首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Huntington's disease is a progressive neurodegenerative disease caused by an abnormally expanded (>36) CAG repeat within the ITI5 gene encoding a widely expressed 349-kd protein, huntingtin. The medium spiny neurons of the caudate preferentially degenerate in Huntington's disease, with the presence of neuronal intranuclear inclusions. Excitotoxicity is thought to be important in the pathogenesis of Huntington's disease; the recently described mitochondrial respiratory chain and aconitase defects in Huntington's disease brain are consistent with this hypothesis. A transgenic mouse model (R6/2) of Huntington's disease develops a movement disorder, muscle wasting, and premature death at about 14 to 16 weeks. Selective neuronal death in these mice is not seen until 14 weeks. Biochemical analysis of R6/2 mouse brain at 12 weeks demonstrated a significant reduction in aconitase and mitochondrial complex IV activities in the striatum and a decrease in complex IV activity in the cerebral cortex. Increased immunostaining for inducible nitric oxide synthase and nitrotyrosine was seen in the transgenic mouse model but not control mouse brains. These results extend the parallels between Huntington's disease and the transgenic mouse model to biochemical events and suggest complex IV deficiency and elevated nitric oxide and superoxide radical generation precede neuronal death in the R6/2 mouse and contribute to pathogenesis.  相似文献   

2.
3.
Bonifati  V.  Dekker  M.C.J.  Vanacore  N.  Fabbrini  G.  Squitieri  F.  Marconi  R.  Antonini  A.  Brustenghi  P.  Dalla Libera  A.  De Mari  M.  Stocchi  F.  Montagna  P.  Gallai  V.  Rizzu  P.  van Swieten  J.C.  Oostra  B.  van Duijn  C.M.  Meco  G.  Heutink  P. 《Neurological sciences》2002,23(2):s59-s60
Neurological Sciences - Autosomal recessive, early onset parkinsonism (AREP) is genetically heterogeneous. Mutations in the parkin gene (PARK2 locus, chromosome 6q) account for up to 50% of AREP...  相似文献   

4.
Mitochondrial dysfunction, oxidative stress and neurodegeneration   总被引:2,自引:0,他引:2  
Mitochondria play a critical role in several metabolic processes and apoptotic pathways, regulating life cycle from the cradle to the grave. Despite the evidence of morphological, biochemical and molecular abnormalities in mitochondria in various tissues of patients with neurodegenerative disorders, the question "is mitochondrial dysfunction a necessary step in neurodegeneration?" is still unanswered. Moreover, a growing body of evidence seems to indicate that oxidative stress, which is increased in damaged mitochondria, is an earlier event associated with neurodegeneration. Here we examine the current evidences in this field, which indicate a key role of mitochondria and oxidative stress in contributing to the neurodegenerative processes.  相似文献   

5.
PARK6, a locus for early-onset recessive parkinsonism, has been causally implicated in nine unrelated families from four different countries. The gene is still unidentified and hence the importance of PARK6 as a cause of Parkinson's disease is unknown. To date, no pathology or functional imaging studies are available on PARK6-linked parkinsonism. We have used (18)F-dopa positron emission tomography to study four patients who are homozygous and three asymptomatic relatives who are heterozygous for PARK6. The clinically affected PARK6 subjects had a similar 85% reduction in posterior dorsal putamen (18)F-dopa uptake to a group of idiopathic Parkinson's disease patients matched for clinical disease severity and duration but showed significantly greater involvement of head of caudate and anterior putamen. The group of asymptomatic PARK6 carriers showed a significant mean 20 to 30% reduction in caudate and putamen (18)F-dopa uptake in comparison with controls, individual values falling toward the bottom of the normal range. Our results indicate that PARK6 pathology results in a more uniform loss of striatal dopamine terminal function than Parkinson's disease. The subclinical loss of striatal dopamine storage capacity found in the PARK6 carriers implies that the unidentified gene on the short arm of chromosome 1 exhibits either haploinsufficency or a dominant negative effect.  相似文献   

6.
Chuang YC  Chang AY  Lin JW  Hsu SP  Chan SH 《Epilepsia》2004,45(10):1202-1209
PURPOSE: Prolonged and continuous epileptic seizure (status epilepticus) results in cellular changes that lead to neuronal damage. We investigated whether these cellular changes entail mitochondrial dysfunction and ultrastructural damage in the hippocampus, by using a kainic acid (KA)-induced experimental status epilepticus model. METHODS: In Sprague-Dawley rats maintained under chloral hydrate anesthesia, KA (0.5 nmol) was microinjected unilaterally into the CA3 subfield of the hippocampus to induce seizure-like hippocampal EEG activity. The activity of key mitochondrial respiratory chain enzymes in the dentate gyrus (DG), or CA1 or CA3 subfield of the hippocampus was measured 30 or 180 min after application of KA. Ultrastructure of mitochondria in those three hippocampal subfields during KA-induced status epilepticus also was examined with electron microscopy. RESULTS: Microinjection of KA into the CA3 subfield of the hippocampus elicited progressive build-up of seizure-like hippocampal EEG activity. Enzyme assay revealed significant depression of the activity of nicotinamide adenine dinucleotide cytochrome c reductase (marker for Complexes I+III) in the DG, or CA1 or CA3 subfields 180 min after KA-elicited temporal lobe status epilepticus. Conversely, the activities of succinate cytochrome c reductase (marker for Complexes II+III) and cytochrome c oxidase (marker for Complex IV) remained unaltered. Discernible mitochondrial ultrastructural damage, varying from swelling to disruption of membrane integrity, also was observed in the hippocampus 180 min after hippocampal application of KA. CONCLUSIONS: Our results demonstrated that dysfunction of Complex I respiratory chain enzyme and mitochondrial ultrastructural damage in the hippocampus are associated with prolonged seizure during experimental temporal lobe status epilepticus.  相似文献   

7.
Mitochondria play a critical role in regulating cellular functions including bioenergetics, calcium homeostasis, redox signalling, and apoptotic cell death. Mitochondria are also essential to many aspects of neurodevelopment and neuronal functions. However, mitochondrial impairment may affect bioenergetics in the developing brain and alter critical neuronal processes leading to neurodevelopmental abnormalities.Schizophrenia is a chronic and severe neuropsychiatric disorder of neurodevelopmental origin. Immuno-inflammatory pathway is one of the widely appreciated mechanisms that has consistently been implicated in the neurodevelopmental origin of schizophrenia. However, the source of inflammation and the underlying neurobiological mechanisms leading to schizophrenia are yet to be fully ascertained. Recent understanding reveals that perturbation of mitochondrial network dynamics might lead to various nervous system disorders with inflammatory pathologies. Mitochondrial deficit, altered redox balance and chronic low-grade inflammation are evident in schizophrenia. It is hypothesized that oxidative/nitrosative stress responses due to mitochondrial dysfunctions might activate immuno-inflammatory pathways and subsequently lead to neuroprogressive changes in schizophrenia. Herein, we summarise the current understanding of molecular links between mitochondrial dysfunctions and pathogenesis of schizophrenia based on evidence from genomics, proteomics and imaging studies, which together support a role for mitochondrial impairment in the pathogenetic pathways of schizophrenia.  相似文献   

8.
'Myofibrillar myopathy' defines a myopathic condition with focal myofibrillar destruction and accumulation of degraded myofibrillar elements. Despite the fact that a number of mutations in different genes as well as cytotoxic agents lead to the disease, abnormal accumulation of desmin is a typical, common feature. Pathological changes of mitochondrial morphology and function have been observed in animal models with intermediate filament pathology. Therefore, in the present study we tested for mitochondrial pathology in skeletal muscle of five patients with the pathohistological diagnosis of myofibrillar myopathy. Screening for large-scale mtDNA deletions and the frequent MERRF (myoclonic epilepsy; ragged red fibres) and MELAS (mitochondrial encephalomyopathy; lactic acidosis; stroke) point mutations was negative in all patients. Histologically, all muscle biopsies showed nonspecific abnormalities of the oxidative/mitochondrial enzyme stainings (histochemistry for reduced nicotinamide adenine dinucleotide, succinic dehydrogenase, cytochrome c oxidase), only one of them had ragged red fibres and a significant number of cytochrome c oxidase-negative fibres. Upon biochemical investigation, four of our patients showed pathologically low respiratory chain complex I activities. Only one of our patients had a pathologically low complex IV activity, while the measurements of the others were within low normal range. The single patient with pathological values for both complex I and IV was the one with the clear histological hallmarks (ragged red and cytochrome c oxidase-negative fibres) of mitochondrial pathology. She also was the only patient with clinical signs hinting at a mitochondrial disorder. Together with data from observations in desmin- and plectin-deficient mice, our results support the view that desmin intermediate filament pathology in these cases is closely linked to mitochondrial dysfunction in skeletal muscle.  相似文献   

9.
Mitochondrial dysfunction is implicated in bipolar disorder based on the following lines of evidence: 1) Abnormal brain energy metabolism measured by 31 P‐magnetic resonance spectroscopy, that is, decreased intracellular pH, decreased phosphocreatine (PCr), and enhanced response of PCr to photic stimulation. 2) Possible role of maternal inheritance in the transmission of bipolar disorder. 3) Increased levels of the 4977‐bp deletion in mitochondrial DNA (mtDNA) in autopsied brains. 4) Comorbidity of affective disorders in certain types of mitochondrial disorders, such as autosomal inherited chronic progressive external ophthalmoplegia and mitochondrial diabetes mellitus with the 3243 mutation. Based on these findings, we searched for mtDNA mutations/polymorphisms associated with bipolar disorder and found that 5178C and 10398A polymorphisms in mtDNA were risk factors for bipolar disorder. The 5178C genotype was associated with lower brain intracellular pH. mtDNA variations may play a part in the pathophysiology of bipolar disorder through alteration of intracellular calcium signaling systems. The mitochondrial dysfunction hypothesis, which comprehensively accounts for the pathophysiology of bipolar disorder, is proposed.  相似文献   

10.
Mitochondrial dysfunction and neuromuscular disease   总被引:2,自引:0,他引:2  
Nardin RA  Johns DR 《Muscle & nerve》2001,24(2):170-191
Mitochondrial diseases are a heterogeneous group of disorders with widely varying clinical features, due to defects in mitochondrial function. Involvement of both muscle and nerve is common in mitochondrial disease. In some cases, this involvement is subclinical or a minor part of a multisystem disorder, but myopathy and neuropathy are a major, often presenting, feature of a number of mitochondrial syndromes. In addition, mitochondrial dysfunction may play a role in a number of classic neuromuscular diseases. This article reviews the role of mitochondrial dysfunction in neuromuscular disease and discusses a rational approach to diagnosis and treatment of patients presenting with a neuromuscular syndrome due to mitochondrial disease.  相似文献   

11.
Huntington disease (HD) is a chronic autosomal-dominant neurodegenerative disease. The gene coding Huntingtin has been identified, but the pathogenic mechanisms of the disease are still not fully understood. This paper reviews the involvement of mitochondrial dysfunction in pathogenesis of HD.  相似文献   

12.
To date, one of the most discussed hypotheses for Alzheimer's disease (AD) etiology implicates mitochondrial dysfunction and oxidative stress as one of the primary events in the course of AD. In this review we focus on the role of mitochondria and mitochondrial DNA (mtDNA) variation in AD and discuss the rationale for the involvement of mitochondrial abnormalities in AD pathology. We summarize the current data regarding the proteins involved in mitochondrial function and pathology observed in AD, and discuss the role of somatic mutations and mitochondrial haplogroups in AD development.  相似文献   

13.
In recent years much of the research conducted in the field of Parkinson's disease (PD) has been aimed at trying to elucidate the molecular mechanisms involved in the development of the rare familial forms of the disease, with the hope that an understanding of these mechanisms will shed some light into the pathogenesis of the more prevalent idiopathic form of the disease. These studies have implicated mitochondrial dysfunction in the pathogenesis of familial PD, either as a primary event, with disease causing mutations identified in genes encoding mitochondrial proteins, or as a secondary event. Thus, the role played by mitochondrial respiratory chain function in the pathogeneis of idiopathic PD, an area of research that was a main focus some 15-20 years ago, has come back to the forefront of the field. A number of studies have directly investigated respiratory chain function in a variety of tissues from idiopathic PD patients. Although abundant in number, these studies have provided contradictory results, which still require clarification. In this review we will examine the data indicating the presence of a respiratory chain defect in patients with idiopathic PD and attempt to link it with the pathways that have been implicated by familial studies.  相似文献   

14.
A simplified classification of the spinocerebellar degenerations is proposed. Axonal ataxias include Friedreich’s ataxia and other conditions involving, primarily, neurons with very long axons. Multiple system degenerations include the various olivopontocerebellar atrophies and related disorders. Ataxic encephalopathies are diffuse diseases of the nervous system in which ataxia is a prominent clinical feature. Several lines of data suggest that mitochondrial damage is a common mechanism in the spinocerebellar degenerations. Reasonable pathophysiological mechanisms can be invoked, linking mitochondrial damage to the observed pathologies (including the many cases of intermediate on variant forms).  相似文献   

15.
Huntington disease (HD) is a chronic autosomal-dominant neurodegenerative disease. The gene coding Huntingtin has been identified, but the pathogenic mechanisms of the disease are still not fully understood. This paper reviews the involvement of mitochondrial dysfunction in pathogenesis of HD.  相似文献   

16.
Mitochondrial dysfunction has been implicated in causing metabolic abnormalities in Alzheimer's disease (AD). The searches for mitochondrial DNA variants associated with AD susceptibility have generated conflicting results. The age-related accumulation of somatic mitochondrial DNA deletion has been suggested to play a pathogenic role in the development of AD. Recent studies have demonstrated that amyloid-beta peptide (Abeta) progressively accumulates in mitochndrial matrix, as demonstrated in both transgenic mice over-expressing mutant amyloid precursor protein (APP) and autopsy brain from AD patients. Abeta-mediated mitochondrial stress was evidenced by impaired oxygen consumption and decreased respiratory chain complexes III and IV activities in brains from AD patients and AD-type transgenic mouse model. Furthermore, our studies indicated that interaction of intramitochondrial Abeta with a mitochondrial enzyme, amyloid binding alcohol dehydrogenase (ABAD), inhibits its enzyme activity, enhances generation of reactive oxygen species (ROS), impairs energy metabolism, and exaggerates Abeta-induced spatial learning/memory deficits and neuropathological changes in transgenic AD-type mouse model. Interception of ABAD-Abeta interaction may be a potential therapeutic strategy for Alzheimer's disease.  相似文献   

17.
Disruptions in energy metabolism have been suggested to be a prominent feature, perhaps even a fundamental component, of Alzheimer's disease (AD). These abnormalities in cerebral metabolism precede the onset of neurological dysfunction as well as gross neuropathology of AD. These changes may stem from inhibition of mitochondrial enzymes including pyruvate dehydrogenase, cytochrome c oxidase, and alpha-ketoglutarate dehydrogenase. Several lines of evidence also suggest a role for oxidative stress in the neuropathology associated with the disease state. Because mitochondria are the major site of free radical production in cells, they are also a primary target for oxidative damage and subsequent dysfunction. This link between mitochondrial dysfunction and the pathophysiology of AD is supported by several lines of evidence.  相似文献   

18.
Chronic N-methyl-d-aspartate (NMDA) administration to rats may be a model to investigate excitotoxicity mediated by glutamatergic hyperactivity, and lithium has been reported to be neuroprotective. We hypothesized that glutamatergic hyperactivity in chronic NMDA injected rats would cause mitochondrial dysfunction and lipid peroxidation in the brain, and that chronic lithium treatment would ameliorate some of these NMDA-induced alterations. Rats treated with lithium for 6 weeks were injected i.p. 25 mg/kg NMDA on a daily basis for the last 21 days of lithium treatment. Brain was removed and frontal cortex was analyzed. Chronic NMDA decreased brain levels of mitochondrial complex I and III, and increased levels of the lipid oxidation products, 8-isoprostane and 4-hydroxynonenal, compared with non-NMDA injected rats. Lithium treatment prevented the NMDA-induced increments in 8-isoprostane and 4-hydroxynonenal. Our findings suggest that increased chronic activation of NMDA receptors can induce alterations in electron transport chain complexes I and III and in lipid peroxidation in brain. The NMDA-induced changes may contribute to glutamate-mediated excitotoxicity, which plays a role in brain diseases such as bipolar disorder. Lithium treatment prevented changes in 8-isoprostane and 4-hydroxynonenal, which may contribute to lithium's reported neuroprotective effect and efficacy in bipolar disorder.  相似文献   

19.
The causes of motor neuron death in amyotrophic lateral sclerosis (ALS) are still unknown. Several lines of evidence suggest that mitochondrial dysfunction may be involved in the pathogenesis of ALS. Biochemical and morphological mitochondrial abnormalities have been demonstrated in postmortem spinal cords of ALS patients. Furthermore, in transgenic mice expressing mutant Cu,Zn-superoxide dismutase (SOD1), the antioxidant enzyme associated with familial ALS (FALS), mitochondrial abnormalities precede the disease onset, suggesting that mitochondrial dysfunction is causally involved in the pathogenesis of SOD1-FALS. Despite this evidence, it is not yet fully understood how mutant SOD1 damages mitochondria. Recent work has demonstrated that a portion of mutant SOD1 is localized in mitochondria, both in transgenic mice and in FALS patients, where it forms proteinaceous aggregates. These findings have opened new avenues of investigation addressing the hypothesis that mutant SOD1 may directly damage mitochondria. Major future challenges will be to better understand the mechanisms and the consequences of mitochondrial dysfunction in ALS. If mitochondrial dysfunction is convincingly involved in ALS pathogenesis, either as a primary cause or as contributing factor, it is likely to become a novel target for therapeutic intervention.  相似文献   

20.
Abstract

Objectives: We aimed to explore mitochondrial DNA (mtDNA) copy number, damage, repair and degradation in peripheral blood mononuclear cells (PBMCs) of patients with depression and to compare the results with healthy subjects.

Methods: Total genomic DNA was isolated from PBMCs of 25 depressed and 60 healthy subjects before, immediately after, and 3?h after the exposure to H2O2. Evaluation of mtDNA copy number was performed using real-time PCR and 2-ΔCt methods. Semi-long run real-time PCR was used to estimate the number of mtDNA lesions.

Results: Baseline mtDNA copy number did not differ in cells of healthy and depressed subjects; however, it was negatively correlated with the severity of the episode. After a 10-min challenge with hydrogen peroxide (H2O2), depressed patients’ PBMCs exhibited slower changes of the copy number, indicating a lower efficiency of mtDNA degradation compared to controls. Moreover, a significantly higher number of mtDNA lesions was found in depressed patients at the baseline as well as at other experimental time points. mtDNA lesions were also elevated in depressed patient cells immediately after H2O2 exposure. Induction of oxidative stress had no significant influence on the cells of controls.

Conclusions: We are the first to show that impairment in repair and degradation of mtDNA may be involved in the pathophysiology of depression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号