle has been obtained for the design of novel advanced composite materials made of nanoscale particulate building blocks which exhibit great potential for use in regenerative medicine.  相似文献   

2.
This work evaluated gelatin microparticles and biodegradable composite scaffolds for the controlled release of bone morphogenetic protein-2 (BMP-2) in vitro and in vivo. Gelatin crosslinking (10 and 40mM glutaraldehyde), BMP-2 dose (6 and 60ng BMP-2 per mg dry microparticles), buffer type (phosphate buffered saline (PBS) and collagenase-containing PBS), and gelatin type (acidic and basic) were investigated for their effects on BMP-2 release. Release profiles were also observed using poly(lactic-co-glycolic acid) (PLGA) microparticles with varying molecular weights (8300 and 57,500). In vitro and in vivo studies were conducted using radiolabeled BMP-2; the chloramine-T method was preferred over Bolton-Hunter reagent for radioiodination with this system. BMP-2 release from PLGA microparticles resulted in a moderate burst release followed by minimal cumulative release, while BMP-2 release from gelatin microparticles exhibited minimal burst release followed by linear release kinetics in vitro. Growth factor dose had a small effect on its normalized release kinetics probably because of an equilibrium between gelatin-bound and unbound BMP-2. Differences in release from acidic and basic gelatin microparticles may result from the different pretreatment conditions used for gelatin synthesis. The in vitro release kinetics for both gelatin microparticles alone and within composite scaffolds were dependent largely on the extent of gelatin crosslinking; varying buffer type served to confirm that controlled release relies on enzymatic degradation of the gelatin for controlled release. Finally, in vivo studies with composite scaffolds exhibited minimal burst and linear release up to 28 days. In summary, dose effects on BMP-2 release were found to be minimal while varying gelatin type and release medium can alter release kinetics. These results demonstrate that a systematic control of BMP-2 delivery from gelatin microparticles can be achieved by altering the extent of basic gelatin crosslinking.  相似文献   

3.
Yamamoto M  Takahashi Y  Tabata Y 《Biomaterials》2003,24(24):4375-4383
The objective of this study is to develop a carrier for the controlled release of bone morphogenetic protein-2 (BMP-2) suitable for enhancement of the bone regeneration activity. Hydrogels with different water contents were prepared through glutaraldehyde crosslinking of gelatin with an isoelectric point of 9.0 under varied reaction conditions. Following subcutaneous implantation of the gelatin hydrogels incorporating 125I-labeled BMP-2 into the back of mice, the in vivo retention period of BMP-2 prolonged with a decrease in the water content of hydrogels used, although every time period was much longer than that of BMP-2 solution injection. Ectopic bone formation studies demonstrated that the alkaline phosphatase (ALP) activity and osteocalcin content around the implanted site of BMP-2-incorporated gelatin hydrogels were significantly high compared with those around the injected site of BMP-2 solution. The values became maximum for the gelatin hydrogel incorporating BMP-2 with a middle period of BMP-2 retention, while bone formation was histologically observed around the hydrogel incorporating BMP-2. The ALP activity was significantly higher than that of the collagen sponge incorporating BMP-2. We concluded that the controlled release technology of BMP-2 for a certain time period was essential to induce the potential activity for bone formation.  相似文献   

4.
Current therapies for tissue regeneration rely on the presence or direct delivery of growth factors to sites of repair. Bone morphogenetic protein-2 (BMP-2), combined with a carrier (usually collagen), is clinically proven to induce new bone formation during spinal fusion and nonunion repair. However, due to BMP-2's short half-life and its diffusive properties, orders of magnitude above physiological levels are required to ensure effectiveness. In addition, a high dose of this multifunctional growth factor is known to induce adverse effects in patients. To circumvent these challenges, we proposed and tested a new approach for BMP-2 delivery, by controlling BMP activity via carrier binding and localized proteolysis. BMP-2 was covalently bound to gelatin through site-specific enzymatic crosslinking using a microbial transglutaminase. Binding of BMP-2 to gelatin can completely switch off BMP-2 activity, as evidenced by loss of its transdifferentiating ability toward C2C12 promyoblasts. When gelatin sequestered BMP-2 is incubated with either microbial collagenase or tissue-derived matrix metalloproteinases, BMP-2 activity is fully restored. The activity of released BMP-2 correlates with the protease activity in a dose- and time-dependent manner. This observation suggests a novel way of delivering BMP-2 and controlling its activity. This improved delivery method, which relies on a physiological feedback, should enhance the known potential of this and other growth factors for tissue repair and regeneration.  相似文献   

5.
背景:通过各种微球负载骨生长因子使骨形态发生蛋白达到缓释效果逐渐成为研究热点,但关于载药壳聚糖纳米微球的生物相容性特别是细胞毒性的报道较少。 目的:对重组人骨形态发生蛋白2壳聚糖纳米微球进行细胞毒性检测,评估应用壳聚糖纳米微球作为重组人骨形态发生蛋白2缓释载体的生物安全性。 方法:通过离子交联法制备空白壳聚糖纳米微球,应用透视电镜观察微球的形态,激光粒径分析其粒径分布;通过重组人骨形态发生蛋白2壳聚糖纳米微球体外细胞毒性试验评估微球的生物安全性。 结果与结论:离子交联法制备的壳聚糖微球,球形规整,分散均匀,微球平均粒径为230 nm,分布较集中。载药及空白微球的反应分级为0或1级,均为合格。提示,离子交联法制备可成功制备出负载重组人骨形态发生蛋2的纳米微球,且微球细胞毒性检测合格,为进一步的骨组织工程研究提供理论实验基础。  相似文献   

6.
During the last decade, the use of micro- and nanospheres as functional components for bone tissue regeneration has drawn increasing interest. Scaffolds comprising micro- and nanospheres display several advantages compared with traditional monolithic scaffolds that are related to (i) an improved control over sustained delivery of therapeutic agents, signaling biomolecules and even pluripotent stem cells, (ii) the introduction of spheres as stimulus-sensitive delivery vehicles for triggered release, (iii) the use of spheres to introduce porosity and/or improve the mechanical properties of bulk scaffolds by acting as porogen or reinforcement phase, (iv) the use of spheres as compartmentalized microreactors for dedicated biochemical processes, (v) the use of spheres as cell delivery vehicle, and, finally, (vi) the possibility of preparing injectable and/or moldable formulations to be applied by using minimally invasive surgery. This article focuses on recent developments with regard to the use of micro- and nanospheres for bone regeneration by categorizing micro-/nanospheres by material class (polymers, ceramics, and composites) as well as summarizing the main strategies that employ these spheres to improve the functionality of scaffolds for bone tissue engineering.  相似文献   

7.
The natural polymers chitosan and alginate represent an attractive material choice for biodegradable inplants. These were used as coating materials to make positively and negatively charged PLGA nanoparticles, respectively. After blending at total solids concentration >10% wt/vol, these oppositely charged nanoparticles yielded a cohesive colloidal gel. Electrostatic forces between oppositely charged nanoparticles produced a stable 3D porous network that may be extruded or molded to the desired shape. This high concentration colloidal system demonstrated shear-thinning behavior due to the disruption of interparticle interactions. Once the external force was removed, the cohesive property of the colloidal gel was recovered. Scanning electron micrographs of dried colloidal networks revealed an organized, 3D microporous structure. Rheological studies were employed to probe the differences in plasticity and shear sensitivity of colloidal gels. Viability tests of hUCMSCs seeded on the colloidal gels also demonstrated the negligible cytotoxicity of the materials. All the results indicated the potential application of the biodegradable colloidal gels as an injectable scaffold in tissue engineering and drug release.  相似文献   

8.
The objective of this study is to investigate the feasibility of a biodegradable hydrogel of gelatin as the controlled release carrier of bone morphogenetic protein-2 (BMP-2) suitable for enhancement of bone regeneration at a segmental bone defect. Hydrogels with three different water contents were prepared through glutaraldehyde crosslinking of gelatin with an isoelectric point of 9.0 under varied reaction conditions. Segmental critical-sized defects (20 mm) were created at the ulnar bone of skeletally mature New Zealand white rabbits, and gelatin hydrogels incorporating BMP-2 (17 microg/hydrogel) were implanted into the defects. When bone regeneration was evaluated by soft x-ray observation and bone mineral density (BMD) measurement, the gelatin hydrogels incorporating BMP- 2 exhibited significantly high osteoinduction activity compared with that of free BMP-2, although the activity depended on the water content of the hydrogels. Significantly higher BMD enhancement was observed in the gelatin hydrogel with a water content of 97.8 wt% than that with the lower or higher water content. We concluded that the biodegradable gelatin hydrogel is a promising controlled release carrier of BMP-2 for bone regeneration at the segmental bone defect.  相似文献   

9.
We investigated the effect of sustained release of bone morphogenetic protein-2 (BMP-2) from an injectable chitosan gel on osteoblastic differentiation in vitro. We first characterized the release profile of BMP-2 from the gels, and then examined the cellular responses of preosteoblast mouse stromal cells (W-20-17) and human embryonic palatal mesenchymal (HEPM) cells to BMP-2. The release profiles of different concentrations of BMP-2 exhibited sustained releases (41% for 2 ng/mL and 48% for 20 ng/mL, respectively) from the chitosan gels over a three-week period. Both cell types cultured in the chitosan gels were viable and significantly proliferated for 3 days (p < 0.05). Chitosan gels loaded with BMP-2 enhanced ALP activity of W-20-17 by 3.6-fold, and increased calcium mineral deposition of HEPM by 2.8-fold at 14 days of incubation, compared to control groups initially containing the same amount of BMP-2. In addition, schitosan gels loaded with BMP-2 exhibited significantly greater osteocalcin synthesis of W-20-17 at seven days, and of HEPM at both 7 and 14 days compared with the control groups (p<0.05). This study suggests that the enhanced effects of BMP-2 released from chitosan gels on cell differentiation and mineralization are species and cell type dependent.  相似文献   

10.
《Acta biomaterialia》2014,10(1):26-33
Recombinant elastin-like protein polymers are increasingly being investigated as component materials of a variety of implantable medical devices. This is chiefly a result of their favorable biological properties and the ability to tailor their physical and mechanical properties. In this report, we explore the potential of modulating the water content, mechanical properties, and drug release profiles of protein films through the selection of different crosslinking schemes and processing strategies. We find that the selection of crosslinking scheme and processing strategy has a significant influence on all aspects of protein polymer films. Significantly, utilization of a confined, fixed volume, as well as vapor-phase crosslinking strategies, decreased protein polymer equilibrium water content. Specifically, as compared to uncrosslinked protein gels, water content was reduced for genipin (15.5%), glutaraldehyde (GTA, 24.5%), GTA vapor crosslinking (31.6%), disulfide (SS, 18.2%) and SS vapor crosslinking (25.5%) (P < 0.05). Distinct crosslinking strategies modulated protein polymer stiffness, strain at failure and ultimate tensile strength (UTS). In all cases, vapor-phase crosslinking produced the stiffest films with the highest UTS. Moreover, both confined, fixed volume and vapor-phase approaches influenced drug delivery rates, resulting in decreased initial drug burst and release rates as compared to solution phase crosslinking. Tailored crosslinking strategies provide an important option for modulating the physical, mechanical and drug delivery properties of protein polymers.  相似文献   

11.
Cross-linked gelatin gels are used as biomaterials in living tissues, either as bioadhesives or as devices for sustained drug release. As these applications involve surgical insertion of gels, the effect of cross-linking on mechanical properties is relevant. The effect of cross-linking on the gel water uptake is also relevant for the kinetics of drug release. Equally important is the influence of initial amounts of gelatin in the gelling solutions. We investigated the influence of cross-linking (with glutaraldehyde) and of gelatin content upon the equilibrium water content and tensile properties of resulting gels. A range of gels was prepared with gelatin contents of 10 to 40% wt, and cross-linked with 2.5 to 50% wt glutaraldehyde. The increase in gelatin content and degree of cross-linking reduced the water uptake of gels from about 60-65% wt to about 50% wt. The tensile characteristics were differentially affected. While the increase of cross-linking induced a decrease of toughness and elasticity and an increase of stiffness, it did not affect the ultimate strength of gels. On the contrary, the increase of gelatin content induced a definite increase of the ultimate strength but did not significantly affect the other properties.  相似文献   

12.
The objective of this study was to investigate the feasibility of biodegradable gelatin hydrogels as the controlled-release carrier of bone morphogenetic protein-2 (BMP-2) to enhance bone regeneration at a skull defect of nonhuman primates. Hydrogels with 3 different water contents were prepared through glutaraldehyde crosslinking of gelatin with an isoelectric point of 9.0 under varied reaction conditions. A critical-sized defect (6 mm in diameter) was prepared at the skull bone of skeletally mature cynomolgus monkeys, and gelatin hydrogels incorporating various doses of BMP-2 were applied to the defects. When the bone regeneration was evaluated by soft radiography and bone mineral density (BMD) examinations, the gelatin hydrogel incorporating BMP-2 exhibited significantly higher osteoinduction activity than did an insoluble bone matrix that incorporated BMP-2 (one of the best osteoinduction systems), although the activity depended on the water content of hydrogels. BMD enhancement was highest for the gelatin hydrogel that had a water content of 97.8 wt% among all types of hydrogels. Moreover, the gelatin hydrogel enabled BMP-2 to induce the bone regeneration in nonhuman primates even at low doses. We conclude that the controlled release of BMP-2 for a certain time period was essential to inducing the osteoinductive potential of BMP-2.  相似文献   

13.
In this study, we investigated the in vitro and in vivo biological activities of bone morphogenetic protein 2 (BMP-2) released from four sustained delivery vehicles for bone regeneration. BMP-2 was incorporated into (1) a gelatin hydrogel, (2) poly(lactic-co-glycolic acid) (PLGA) microspheres embedded in a gelatin hydrogel, (3) microspheres embedded in a poly(propylene fumarate) (PPF) scaffold and (4) microspheres embedded in a PPF scaffold surrounded by a gelatin hydrogel. A fraction of the incorporated BMP-2 was radiolabeled with (125)I to determine its in vitro and in vivo release profiles. The release and bioactivity of BMP-2 were tested weekly over a period of 12 weeks in preosteoblast W20-17 cell line culture and in a rat subcutaneous implantation model. Outcome parameters for in vitro and in vivo bioactivities of the released BMP-2 were alkaline phosphatase (AP) induction and bone formation, respectively. The four implant types showed different in vitro release profiles over the 12-week period, which changed significantly upon implantation. The AP induction by BMP-2 released from gelatin implants showed a loss in bioactivity after 6 weeks in culture, while the BMP-2 released from the other implants continued to show bioactivity over the full 12-week period. Micro-CT and histological analysis of the delivery vehicles after 6 weeks of implantation showed significantly more bone in the microsphere/PPF scaffold composites (Implant 3, p<0.02). After 12 weeks, the amount of newly formed bone in the microsphere/PPF scaffolds remained significantly higher than that in the gelatin and microsphere/gelatin hydrogels (p<0.001), however, there was no statistical difference compared to the microsphere/PPF/gelatin composite. Overall, the results from this study show that BMP-2 could be incorporated into various bone tissue engineering composites for sustained release over a prolonged period of time with retention of bioactivity.  相似文献   

14.
Biomaterials capable of providing localized and sustained presentation of bioactive proteins are critical for effective therapeutic growth factor delivery. However, current biomaterial delivery vehicles commonly suffer from limitations that can result in low retention of growth factors at the site of interest or adversely affect growth factor bioactivity. Heparin, a highly sulfated glycosaminoglycan, is an attractive growth factor delivery vehicle due to its ability to reversibly bind positively charged proteins, provide sustained delivery, and maintain protein bioactivity. This study describes the fabrication and characterization of heparin methacrylamide (HMAm) microparticles for recombinant growth factor delivery. HMAm microparticles were shown to efficiently bind several heparin-binding growth factors (e.g. bone morphogenetic protein-2 (BMP-2), vascular endothelial growth factor (VEGF), and basic fibroblast growth factor (FGF-2)), including a wide range of BMP-2 concentrations that exceeds the maximum binding capacity of other common growth factor delivery vehicles, such as gelatin. BMP-2 bioactivity was assessed on the basis of alkaline phosphatase (ALP) activity induced in skeletal myoblasts (C2C12). Microparticles loaded with BMP-2 stimulated comparable C2C12 ALP activity to soluble BMP-2 treatment, indicating that BMP-2-loaded microparticles retain bioactivity and potently elicit a functional cell response. In summary, our results suggest that heparin microparticles stably retain large amounts of bioactive BMP-2 for prolonged periods of time, and that presentation of BMP-2 via heparin microparticles can elicit cell responses comparable to soluble BMP-2 treatment. Consequently, heparin microparticles present an effective method of delivering and spatially retaining growth factors that could be used in a variety of systems to enable directed induction of cell fates and tissue regeneration.  相似文献   

15.
Bone morphogenetic protein-2 (BMP-2) delivered in a suitable implantable matrix has the potential to repair local skeletal defects by inducing new bone formation from undifferentiated pluripotent stem cells resident in host tissue. In this study, we examined in vitro the potential of a derivatized hyaluronic acid (Hyaff-11) scaffold as a delivery vehicle for recombinant human BMP-2 (rhBMP-2) in bone and cartilage repair therapies. Hyaff-11 scaffolds were fabricated using a phase inversion/particulate leaching method and soak-loaded with rhBMP-2. In vitro release kinetics of rhBMP-2, demonstrated using enzyme-linked immunosorbant assay and alkaline phosphatase (ALP) assay revealed a slow, sustained rhBMP-2 release during 28 days, with a cumulative release of 31.82% of the initial rhBMP-2 loaded. rhBMP-2 was released in bioactive form as demonstrated by ALP induction of pluripotent cell line, C3H10T1/2 (T1/2), down the osteoblast lineage when incubated with the release supernatants. rhBMP-2 retention in Hyaff-11 scaffolds was greater than that from collagen gels, which released most of the initially loaded rhBMP-2 by 14 days. rhBMP-2-loaded Hyaff-11 scaffolds were also seeded with T1/2 cells and evaluated at 3, 7, 14, and 28 days for viability and expression of osteoblast phenotype. Cells remained viable throughout the study and expressed a time- and dose-dependent ALP and osteocalcin expression in the rhBMP-2 groups. Based on these observations, Hyaff-11 scaffolds may be suitable delivery systems for rhBMP-2 in bone/cartilage repair because of their ability to retain rhBMP-2, release low levels of bioactive rhBMP-2 to the local environment in a sustained manner, and stimulate differentiation of pluripotent stem cells.  相似文献   

16.
Chemically cross-linked gelatin-chondroitin sulphate (ChS) hydrogels, impregnated in Dacron, were evaluated as drug delivery systems for antibacterial proteins. The gelatin-chondroitin sulphate gels, plain or impregnated in Dacron, were cross-linked with a water-soluble carbodiimide (EDC) and N-hydroxysuccinimide (NHS). The release of lysozyme and recombinant thrombocidin (rTC-1), an antibacterial protein derived from human blood platelets, from the gelatin-ChS gels in Dacron in phosphate-buffered saline at 37 degrees C was determined, and compared to the release from gelatin gels in Dacron and plain gelatin-ChS gels. The incorporation of chondroitin sulphate into gelatin gels, caused a marked increase in lysozyme loading capacity, and a slower release rate. The relative release profiles for rTC-1 and lysozyme were equal for cross-linked gelatin as well as for cross-linked gelatin-ChS gels. Furthermore, rTC-1 showed no loss of antibacterial activity after 1 week of release. The lysozyme concentration profiles in the samples and in the surrounding medium as a function of time were calculated using mathematical solutions for Ficks second law of diffusion for a semi-infinite composite medium, which is a schematic representation of a slab in a surrounding medium. The biocompatibility and degradation of the Dacron matrices impregnated with gelatin-ChS gels was studied after implantation in subcutaneous pockets in rats. Chemically cross-linked gelatin-Ch5 gels showed a mild tissue reaction, and almost complete degradation within 18 weeks of implantation.  相似文献   

17.
The aim of this study was to develop a 3-D construct carrying an inherent sequential growth factor delivery system. Poly(lactic acid-co-glycolic acid) (PLGA) nanocapsules loaded with bone morphogenetic protein BMP-2 and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) nanocapsules loaded with BMP-7 made the early release of BMP-2 and longer term release of BMP-7 possible. 3-D fiber mesh scaffolds were prepared from chitosan and from chitosan–PEO by wet spinning. Chitosan of 4% concentration in 2% acetic acid (CHI4–HAc2) and chitosan (4%) and PEO (2%) in 5% acetic acid (CHI4–PEO2–HAc5) yielded scaffolds with smooth and rough fiber surfaces, respectively. These scaffolds were seeded with rat bone marrow mesenchymal stem cells (MSCs). When there were no nanoparticles the initial differentiation rate was higher on (CHI4–HAc2) scaffolds but by three weeks both the scaffolds had similar alkaline phosphatase (ALP) levels. The cell numbers were also comparable by the end of the third week. Incorporation of nanoparticles into the scaffolds was achieved by two different methods: incorporation within the scaffold fibers (NP–IN) and on the fibers (NP–ON). It was shown that incorporation on the CHI4–HAc2 fibers (NP–ON) prevented the burst release observed with the free nanoparticles, but this did not influence the total amount released in 25 days. However NP–IN for the same fibers revealed a much slower rate of release; ca. 70% released at the end of incubation period. The effect of single, simultaneous and sequential delivery of BMP-2 and BMP-7 from the CHI4–HAc2 scaffolds was studied in vitro using samples prepared with both incorporation methods. The effect of delivered agents was higher with the NP–ON samples. Delivery of BMP-2 alone suppressed cell proliferation while providing higher ALP activity compared to BMP-7. Simultaneous delivery was not particularly effective on cell numbers and ALP activity. The sequential delivery of BMP-2 and BMP-7, on the other hand, led to the highest ALP activity per cell (while suppressing proliferation) indicating the synergistic effect of using both growth factors holds promise for the production of tissue engineered bone.  相似文献   

18.
The purpose of this study was to develop and characterize a chitosan gel/gelatin microsphere (MSs) dual delivery system for sequential release of bone morphogenetic protein-2 (BMP-2) and insulin-like growth factor-1 (IGF-1) to enhance osteoblast differentiation in vitro. We made and characterized the delivery system based on its degree of cross-linking, degradation, and release kinetics. We also evaluated the cytotoxicity of the delivery system and the effect of growth factors on cell response using pre-osteoblast W-20-17 mouse bone marrow stromal cells. IGF-1 was first loaded into MSs, and then the IGF-1-containing MSs were encapsulated into the chitosan gel which contained BMP-2. Cross-linking of gelatin with glyoxal via Schiff bases significantly increased thermal stability and decreased the solubility of the MSs, leading to a significant decrease in the initial release of IGF-1. Encapsulation of the MSs into the chitosan gel generated polyelectrolyte complexes by intermolecular interactions, which further affected the release kinetics of IGF-1. This combinational delivery system provided an initial release of BMP-2 followed by a slow and sustained release of IGF-1. Significantly greater alkaline phosphatase activity was found in W-20-17 cells treated with the sequential delivery system compared with other treatments (P<0.05) after a week of culture.  相似文献   

19.
Jeon O  Song SJ  Kang SW  Putnam AJ  Kim BS 《Biomaterials》2007,28(17):2763-2771
In this study, a heparin-conjugated poly(l-lactic-co-glycolic acid) (HP-PLGA) scaffold was developed for the sustained delivery of bone morphogenetic protein-2 (BMP-2), and then used to address the hypothesis that BMP-2 delivered from this scaffold could enhance ectopic bone formation. We found the amount of heparin conjugated to the PLGA scaffolds could be increased up to 3.2-fold by using scaffolds made from star-shaped PLGA, as compared to scaffolds made from linear PLGA, and that the release of BMP-2 from the HP-PLGA scaffold was sustained for at least 14 days in vitro. The BMP-2 released from the HP-PLGA scaffold stimulated an increase in alkaline phosphatase (ALP) activity of osteoblasts for 14 days in vitro, suggesting that the HP-PLGA scaffold delivery system releases BMP-2 in a bioactive form for a prolonged period. By contrast, BMP-2 release from unmodified (no heparin) PLGA scaffolds induced a transient increase in ALP activity for the first 3 days and a decrease thereafter. In vivo bone formation studies showed the BMP-2-loaded HP-PLGA scaffolds induced bone formation to a much greater extent than did either BMP-2-loaded unmodified PLGA scaffolds or unloaded (no BMP-2) HP-PLGA scaffolds, with 9-fold greater bone formation area and 4-fold greater calcium content in the BMP-2-loaded HP-PLGA scaffold group compared to the BMP-2-loaded unmodified PLGA scaffold group. Collectively, these results demonstrate that the HP-PLGA delivery system is capable of potentiating the osteogenic efficacy of BMP-2, and underscore its importance as a possible bone regeneration strategy.  相似文献   

20.
Raiche AT  Puleo DA 《Biomaterials》2004,25(4):677-685
Bone formation and repair occur by a complex cascade involving numerous growth factors and cytokines. In this study, two-layered heterogeneously loaded and crosslinked gelatin coatings were used to obtain combined and sequential delivery of two bone growth factors, BMP-2 and IGF-I, in cell cultures. Peak release from the top and bottom layers was localized around 1 and 6 days, respectively. For comparison, cells were also treated with soluble growth factors directly added to the culture medium. Pluripotent C3H10T1/2 (C3H) cells responded to soluble growth factor treatments with the greatest specific alkaline phosphatase (AP) activity resulting from addition of BMP-2 followed by IGF-I or by BMP-2+IGF-I. Altered loading and subsequent release of BMP-2 and IGF-I from gelatin coatings also affected AP activity in C3H cultures, and the coatings influenced AP activity and incorporation of calcium in the extracellular matrix of bone marrow stromal cell cultures. Early delivery of BMP-2 followed by increased release of BMP-2 and IGF-I after 5 days resulted in the largest, as well as earliest, elevation of AP activity and mineralized matrix formation compared to controls and other treatments. Simultaneous release of both growth factors from both layers did not significantly change AP activity or matrix calcium content compared to control coatings. These results demonstrate that temporally varying delivery of multiple growth factors can significantly affect cell behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号