首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the current study, the influence of plasticizer level on drug release was investigated for solid dosage forms prepared by hot-melt extrusion and film coating. The properties of two highly water-soluble compounds, diltiazem hydrochloride (DTZ) and chlorpheniramine maleate (CPM), and a poorly water-soluble drug, indomethacin (IDM), were investigated in the melt extrudates containing either Eudragit® RSPO or Eudragit® RD 100 and triethyl citrate (TEC) as the plasticizer. In addition, pellets containing DTZ were film coated with Eudragit® RS 30D and varying levels of TEC using a fluidized bed coating unit. Differential scanning calorimetry (DSC) demonstrated that both CPM and IDM exhibited a plasticization effect on the acrylic polymers, whereas no plasticizing effect by DTZ on Eudragit® RSPO was observed. Thermogravimetric analysis (TGA) was used to investigate the thermal stability of the DTZ, Eudragit® RSPO and TEC at 140 °C, the maximum temperature used in the hot-melt extrusion process. The chemical stability of DTZ and IDM in the extrudate following hot-melt processing was determined by high pressure liquid chromatography (HPLC). Drug release rates of both DTZ and CPM from hot-melt extrudates increased with an increase in the TEC level in the formulations, while the release rate of DTZ from the Eudragit® RS 30D–coated pellets decreased with an increase in TEC in the coating dispersion. This phenomenon was due to the formation of a reservoir polymeric structure as a result of the thermal stress and shear stress involved in the hot-melt extrusion process regardless of the TEC level. In contrast, coalescence of the polymer particles in the film coating process was enhanced with higher levels of TEC, as demonstrated by scanning electron microscopy (SEM). The addition of TEC (0% to 8%) in the IDM hot-melt extrudate formulation had no influence on the drug release rate as the drug release rate was controlled by drug diffusion through the inside of the polymeric materials rather than between the polymer particles.  相似文献   

2.
The purpose of this investigation was to determine the effects of thermal processing and post-processing thermal treatment on the release properties of chlorpheniramine maleate (CPM) from matrix tablets containing Eudragit RS PO and triethyl citrate (TEC). CPM tablets containing Eudragit RS PO with and without TEC were prepared by direct compression (DC), high shear hot-melt granulation (HMG), and hot-melt extrusion (HME). X-ray diffraction patterns showed that the CPM was distributed in Eudragit RS PO at the molecular level following HME. The thermogravimetry analysis (TGA) profiles of CPM, Eudragit RS PO, and TEC demonstrated that these materials were thermally stable during both the high shear HMG and HME processes. The tablets were subjected to post-processing thermal treatment by storing the tablets at 60 degrees C in open containers for 24 hr. Tablets prepared by DC showed the highest drug release rate constant of 36.2% hr-1/2. When 4% TEC was incorporated into the formulation, the drug release rate constant for the directly compressed tablets decreased to 32.4% hr-1/2. After high shear HMG and HME of the powder blend containing 4% TEC, the drug release rate constant decreased to 30.8 and 13.8% hr-1/2 for the respective processes. The drug release rate constants for all tablets decreased following post-processing thermal treatment. The reduction in release rate was due to an increase in the intermolecular binding and entanglement between drug molecules and polymer molecules that occurred during thermal processing. Post-processing thermal treatment of the hot-melt extrudates had a minimal effect on the drug release rate since the HME process enhanced the drug and polymer entanglement to a greater extent.  相似文献   

3.
The aim of this study was to develop a dry powder coating process for chlorpheniramine maleate (CPM) tablets using Eudragit L 100-55 as the delayed release polymer. Powder coating, a water and organic solvent-free process, was investigated as a method to prevent the migration of an ionizable, highly water soluble model drug into the polymeric film during the coating process. Eudragit L 100-55 was pre-plasticized with triethyl citrate (TEC) using hot-melt extrusion at levels of 20%, 30%, and 40%, based on the polymer weight. The extrudate was subsequently cut into pellets and cryogenically ground into a fine powder. Talc was incorporated into the coating powder as an anti-tack agent. PEG 3350 was used as a primer for the powder coating of tablets with pre-plasticized Eudragit L 100-55. The addition of polyethylene glycol 3350 (PEG 3350) to the pre-plasticized Eudragit L 100-55 was necessary to enhance the adhesion of the coating powder to the tablet cores. PEG 3350 also improved film formation and coalescence of the polymeric particles due to its plasticization effects on the acrylic polymer. For comparison, theophylline tablets were also coated with pre-plasticized Eudragit L 100-55. Theophylline was selected as a less water soluble model drug. The powder coating process was performed in a modified laboratory scale spheronizer. The drug release rate was dependent both on TEC content and the coating level. The stability of the powder-coated CPM tablets was confirmed at 25 degrees C/60% RH over a storage time of 12 weeks.  相似文献   

4.
The influence of in situ plasticization of chlorpheniramine maleate (CPM) on Eudragit RS PO from hot-melt extruded matrix tablets, and from compressed granules prepared by thermal processing was investigated. CPM was studied as both a model drug substance and as a solid-state plasticizer for the acrylic polymer. Triethyl citrate (TEC) was incorporated into the polymer blend as a liquid plasticizer for the polymer. The influence of TEC and CPM concentration on the dissolution properties of CPM tablets was investigated. The glass transition temperature (T(g)) of the samples was determined by modulated differential scanning calorimetry (MDSC). The morphologies of the granules formed by hot-melt extrusion and hot-melt granulation processes were investigated by scanning electron microscopy. The addition of 12% TEC to the polymer reduced the T(g) by 32.5 degrees C, while the reduction in the T(g) for the same level of CPM was 16.4 degrees C. The effect of TEC levels on drug release was dependent on the tablet preparation method. At high TEC levels, the release rate of CPM decreased in tablets prepared by direct compression and tablets made from compressed granules that had been prepared by high shear hot-melt granulation. However, the CPM release rate increased from hot-melt extruded tablets with increasing blends of plasticizer in the extruded tablets. An increase in the CPM content in the tablets resulted in an increase in the drug release rate. During high shear hot-melt granulation, the model drug adhered to the polymer to form a porous discontinuous structure. Following hot-melt extrusion, the drug was distributed at a molecular level in the continuous polymeric structure. The influence of both CPM and TEC levels on the drug release rate from these polymeric drug delivery systems was shown to be a function of whether the granules or tablets were formed by either hot-melt granulation or hot-melt extrusion, as well as the plasticization effects of both TEC and CPM on the acrylic polymer.  相似文献   

5.
The purpose of this study was to investigate the properties of methylparaben as a solid-state plasticizer for Eudragit RS PO during a hot-melt extrusion process. Extruded matrices containing different levels of methylparaben and Eudragit RS PO, were prepared by feeding the powder blend through a hot melt extruder. The melt viscosity of the polymer blends was assessed by torque rheometry using a Brabender Plasticorder. The physicochemical properties of the extruded methylparaben-containing polymer matrix were characterized by differential scanning calorimetry and X-ray diffraction. Solid state nuclear magnetic resonance spectroscopy (NMR) was used to study the possible interaction between methylparaben and Eudragit RS PO polymer. The results demonstrated that the glass transition temperature of the Eudragit RS PO decreased with increasing levels of methylparaben in the extrudate, due to an increase in the chain mobility of Eudragit RS PO. The crystallinity of methylparaben was absent following hot-melt processing. At increasing levels of methylparaben in the extrudates, a decrease in the melt viscosity was seen due to a plasticization of the polymer. Rheological properties of the extrudates containing methylparaben were compared with the extrudates containing conventional plasticizers. It was found that methylparaben was as effective as triethyl citrate (TEC) in reducing torque during the extrusion process. Solid state NMR spectra indicated a change in the chemical shift of Eudragit RS PO plasticized with methylparaben, which could be ascribed to an interaction between the hydroxyl group of the methylparaben and the ester group of the Eudragit RS PO polymer. The results of this study demonstrated that methylparaben could be used as a solid-state plasticizer for the Eudragit RS PO polymer when a hot melt extrusion technique was employed in the preparation of sustained release tablets.  相似文献   

6.
The study aimed to investigate the effect of triethyl citrate (TEC) plasticizer level (10, 15, and 20%), curing temperature (40, 50, and 60 degrees C) and time (0 to 168 h) on the release of a highly lipophilic drug bumetanide from pellets coated with methacrylate ester copolymer (Eudragit RS). Bumetanide was layered onto sugar pellets followed by coating with 6% Eudragit RS with and without hydroxypropyl methyl cellulose (HPMC) seal coat using Wurster Fluid Bed equipment. Coated pellets were stored for 3 months at room temperature and the release was tested in USP purified water. At 10% TEC level, increasing curing time and temperature lead to slower drug release. At 15 and 20% TEC levels, curing initially decreased drug release followed by increase in the release at longer curing time and higher temperature. Drug release from coated pellets plasticized with 15% TEC and completely cured followed zero order kinetic models. At plasticizer level of 20%, bumetanide release from the completely cured pellets was better modeled using the Higuchi's equation reflecting possible drug migration during curing. Storage led to an increase in drug release. The use of HPMC seal coat stabilized drug release after storage. It was concluded that bumetanide migration into Eudragit RS film coat was the main cause of the accelerated release after curing and storage. The drug migration during storage at room temperature was prevented by seal coating the pellets with HPMC.  相似文献   

7.
The study aimed to investigate the effect of triethyl citrate (TEC) plasticizer level (10, 15, and 20%), curing temperature (40, 50, and 60°C) and time (0 to 168h) on the release of a highly lipophilic drug bumetanide from pellets coated with methacrylate ester copolymer (Eudragit RS). Bumetanide was layered onto sugar pellets followed by coating with 6% Eudragit RS with and without hydroxypropyl methyl cellulose (HPMC) seal coat using Wurster Fluid Bed equipment. Coated pellets were stored for 3 months at room temperature and the release was tested in USP purified water. At 10% TEC level, increasing curing time and temperature lead to slower drug release. At 15 and 20% TEC levels, curing initially decreased drug release followed by increase in the release at longer curing time and higher temperature. Drug release from coated pellets plasticized with 15% TEC and completely cured followed zero order kinetic models. At plasticizer level of 20%, bumetanide release from the completely cured pellets was better modeled using the Higuchi's equation reflecting possible drug migration during curing. Storage led to an increase in drug release. The use of HPMC seal coat stabilized drug release after storage. It was concluded that bumetanide migration into Eudragit RS film coat was the main cause of the accelerated release after curing and storage. The drug migration during storage at room temperature was prevented by seal coating the pellets with HPMC.  相似文献   

8.
The objective of this study was to investigate the influence of talc and triethyl citrate (TEC) on stabilizing the drug release rates following curing and storage at elevated temperature of pellets coated with an aqueous acrylic polymeric dispersion. Core pellets containing anhydrous theophylline (20%), microcrystalline cellulose, and polyvinylpyrrolidone were prepared by extrusion-spheronization. The aqueous dispersions were prepared by adding up to 30% TEC as a plasticizer and talc up to 200% as an antiadherent to a mixture of Eudragit RS 30D/RL 30D (95:5). The theophylline pellets were coated in a fluidized-bed coating unit and then cured at elevated temperatures. Theophylline pellets were successfully coated with the Eudragit dispersions that contained up to 200% talc, based on the dry polymer weight, and the coating efficiency was greater than 93%. Our results demonstrated that the polymer, which was plasticized by TEC, was able to function as a film-forming agent for dispersions containing high levels of talc. No sticking of the coated pellets was observed during the coating process or during the curing or equilibrating phase, even with high levels of TEC in the film. The dissolution rate of theophylline from the coated pellets was delayed when the film coating dispersion contained high levels of talc. Additionally, the stability of the drug release profiles from the coated pellets after storage was significantly improved. Furthermore, a modified dissolution testing used to simulate mechanical stresses that may be encountered in vivo showed the film coated pellets would have sufficient strength. The results of this study demonstrated that high levels of film additives in the acrylic dispersion contributed to the stabilization of the drug release rates as well as the reproducibility of the coating process.  相似文献   

9.
Drug-layered pellets were coated with micronized polymer powders (Eudragit) RS, ethylcellulose, and shellac) by a dry powder coating technique as an alternative to organic- and aqueous-based coatings (Eudragit) RS 30D, Aquacoat) ECD) were investigated. High plasticizer concentrations (40%) and a thermal after-treatment (curing) were necessary for the coalescence of the polymer particles and good film formation. Ethylcellulose required a higher curing temperature and time than Eudragit) RS because of its higher glass transition temperature (133 versus 58 degrees C). A smaller polymer particle size also promoted film formation. In general, pellets coated with polymer powders required higher coating levels to obtain similar drug release patterns as pellets coated with organic polymer solutions and aqueous polymer dispersions.  相似文献   

10.
以Eudragit RSPO和RLPO为缓释材料,采用流化床包衣技术制备了泛昔洛韦缓释微丸.采用单因素试验筛选了增塑剂种类及用量、抗黏剂粒度、Eudragit RSPO和RLPO的配比及老化时间.所得优化参数为两种包衣材料配比19∶1,增塑剂为10%聚乙二醇6000,抗黏剂为20%滑石粉(1250目),包衣增重25%,老化12h.所制缓释微丸在1.5 h(0.1 mol/L盐酸)、3h和8 h(pH 6.8磷酸盐缓冲液)的累积释放度分别为10%~30%、30%~70%和70%以上.药动学研究表明,本品与泛昔洛韦普通片相比具有明显的缓释特征.  相似文献   

11.
Hot-melt extruded tablets were prepared using Eudragit S 100 as the polymeric carrier to target delivery of 5-aminosalicylic acid (5-ASA) to the colon. Scanning electron microscopy, modulated differential scanning calorimetry and X-ray diffraction analysis of the hot-melt tablet extrudates demonstrated that 5-ASA remained crystalline and was homogeneously dispersed throughout the polymer matrix. A pre-plasticization step was necessary when incorporating triethyl citrate (TEC) into the formulation in order to achieve uniform mixing of the polymer and plasticizer, effectively reduce the polymer glass transition temperature (T(g)), and to lower the processing temperatures. The concentration of TEC in the extrudates not only influenced the processing temperature, but also influenced the drug release rates from the extruded tablets due to leaching of the TEC during dissolution testing. Citric acid monohydrate was found to plasticize Eudragit S 100, and when combined with TEC in the powder blend, the temperatures required for processing were reduced. Tablets containing citric acid released drug at a slower rate as a result of the suppression of polymer ionization due to a decrease in the micro-environmental pH of the tablet. The drug release profiles of the extruded tablets were found to fit both diffusion and surface erosion models.  相似文献   

12.
PURPOSE: To develop a novel powder coating technology for extended-release pellets based on the acrylic polymer, Eudragit RS. METHODS: A mixture of micronized Eudragit RS plus talc and a liquid feed (plasticizer plus binder solution) were sprayed separately onto propranolol hydrochloride-loaded pellets in a fluidized bed coater. The coated pellets were heat-cured under different conditions (40 degrees C to 60 degrees C, 2 h to 24 h). The coalescence (film formation) of the polymer particles was studied via the determination of the glass transition and the minimum polymer-softening temperatures (MST). The coated pellets were characterized with respect to their morphologic, release, and stability properties. RESULTS: The optimum plasticizer type and concentration and process temperatures could be identified by the determination of the MST. High concentrations of plasticizer (40% based on the polymer) and a thermal treatment were necessary to achieve complete film formation and extended drug release. Curing the pellets resulted in release profiles, which did not change during storage for 3 years. The coated pellets had a smooth, continuous surface and a dense film structure after curing. CONCLUSIONS: This novel coating technique avoids the use of organic polymer solutions or latex dispersions, has short processing times, and results in stable extended-release profiles.  相似文献   

13.
In order to investigate the relationship between drug dissolution and leaching of plasticizer, theophylline pellets coated with 30% (w/w) Eudragit S100:L100 (1:1) plasticized with different levels of triethyl citrate (TEC) were prepared. The influence of storage conditions on the dissolution profile of theophylline and leaching of TEC was determined. Theophylline was found to dissolve completely from pellets coated with Eudragit S100:L100 (1:1) plasticized with 50% TEC at pH 6.0 after 2h. The shape of the pellets was maintained during dissolution testing. Cracks due to the leaching of TEC were observed in the scanning electron micrographs (SEMs) following dissolution testing at pH 6.0. Both the dissolution of theophylline and the leaching of TEC decreased during storage due to further coalescence of the acrylic polymers. The dissolution profiles of theophylline showed a biphasic pattern and the lag times were estimated as the time points at which a second, rapid release of theophylline was initiated. Subsequently, the percent of TEC leached at the lag time was calculated. While the lag time was increased by storage time and humidity, the percent of TEC leached at the lag time was unchanged as a function of storage condition and was dependent on the initial TEC levels in the films. In conclusion, the plasticizer content in the film coating influenced the dissolution profile of theophylline from pellets coated with Eudragit S100:L100 (1:1). A large amount of the TEC was leached from the enteric films before drug release was initiated and a TEC level of approximately 30% in the films, based on the polymer weight, was the critical amount of TEC for initiating drug release during dissolution testing at pH 6.0. While enteric films are more soluble and dissolve faster at higher pH values, the kinetics of plasticizer release was one of the important factors controlling the dissolution of drugs at pH 6.0, at which pH the enteric polymers were insoluble.  相似文献   

14.
Kollidon® SR as a drug carrier and two model drugs with two different melting points, ibuprofen and theophylline, were studied by hot-melt extrusion. Powder mixtures containing Kollidon® SR were extruded using a twin-screw extruder at temperatures 70 and 80 °C for ibuprofen and 80 and 90 °C for theophylline. The glass transition temperature (Tg) and maximum torque were inversely related to ibuprofen concentrations, indicating its plasticizing effect. The results of differential scanning calorimetry (DSC) and X-ray diffraction analysis showed that ibuprofen remained in an amorphous or dissolved state in the extrudates containing drug up to 35%, whereas theophylline was dispersed in the polymer matrix. The increase in amounts of ibuprofen or theophylline in the hot-melt extrudates resulted in the increase in the drug release rates. Theophylline release rate in hot-melt extruded matrices decreased as the extrusion temperature increased. In contrast, a higher processing temperature caused the higher ibuprofen release. This was a clear indication of the plasticizing effect of ibuprofen on Kollidon® SR and a result from water uptake. Theophylline release rate from hot-melt extrudates decreased with increasing triethyl citrate (TEC) level because of the formation of a denser matrix. By adding of Klucel® LF as a water-soluble additive to the hot-melt extruded matrices, an increase in ibuprofen and theophylline release rates was obtained.  相似文献   

15.
热熔挤出技术提高水飞蓟素溶出度的初步研究   总被引:9,自引:1,他引:9  
杨睿  唐星  黄惠锋 《中国新药杂志》2005,14(11):1305-1308
目的:研究热熔挤出技术是否提高难溶性药物溶出度.方法:以难溶性水飞蓟素为模型药物,以泊洛沙姆-188为亲水性载体,采用热熔挤出技术和熔融法分别制备挤出物和固体分散体,比较两者的差示扫描量热(DSC)图谱和累积溶出曲线.结果:挤出物是分散程度较高的固体分散体,DSC图谱中药物的吸热峰均消失,载体泊洛沙姆-188的吸热峰向低温方向移动,挤出物中的移行程度大于固体分散体;药物在90 min时从挤出物中溶出90.63%,而在固体分散体中的溶出量为71.06%.结论:热熔挤出技术可提高水飞蓟素的溶出度,且效果优于熔融法.  相似文献   

16.
The objective of the present study was to evaluate three formulation parameters for the application of polymethacrylic films from aqueous dispersions in order to obtain multiparticulate sustained release of diclofenac sodium. Film coating of pellet cores was performed in a laboratory fluid bed apparatus. The chosen independent variables, i.e. the concentration of plasticizer (triethyl citrate), methacrylate polymers ratio (Eudragit RS:Eudragit RL) and the quantity of coating dispersion were optimised with a three-factor, three-level Box-Behnken design. The chosen dependent variables were cumulative percentage values of diclofenac dissolved in 3, 4 and 6 h. Based on the experimental design, different diclofenac release profiles were obtained. Response surface plots were used to relate the dependent and the independent variables. The optimisation procedure generated an optimum of 40% release in 3 h. The levels of plasticizer concentration, quantity of coating dispersion and polymer to polymer ratio (Eudragit RS:Eudragit RL) were 25% w/w, 400 g and 3/1, respectively. The optimised formulation prepared according to computer-determined levels provided a release profile, which was close to the predicted values. We also studied thermal and surface characteristics of the polymethacrylic films to understand the influence of plasticizer concentration on the drug release from the pellets.  相似文献   

17.
The objective of this study was to investigate the properties of tablets containing granulations of ibuprofen (Ibu) and Ammonio Methacrylate Copolymer, Type B (Eudragit RS PO) prepared by hot-melt processing. Tablets were compressed from granules prepared by hot-melt granulation (HMG) or direct compression (DC). For the hot-melt extrusion (HME) process, tablets were prepared by cutting the extrudate, manually. The physicochemical properties of tablets were investigated using thermal analysis, powder X-ray diffraction analysis, tablet hardness, and drug dissolution. The effect of thermal treatment of tablets on the dissolution characteristics of Ibu was also investigated. The results demonstrated that the Ibu lowered the glass transition temperature (Tg) of the Eudragit RS PO and the softened polymer functioned as a thermal binder in the granulation. Ibu was demonstrated to be an effective plasticizer for Eudragit RS PO in the thermal processes. The efficiency of the granulation process increased with increasing levels of Eudragit RS PO in the powder blend. Higher levels of Eudragit RS PO in the tablets prepared by HMG or HME resulted in a decrease in the dissolution rate of the Ibu. An increase in the amount of Ibu in the tablets prepared by HMG or DC led to a decrease in the initial dissolution rate of the Ibu. Following the thermal treatment of the Ibu tablets prepared by HMG, the dissolution rate was significantly decreased due to structural changes in the tablets that resulted from the fusion and coalescence of plasticized polymer particles, causing a reduction in tablet porosity. The Ibu tablets prepared by HME demonstrated minimal changes in their release properties following thermal treatment even at temperatures higher than the Tg of the polymer. HME was shown to be a novel method to prepare matrix tablets and stable dissolution properties were obtained when tablets were stored at 40 degrees C for 30 days.  相似文献   

18.
法莫替丁定时释放小丸的释药机制   总被引:2,自引:0,他引:2  
张莉  陈大为  高子彬 《药学学报》2006,41(9):873-877
目的研究法莫替丁定时释放小丸的释药机制,初步探索有机酸诱导型给药系统的释药机制。方法从离子交换反应、水化作用等方面分别研究了琥珀酸离子和琥珀酸分子在药物释放过程中的作用。结果琥珀酸酸根离子通过与膜材进行离子交换反应造成了新的离子环境,琥珀酸分子由于进入膜材的疏水部分而提高了膜的柔韧性。上述两种作用均可导致膜水化作用增强,从而使膜的透过性明显增加。结论定时释放小丸的时滞是由于膜材的疏水性所致;当水进入丸芯溶解有机酸后,产生的酸根离子及有机酸分子以不同的方式与膜材发生相互作用,显著提高了其透过性,从而使药物快速释放出来。  相似文献   

19.
The aim of the study was to clarify the influences of three coating parameters on the drug release from chlorpheniramine maleate (CPM) pellets, coated with blends of poly(vinyl acetate) (PVAc) and poly(vinyl alcohol)-poly(ethylene glycol) (PVA-PEG) graft copolymer. A central composite design was implemented to investigate the effect of the polymer blend ratio, the film coat thickness and the plasticizer concentration on the drug release. The solubilization inside the pellets was monitored by EPR spectroscopy. The blending ratio of both the polymers and the film thickness were found to have a major influence on the drug release and the solubilization speed, in contrast to the plasticizer concentration. A pH-independent release profile was adjustable via modulating the polymer blend ratio and the coating thickness. A mathematical model was developed, providing a good predictability of the release profile, based on the film coat composition. This model offers the possibility to achieve a defined drug-release profile by selective adaptation of the film coat composition, in view of process times, feasibility or polymer costs.  相似文献   

20.
The objective of this study was to investigate the properties of tablets containing granulations of ibuprofen (Ibu) and Ammonio Methacrylate Copolymer, Type B (Eudragit RS PO) prepared by hot-melt processing. Tablets were compressed from granules prepared by hot-melt granulation (HMG) or direct compression (DC). For the hot-melt extrusion (HME) process, tablets were prepared by cutting the extrudate, manually. The physicochemical properties of tablets were investigated using thermal analysis, powder X-ray diffraction analysis, tablet hardness, and drug dissolution. The effect of thermal treatment of tablets on the dissolution characteristics of Ibu was also investigated. The results demonstrated that the Ibu lowered the glass transition temperature (Tg) of the Eudragit RS PO and the softened polymer functioned as a thermal binder in the granulation. Ibu was demonstrated to be an effective plasticizer for Eudragit RS PO in the thermal processes. The efficiency of the granulation process increased with increasing levels of Eudragit RS PO in the powder blend. Higher levels of Eudragit RS PO in the tablets prepared by HMG or HME resulted in a decrease in the dissolution rate of the Ibu. An increase in the amount of Ibu in the tablets prepared by HMG or DC led to a decrease in the initial dissolution rate of the Ibu. Following the thermal treatment of the Ibu tablets prepared by HMG, the dissolution rate was significantly decreased due to structural changes in the tablets that resulted from the fusion and coalescence of plasticized polymer particles, causing a reduction in tablet porosity. The Ibu tablets prepared by HME demonstrated minimal changes in their release properties following thermal treatment even at temperatures higher than the Tg of the polymer. HME was shown to be a novel method to prepare matrix tablets and stable dissolution properties were obtained when tablets were stored at 40°C for 30 days.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号