首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
导航辅助脊柱胸腰段椎弓根钉植入的临床应用   总被引:1,自引:0,他引:1  
目的探讨临床运用计算机影像导航技术引导脊柱胸腰段椎弓根钉植入的准确性。方法2003年5月-2007年5月,29例患者接受116枚计算机影像导航技术引导脊柱胸腰段椎弓根钉植入手术治疗,T10-T1250枚胸椎弓根钉,L1-L3 66枚腰椎弓根钉。术中记录椎弓根钉植入所需时间及C-臂透视工作次数,椎弓根钉植入完成后,即行C-臂正侧位摄片并与导航路径进行比较测量。术后CT进行椎弓根层面扫描,根据椎弓根钉与椎弓根皮质问关系分为四级:A=在椎弓根内;B=突破皮质,〈2mm;C=突破皮质,2-4mm;C=突破皮质,〉4mm。结果术后CT椎弓根位置扫描显示:A级101枚(87.07%);B级10枚(8.62%);C级2枚(1.72%);D级3枚(2.59%)。1枚椎弓根钉植入平均所需时间:2.73±0.64min(1.15~4.02min)。下胸椎9枚(7.75%)胸椎弓根钉突破皮质,上腰椎6枚(5.17%)腰椎弓根钉突破皮质,且临床观察未发现与椎弓根钉突破皮质相关的神经血管等并发症。植入的椎弓根钉C-臂正侧位摄片与导航路径吻合比较,进钉点均差2.6mm(最大3.1mm),角度均差3.3°(最大5.4°)。结论计算机影像导航辅助脊柱胸腰段椎弓根钉植入,提供二维、多平面实时显示,保证了脊柱胸腰段椎弓根钉植入的准确性及安全性,明显减少放射线的暴露强度。  相似文献   

2.
STUDY DESIGN: In this cadaveric study, a computer-assisted image guidance system was tested for accuracy of thoracic pedicle screw placement. OBJECTIVES: Evaluate the system's accuracy for thoracic pedicle screw placement in vitro. SUMMARY OF BACKGROUND DATA: The effective use and reliability of pedicle screw instrumentation in providing short-segment stabilization and correction of deformity is well known in the lumbar spine. Pedicle screw placement in the thoracic spine is difficult because of the small dimensions of the thoracic pedicles and risk to the adjacent spinal cord and neurovascular structures. Investigators have shown the improved accuracy of computer-assisted lumbar pedicle screw placement; but the accuracy of computer-assisted thoracic pedicle screw placement, which is becoming more widely used, has not been shown. METHODS: In five human cadavers, 120 thoracic pedicle screws were placed with computer-assisted image guidance. The largest clinically feasible screw was used based on the cross-sectional dimensions of each pedicle. The accuracy was assessed by postoperative computed tomography and visual inspection. RESULTS: The overall pedicle cortex violation was 23 of 120 pedicles (19.2%). Nine violations (7.5%) were graded as major and 14 (11.7%) as minor. A marked and progressive learning curve was evident with the perforation rates that decreased from 37.5% in the first cadaver to 4.2% in the last two cadavers. CONCLUSIONS: Accurate thoracic pedicle screw placement is feasible with computer-assisted surgery. However, as with any other new surgical technology, the learning curve must be recognized and incorporated into the necessary fundamental knowledge and experience for these procedures.  相似文献   

3.
BACKGROUND CONTEXT: Computerized frameless stereotactic image-guidance has been used in recent years to improve the accuracy and safety of pedicle screw placement during spine surgery. Because the possibility of intervertebral motion exists, and because the patient is usually in a different position when preoperative imaging is performed compared with the operative position, it has been suggested that the imaging model of the complete lumbar spine and the surgically exposed lumbar spine may be significantly discordant. Consequently, current protocols suggest registering each spinal level (single-level registration) separately before pedicle screw placement at that level, a time-consuming process. PURPOSE: To assess the accuracy of single-time multilevel registration for multilevel pedicle screw placement during image-guided, computer-assisted spine surgery, in the setting of degenerative disorders of the lumbar spine. STUDY DESIGN/SETTING: This is a prospective clinical and radiological study of 45 patients with degenerative disorders of the lumbar spine who underwent instrumented fusion with the use of single-time multilevel registration computer-assisted, image-guided tomography. The accuracy of the pedicle screws placement was confirmed on the basis of a protocol that included intraoperative spontaneous electromyographic (EMG) recordings, direct pedicle visualization, and computer tomography (CT) scans when clinically indicated during the follow-up period. PATIENT SAMPLE: Forty-five consecutive patients who fulfilled the criteria of computer-assisted, image-guided tomography pedicle screw placement for degenerative lumbar spine disease without overt instability. OUTCOME MEASURES: The principal outcome measure was the accuracy of pedicle screw placement with single-time multilevel registration for multilevel pedicle screw placement during image-guided, computer-assisted spine surgery; postoperative CT performed for clinical indications during the follow-up course was used for the assessment of pedicle screw placement. METHODS: Patients were assessed clinically before and after the operation. Data from 45 consecutive cases of image-guided, computer-assisted lumbar spinal fusion were statistically analyzed to determine the relationship between the number of levels registered during single-time registry and the mean registration error (MRE). Intraoperative spontaneous EMG, direct visualization, and postoperative CT scans were used to assess the accuracy of pedicle screw insertion. RESULTS: None of the patients involved in this study experienced clinical sequelae of improper pedicle screw placement. MREs after surface mapping and after point merge were small (less than 1.00 mm and less than 3.00 mm, respectively). During the intraoperative assessment of the pedicle screws placement, no significant spontaneous EMG activity was recorded and the pedicular walls were found intact in direct visualization. The postoperative CT scans showed in 10 patients accurate placement in 55 of the 57 pedicle screws with expansion of the medial wall in two screws. CONCLUSIONS: Single-time, multilevel registration may decrease operative time relative to repeated, single-level registrations, without compromising the increased accuracy of pedicle screw placement afforded by this technique in the setting of degenerative disorders of the lumbar spine. Despite the advantages in computer-guided image surgery, cautious application in the individual patient is recommended until more comprehensive data can be gathered in specific degenerative pathology with overt instability; thus the knowledge of the anatomy remains crucial.  相似文献   

4.
R Assaker  N Reyns  M Vinchon  X Demondion  E Louis 《Spine》2001,26(19):2160-2164
STUDY DESIGN: In vitro evaluation of monitoring screw placement using an image-guided system compared with the routine use of an image intensifier. OBJECTIVES: To compare a new computer-guided method of monitoring pedicle screw placement with a well-known method of monitoring using an image intensifier, using measurements of screw placement time and accuracy. SUMMARY OF BACKGROUND DATA: Pedicle screw placement relies on the identification of anatomic landmarks for the point of entry of the pedicle. The direction and depth of screw penetration are guided by an intraoperative lateral-view image intensifier. The use of frameless stereotaxy for computer-aided pedicle screw placement may increase the accuracy and safety of the screw insertion. To the authors' knowledge, there are no published data comparing these systems on the basis of operative time and screw placement accuracy. METHOD: Eight human cadaveric sections of five vertebrae each were used for an in vitro simulation of pedicle screw placement. Four spine surgeons were chosen to simulate the transpedicular screw placement. Each surgeon placed one screw into each pedicle of two spine sections (10 vertebrae, 20 screws). The surgeon was assisted by the lateral-view image intensifier on one spine section and by the navigational system on the second one. The four surgeons placed 80 pedicle screws. Forty screw placements were monitored by fluoroscopy and 40 by the image-guided navigational system. The time spent to place one screw was recorded, as well as the remarks by each surgeons on each method. Spines were rescanned, and the positions of the screws were compared between the group on which the image intensifier has been used and the group on which the navigational system had been used. RESULTS: In the image-guided technique group, one thoracic screw disrupted the lateral cortex of the pedicle, the average distance to the anterior wall of the body was 5 mm, and the average time for the insertion of one screw was 13.5 minutes. In the other group, two screws disrupted the inner cortex of a thoracic pedicle, the average distance to the anterior wall was 10.7 mm, and the average time for the insertion of one screw was 4 minutes. CONCLUSIONS: In vitro computer-aided pedicle screw insertion is more accurate than lateral-view fluoroscopy in the thoracic spine. The main disadvantage is the time consumption compared with that required by lateral-view fluoroscopy. The total time of the surgical operation should be decreased with the future development of these techniques.  相似文献   

5.
OBJECTIVE: Posterior transpedicular fixation at the cervicothoracic junction (CTJ) is increasing in popularity. However, the clinical accuracy of pedicle screw placement at the CTJ has not been specifically assessed. METHODS: Between January 2000 and July 2004, 60 consecutive patients underwent a variety of posterior spinal procedures necessitating pedicle screw placement at C7, T1, and T2. Thirty-two patients had cervicothoracic screws (3.5 to 4.5 mm) placed by an "open" technique (laminectomies or lamino-foraminotomies) and 28 patients with either a closed (before any decompression) 2-dimensional (n=19, fluoroscopy) or 3-dimensional (n=9, CT) computer-assisted technique. Screws were independently assessed for pedicle breach on postoperative CT and scored using a points-based classification system. RESULTS: The total number of screws placed was 86, 63 and 45 in the open, closed-2-dimensional and closed-3-dimensional groups, respectively. Overall, 61(70.9%), 51(81%), and 40(89%) screws were completely within the pedicle. In the open group, the majority of pedicle breaches were more than 2 mm [n=3 (<2 mm), n=20 (2-4 mm), n=2 (>4 mm)]. Screw violation occurred laterally 11/25(44%), medially 3/25(12%), inferiorly 7/25(28%), and superiorly 4/25(16%). In the closed technique, all breaches were lateral. Seventeen screws (n=11-2-dimensional, n=5-3-dimensional) breached the pedicle by a margin of less than 2 mm and 1 screw (2-dimensional) by 2 to 4 mm. Pedicle screw accuracy was significantly improved with computer-assisted techniques. However, there was no significant difference between the 2-dimensional and 3-dimensional techniques. For all patients, there were no clinically significant screw misplacements, nor any need for screw revision. CONCLUSIONS: Computer-assisted surgery allows for more accurate placement of pedicle screws at the CTJ. Although a higher proportion of major pedicular breaches occurred in the "open lamina/lamino-foraminotomy" group, no screws required revision in either group.  相似文献   

6.
Cadaveric pedicle screw placement guided by the measurements from axial computed tomography (CT) scans in the thoracic spine was assessed in this study. Axial CT scans were performed on four cadaveric thoracic spines, and the measurements included the pedicle transverse angle, inner pedicle width, and distance between the midline of the vertebra and the pedicle axis on the dorsal aspect of the lamina. With utilization of the data from CT scans, screws were directly placed into the thoracic pedicle from T1 to T10. Screw penetration of the pedicle was determined by gross examination. The results showed that the largest pedicle transverse angle was found at the levels of T1-2, and the smallest occurred at the T3 through T8 levels. The value of the pedicle inner width was quite different between specimens with a minimum of 3.0 mm at T4 and a maximum of 9.2 mm at T10. Gross examination of the pedicle showed that 13 (16.3%) of 80 screws penetrated the pedicle wall, with a Grade I penetration in 11 pedicles and a Grade II penetration in 2 pedicles. Screw penetration of the medial wall was found in four pedicles and penetration of the lateral wall was noted in nine pedicles. No screw penetration of the superior and inferior walls of the pedicle was identified in any of the four specimens. Thoracic pedicle screw placement guided by the measurements from axial CT scans significantly reduced the incidence of pedicle penetration. Axial CT measurements of the pedicle inner diameter and transverse angle as well as the starting point for screw insertion are recommended if pedicle screw fixation is intended in the thoracic spine.  相似文献   

7.
Background The exact insertion of a cervical screw is technically demanding, especially when normal anatomic landmarks have been obscured and are difficult to identify, such as in revision surgery. The purpose of this study was to evaluate the efficacy of an image-guidance system to aid placement of transarticular and pedicular screws for revision cervical spine surgery.Methods Ten patients with recurrent myelopathy, including seven with cerebral palsy, two with a giant cell tumor, and one with rheumatoid arthritis, underwent computer-aided reconstruction surgery. The authors used a frameless stereotactic image-guidance system with simultaneous fluoroscopy. Postoperative computed tomography was used to determine the accuracy of the screw placement.Results There were no neurovascular complications and no correction loss. All patients showed solid bony union. All four C1/2 transarticular screws were exactly placed inside the pedicles. Of 47 pedicular screws, 11 showed a slight breach of the cortex. When a reference arc could not be attached to the relevant vertebra, the rate of cortical perforation of screws was high (5/10; 50%) compared with the rate when a reference arc was attached to the relevant vertebra (6/37; 16%).Conclusion Although more advanced technology is hopeful, a computer-assisted image-guidance system with simultaneous fluoroscopy is useful for aiding revision surgery to achieve rigid fixation and ensure safety.  相似文献   

8.
Objective: To evaluate the accuracy of computer-assisted pedicle screw installation and its clinical benefit as compared with conventional pedicle screw installation techniques.
Methods: Total 176 thoracic pedicle screws placed in 42 thoracic fracture patients were involved in the study randomly, 20 patients under conventional fluoroscopic control (84 screws) and 22 patients had screw insertion under three dimensional (3D) computer-assisted navigation (92 screws). The 2 groups were compared for accuracy of screw placement, time for screw insertion by postoperative thincut CT scans and statistical analysis by χ^2 test. The cortical perforations were then graded by 2-mm increments: Grade Ⅰ (good, no cortical perforation), Grade Ⅱ (screw outside the pedicle 〈2 mm), Grade Ⅲ (screw outside the pedicle 〉2 mm).
Results: In computer assisted group, 88 (95.65%) were Grade Ⅰ (good), 4 (4.35%) were Grade Ⅱ (〈2mm), no Grade Ⅲ (〉2 mm) violations. In conventional group, there were 14 cortical violations (16.67%), 70 (83.33%) were Grade Ⅰ (good), Ⅱ (13.1%) were Grade Ⅱ (〈2 mm), and 3 (3,57%) were Grade Ⅲ (〉2 mm) violations (P〈0.001). The number (19.57%) of upper thoracic pedicle screws ( T1-T4 ) inserted under 3D computer-assisted navigation was significantly higher than that (3.57%) by conventional fluoroscopic control (P〈0.001). Average screw insertion time in conventional group was (4.56 ±1.03) min and (2.54 ± 0.63) min in computer assisted group (P〈0.001). In the conventional group, one patient had pleura injury and one had a minor dura violation.
Conclusions: This study provides further evidence that 3D computer-assisted navigation placement ofpedicle screws can increase accuracy, reduce surgical time, and be performed safely and effectively at all levels of the thoracic spine, particularly upper thoracic spine.  相似文献   

9.

Purpose

Single center evaluation of the placement accuracy of thoracolumbar pedicle screws implanted either with fluoroscopy or under CT-navigation using 3D-reconstruction and intraoperative computed tomography control of the screw position. There is in fact a huge variation in the reported placement accuracy of pedicle screws, especially concerning the screw placement under conventional fluoroscopy most notably due to the lack of the definition of screw misplacement, combined with a potpourri of postinstrumentation evaluation methods.

Methods

The operation data of 1,006 patients operated on in our clinic between 1995 and 2005 is analyzed retrospectively. There were 2,422 screws placed with the help of CT-navigation compared to 2,002 screws placed under fluoroscopy. The postoperative computed tomography images were reviewed by a radiologist and an independent spine surgeon.

Results

In the lumbar spine, the placement accuracy was 96.4 % for CT-navigated screws and 93.9 % for pedicle screws placed under fluoroscopy, respectively. This difference in accuracy was statistically significant (Fishers Exact Test, p = 0.001). The difference in accuracy became more impressing in the thoracic spine, with a placement accuracy of 95.5 % in the CT-navigation group, compared to 79.0 % accuracy in the fluoroscopy group (p < 0.001).

Conclusion

This study underlines the relevance of CT-navigation-guided pedicle screw placement, especially when instrumentation of the middle and upper thoracic spine is carried out.  相似文献   

10.
We performed a randomised controlled study to assess the accuracy of computer-assisted pedicle screw insertion versus conventional screw placement under clinical conditions. One hundred patients scheduled for posterior thoracolumbar or lumbosacral pedicle screw instrumentation were randomised into two groups, either for conventional pedicle screw placement or computer-assisted screw application using an optoelectronic navigation system. From the computer-assisted group, nine patients were excluded: one because of an inadequate preoperative computed tomography study, seven because of problems with the specific instruments or the computer system, and one because of an intraoperative anesthesiological complication. Thus, there were 50 patients in the conventional group and 41 in the computer-assisted group, and the number of screws inserted was 277 and 219, respectively. There was no statistical difference between the groups concerning age, gender, diagnosis, type of operation performed, mean operating time, blood loss, or number of screws inserted. The time taken for screw insertion was significantly longer in the computer-assisted group. Postoperatively, screw positions were assessed by an independent radiologist using a sophisticated CT imaging protocol. The pedicle perforation rate was 13.4% in the conventional group and 4.6% in the computer-assisted group (P = 0.006). Pedicle perforations of more than 4 mm were found in 1.4% (4/277) of the screw insertions in the conventional group, and none in the computer-assisted group. Complications not related to pedicle screws were two L5 nerve root lesions, one end plate fracture, one major intraoperative bleeding and one postoperative death in the conventional group, and one deep infection in the computer-assisted group. In conclusion, pedicular screws were inserted more accurately with image-guided computer navigation than with conventional methods. Received: 11 October 1999 Revised: 2 February 2000 Accepted: 15 February 2000  相似文献   

11.
目的探讨成人腰椎侧凸椎弓根螺钉误置模式并分析其危险因素。方法选取2010年8月至2011年6月行后路全椎弓根螺钉固定的成人腰椎侧凸患者49例,男14例,女35例;年龄30~65岁,平均39.2±13.8岁。术中根据解剖标志徒手置入椎弓根螺钉,术后行CT检查。破壁螺钉按测量螺钉穿破椎弓根内、外侧壁及椎体前缘的距离分为4级:1级≤2mm,2级2.1—4.0mm,3级4.1~6.0mm,4级≥6.1mm。不良置钉为穿透任一壁距离超过2mm者,高危置钉为穿破内侧壁超过4mm或穿破外侧壁顶尖使主动脉变形者。比较不同分组螺钉破壁率的差异。结果49例共置入353枚螺钉,平均每例7.2枚。螺钉完全在椎弓根内且无椎体前缘穿破316枚(占89.5%)。破壁螺钉37枚(占10.5%),根据破壁距离分级:1级25枚,2级8枚,3级1枚,4级3枚。不良置钉12枚(占3.4%),其中穿破内、外侧壁及椎体前缘超过2mm分别为3枚、6枚、3枚。无高危置钉。螺钉破壁率:年龄〉50岁组为9.9%与年龄≤50岁组为10.9%无显著性差异(P=0.860);顶椎(apicalvertebra,AV)高于AV上下各节段;凹侧为15.6%明显高于凸侧为5.9%(P=0.005);Cobb角〉60°组为20.2%显著高于Cobb角≤60。组为6.1%(P〈0.001)。椎体旋转3—4度组为16.5%明显高于椎体旋转0~2度组为6.5%(P=0.012)。患者术中及术后均未出现神经并发症。结论成人腰椎侧凸椎弓根螺钉置人具有较高的精确性,破壁螺钉及不良置钉主要位于AV及凹侧,危险因素包括较大Cobb角、严重椎体旋转以及凹侧置钉。  相似文献   

12.
Accuracy of pedicular screw placement in vivo   总被引:19,自引:0,他引:19  
The accuracy of pedicular screw placement was assessed in 40 consecutive patients treated with the AO "Fixateur Interne." Postoperative CT scans were used to measure canal encroachment from the medial border of the pedicle, the angle of insertion and the point of entry. Eighty-one percent of the screws were placed within 2 mm of the medial border of the pedicle and 6% had 4-8 mm of canal encroachment with two patients developing minor neurological complications that spontaneously resolved. Four percent were inserted lateral to the pedicle. The parameters linked to satisfactory screw placement include entry point, angle of insertion and pedicular isthmus widths. Improvement in accuracy was noted in the latter 25% of screw insertions, reflecting the learning curve associated with this technique.  相似文献   

13.
经皮植入椎弓根螺钉的CT扫描钉道分析和临床评价   总被引:2,自引:1,他引:1  
目的:通过应用经皮穿刺植入椎弓根螺钉的后路固定系统治疗胸腰段骨折患者,以探究该微创技术的准确性和可行性。方法:应用菲力浦X线荧屏透视,经皮穿刺植入导针引导的空心椎弓根螺钉136枚,后路固定系统治疗胸腰段骨折34例。术后CT扫描观察钉道与椎弓根内侧壁、外侧壁的关系,钉尖与椎体前缘的距离、TSA角、SSA角,以及进行术后的初步临床疗效观察。结果:其中椎弓根内侧壁破裂4枚,椎弓根外侧壁破裂3枚,经皮椎弓根螺钉方向过于向头端偏斜2枚,过于向尾端偏斜1枚,经皮椎弓根螺钉钉尖稍穿透椎体前缘5枚,本组经皮椎弓根螺钉植钉失误率7.25%。结论:该技术具有一定的准确性和可行性,并发症发生率相对可以接受,但有较高操作要求,需要有经验的脊柱外科医生进行。本组病例在X线荧屏透视下完成,受辐射量大,后来植钉时透视次数明显减少,患者和医师受辐射量下降而且手术时间缩短,如结合导航技术将在微创脊柱外科领域中发挥相当作用。  相似文献   

14.
[目的]分析O-arm计算机辅助导航技术在脊柱椎弓根螺钉置入的准确性。[方法]回顾性分析2017年1月~2018年9月本院椎弓根螺钉置入患者575例,根据椎弓根螺钉置入方式不同,分为两组。导航组采用O-arm计算机辅助导航技术系统置入椎弓根螺钉233例,传统组采用传统徒手法置入椎弓根螺钉342例。行CT检查,依据Neo分型评估置钉准确性。[结果]导航组共置入1459枚椎弓根螺钉,其中C1~7置入222枚,T1~12置入535枚,L1~5置入652枚,S1置入50枚。每名患者置钉数量1~24枚,平均(6.26±3.77)枚。传统组共置入1724枚椎弓根螺钉,其中C1~7置入269枚,T1~12置入601枚,L1~5置入785枚,S1置入87枚。每名患者置钉数量1~20枚,平均(5.67±4.11)枚。导航组全部病例顺利完成手术,术中无血管、神经损伤等并发症,置钉安全率为100%,传统组有4例发生血管、神经损伤等并发症。所有患者术后进行12~24个月随访,随访过程均未发生不良事件。依据CT影像Neo分级标准,导航0型及1型椎弓根螺钉的成功置入率达98.01%,而传统组0型及1型椎弓根螺钉的成功置入率91.85%;两组间置入螺钉准确性的差异具有统计学意义(P<0.05)。[结论]与传统C臂X线机等徒手置钉方式相比,O-arm计算机辅助导航技术可提高脊柱椎弓根螺钉置入准确性,同时降低神经、血管等并发症的发生。  相似文献   

15.
A prospective study of 50 adults treated with fusion, realignment, and segmental spinal instrumentation for spinal deformity was conducted to assess the safety, accuracy, and efficacy of the free-hand pedicle screw placement technique. Postoperative computed tomographic scans were performed to evaluate the placement of 282 screws and were correlated with patients' clinical outcomes. Five screws were placed at T12, 26 at L1, 39 at L2, 48 at L3, 73 at L4, 35 at L5, and 50 at S1. Nine screws (3%) were misplaced and included three screws (1.06%) that violated the medial wall with no clinical sequelae or revision surgery needed. There were no neurologic deficits related to screw placement. The free-hand technique is a safe and cost-effective method for pedicular screw placement during surgery for adult spine deformities.  相似文献   

16.
OBJECTIVE: The objective of this study is to evaluate the effectiveness of a specific methodology for plain radiographic assessment of lumbar pedicle screw position. PURPOSE: To evaluate the effectiveness of using orthogonal plain radiographs and a systematic method of interpretation, developed by the senior author, in assessing the placement of lumbar and lumbosacral pedicle screws. STUDY DESIGN: This was an adult cadaver study of the accuracy of using plain radiographs or computed tomography to assess pedicle screw position. Plain radiographs were performed and compared with computed tomography (CT) scans. Gross anatomic dissections were performed to directly confirm screw position. Variables, including screw material, radiographic view, and screw dimensions, were assessed for their effect on the ability of physicians to determine pedicle screw position. Multiple readers were included in the study, including 1 spine Fellow, 3 experienced orthopedic spine surgeons, and 1 neuroradiologist. METHODS: Five adult cadaveric spines were instrumented with titanium pedicle screws from L1 to S1. Screws were placed outside the confines of the pedicle in all 4 quadrants or within the pedicle using a Latin-Square design. Each cadaver was imaged with orthogonal radiographs and high-resolution CT scans. The spines were then reimaged after the instrumentation was replaced with stainless steel screws placed in the identical position. Finally, each spine was dissected to assess the exact position of the screws. Images were read in a blinded fashion by 1 spine fellow, 2 staff surgeons, and a staff radiologist. The results were compared with the known screw positions at dissection. RESULTS: In total, 120 pedicle screws were placed, 44 (38%) outside the confines of the pedicle. Sensitivity, defined as the percent of the misplaced screws that were correctly identified, was similar across the 3 diagnostic tests, but markedly improved when all CT formats were considered together. Similarly, specificity, defined as the percent of screws correctly read as being placed within the pedicle, was independent of radiographic examination. Sensitivity of the radiographic technique was 70.1% and specificity was 83.0%, whereas sensitivity for CT scans was 84.7% and specificity was 89.7%.There was an observed association with anatomic level, with a consistently less accuracy in detecting screw position at L1 with plain x-ray (P=0.001). Additionally, correct position of stainless steel screws was more difficult to detect as compared with titanium (P=0.033) using either x-rays or CT. Other variables examined, such as screw length and screw diameter, did not have an effect on the ability to read the positioning. CONCLUSIONS: CT scans, often considered the "gold standard" for clinical assessment of pedicle screw placement, have limitations when validated with gross anatomical dissection. The described systematic method for evaluating pedicle screw placement using orthogonal plain radiographs attained accuracy comparable to high-resolution CT scans.  相似文献   

17.
In vivo accuracy of thoracic pedicle screws.   总被引:14,自引:0,他引:14  
P J Belmont  W R Klemme  A Dhawan  D W Polly 《Spine》2001,26(21):2340-2346
STUDY DESIGN: A retrospective observational study of 279 transpedicular thoracic screws using postoperative computed tomography (CT). OBJECTIVE: To determine the accuracy of transpedicular thoracic screws. SUMMARY OF BACKGROUND DATA: Previous studies have reported the importance of properly placed transpedicular thoracic screws. To our knowledge, the in vivo accuracy of pedicle screw placement throughout the entire thoracic spine by CT is unknown. METHODS: The accuracy of thoracic screw placement within the pedicle and vertebral body and the resultant transverse screw angle (TSA) were assessed by postoperative CT. Cortical perforations of the pedicle were graded in 2-mm increments. Screws were regionally grouped for analysis. RESULTS: Forty consecutive patients underwent instrumented posterior spinal fusion using 279 titanium thoracic pedicle screws of various diameters (4.5-6.5 mm). The regional distribution of the screws was 39 screws at T1-T4, 77 screws at T5-T8, and 163 screws at T9-T12. Fifty-seven percent of screws were totally confined within the pedicle. Although medial perforation of the pedicle wall occurred in 14% of screws, in <1% there was >2 mm of canal intrusion. Lateral pedicular perforation occurred in 68% of perforating screws and was significantly more common than medial perforation (P < 0.0005). Seventeen screws penetrated the anterior vertebral cortex by an average of 1.7 mm. Screws inserted between T1 and T4 had a decreased incidence of full containment within the pedicle (P < 0.0005) and vertebral body (P = 0.039) compared with T9-T12. The mean TSA for screws localized within the pedicle was 14.6 degrees and was significantly different from screws with either medial (mean 18.0 degrees ) or lateral (mean 11.5 degrees ) pedicle perforation (P < 0.0005). Anterior vertebral penetration was associated with a smaller mean TSA of 10.1 degrees (P = 0.01) and with lateral pedicle perforation (P < 0.0005). There were no neurologic or vascular complications. CONCLUSIONS: Ninety-nine percent of screws were fully contained or were inserted with either < or =2 mm of medial cortical perforation or an acceptable lateral breech using the "in-out-in" technique. Anterior cortical penetration occurred significantly more often with lateral pedicle perforation and with a smaller mean TSA. The incidence of fully contained screws was directly correlated with the region of instrumented thoracic spine.  相似文献   

18.
胸腰椎椎弓根钉置入导向器的设计及应用实验   总被引:1,自引:0,他引:1  
目的:设计一种新型椎弓根钉置入导向装置,以期减少椎弓根钉置入的失败几率。方法:术前CT扫描拟置钉椎体,确定椎弓根轴线。右侧以导向器辅助钻孔,左侧徒手钻孔。钻孔后孔内置克氏针,椎弓根环绕钢丝,摄正侧位X线片,评价其准确程度。结果:导向器组36个椎弓根有2个椎弓根(5.6%)穿破,徒手组36个椎弓根有8个椎弓根(22%)失败。经统计学处理显示,两组结果有显著性差异。结论:应用新型导向器,能明显降低下胸椎及腰椎椎弓根钉置入中的失败率。  相似文献   

19.
OBJECTIVES: To determine the safety of pedicle screw fixation in thoracic spine deformity correction. METHODS: One hundred twelve pedicle screws were surgically placed in 25 patients with degenerative, posttraumatic, and Scheuermann kyphosis and idiopathic and neuromuscular scoliosis. Screw position was evaluated using intraoperative and postoperative radiographs and thin-slice computed tomography. RESULTS: Of the total 112 thoracic pedicle screws that were inserted, 98 screws (87.5%) were fully contained within the cortical boundaries of the pedicle. When comparing proximal screws (T1-T8) with distal screws (T9-T12) and convex placed screws with concave ones, a statistically significant difference in screw placement was evident (P < 0.05). More misplaced screws were seen proximally and on the concave side. Of the 14 malpositioned screws, 2 (1.8%) demonstrated aortic abutment. There were no neurologic deficits, vascular injuries, or mechanical failures recorded. CONCLUSIONS: Placement of thoracic pedicle screws is both feasible and safe.  相似文献   

20.
The goal of this study was to evaluate the accuracy of CT-based computer-assisted pedicle screw insertion in the thoracic spine in patients with fractures, metastases, and spondylodiscitis compared to a conventional technique. A total of 324 pedicle screws were inserted in the thoracic spines of 85 patients: 211 screws were placed using a CT-based optoelectronic navigation system assisted by an image intensifier and 113 screws were placed with a conventional technique. Screw positions were evaluated with postoperative CT scans by an independent radiologist. In the computer-assisted group, 174 (82.5%) screws were found completely within their pedicles compared with 77 (68.1%) correctly placed screws in the conventional group ( p<0.003). Despite use of the navigation system, 1.9% of the computer-assisted screws perforated the pedicle wall by more than 4 mm. The additional use of the image intensifier helped to identify the correct vertebral body and avoided cranial or caudal pedicle wall perforations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号