首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.

Introduction

Calcium entry plays a critical role in the proliferation and survival of certain tumors. Ca2+ release activated Ca2+ (CRAC) channels constitute one of the most important pathways for calcium entry especially that of store-operated calcium entry (SOCE). ORAI1 and stromal interaction molecule1 (STIM1) are essential protein components of CRAC channels. In this study we tested the effect of inhibiting CRAC through ORAI1 and STIM1 on glioblastoma multiforme (GBM) tumor cell proliferation and survival.

Methods

Two glioblastoma cell lines, C6 (rat) and U251 (human), were used in the study. ORAI1 and STIM1 expressions were examined using Western blot and immunohistochemistry. CRAC channel activity and its components were inhibited with ion channel blockers and using siRNA knockdown. Changes in intracellular calcium concentration were recorded using Fura-2 fluorescent calcium imaging. Cell proliferation and apoptosis were examined using MTS and TUNEL assays, respectively.

Results

CRAC blockers, such as SKF-96365 (1-[2-(4-methoxyphenyl)-2-[3-(4-methoxyphenyl) propoxy]ethyl-1H-imidazole), 2-aminoethoxydiphenyl borate (2-APB) and Diethylstilbestrol (DES), inhibited cell proliferations and SOCE in GBM cells. Knockdown of ORAI1 and STIM1 proteins using siRNA significantly inhibited C6 cell proliferation and SOCE compared with those in control cells, and a more significant effect was observed in cells with ORAI1 siRNA knockdown than that of STIM1-treated cells. Both CRAC blockers and siRNA treatments increased apoptosis in C-6 cells compared with control.

Conclusion

Calcium entry via ORAI1 and CRAC channels are important for GBM proliferation and survival.  相似文献   

2.
The Ca2+ sensor stromal interacting molecule 1 (STIM1) and the Ca2+ channel Orai1 mediate the ubiquitous store-operated Ca2+ entry (SOCE) pathway activated by depletion of internal Ca2+ stores and mediated through the highly Ca2+-selective, Ca2+ release-activated Ca2+ (CRAC) current. Furthermore, STIM1 and Orai1, along with Orai3, encode store-independent Ca2+ currents regulated by either arachidonate or its metabolite, leukotriene C4. Orai channels are emerging as important contributors to numerous cell functions, including proliferation, migration, differentiation, and apoptosis. Recent studies suggest critical involvement of STIM/Orai proteins in controlling the development of several cancers, including malignancies of the breast, prostate, and cervix. Here, we quantitatively compared the magnitude of SOCE and the expression levels of STIM1 and Orai1 in non-malignant human primary astrocytes (HPA) and in primary human cell lines established from surgical samples of the brain tumor glioblastoma multiforme (GBM). Using Ca2+ imaging, patch-clamp electrophysiology, pharmacological reagents, and gene silencing, we established that in GBM cells, SOCE and CRAC are mediated by STIM1 and Orai1. We further found that GBM cells show upregulation of SOCE and increased Orai1 levels compared to HPA. The functional significance of SOCE was evaluated by studying the effects of STIM1 and Orai1 knockdown on cell proliferation and invasion. Utilizing Matrigel assays, we demonstrated that in GBM, but not in HPA, downregulation of STIM1 and Orai1 caused a dramatic decrease in cell invasion. In contrast, the effects of STIM1 and Orai1 knockdown on GBM cell proliferation were marginal. Overall, these results demonstrate that STIM1 and Orai1 encode SOCE and CRAC currents and control invasion of GBM cells. Our work further supports the potential use of channels contributed by Orai isoforms as therapeutic targets in cancer.  相似文献   

3.
Summary:  Store-operated Ca2+ entry (SOCE) is a mechanism used by many cells types including lymphocytes and other immune cells to increase intracellular Ca2+ concentrations to initiate signal transduction. Activation of immunoreceptors such as the T-cell receptor, B-cell receptor, or Fc receptors results in the release of Ca2+ ions from endoplasmic reticulum (ER) Ca2+ stores and subsequent activation of plasma membrane Ca2+ channels such as the well-characterized Ca2+ release-activated Ca2+ (CRAC) channel. Two genes have been identified that are essential for SOCE: ORAI1 as the pore-forming subunit of the CRAC channel in the plasma membrane and stromal interaction molecule-1 (STIM1) sensing the ER Ca2+ concentration and activating ORAI1-CRAC channels. Intense efforts in the past several years have focused on understanding the molecular mechanism of SOCE and the role it plays for cell functions in vitro and in vivo . A number of transgenic mouse models have been generated to investigate the role of ORAI1 and STIM1 in immunity. In addition, mutations in ORAI1 and STIM1 identified in immunodeficient patients provide valuable insight into the role of both genes and SOCE. This review focuses on the role of ORAI1 and STIM1 in vivo , discussing the phenotypes of ORAI1- and STIM1-deficient human patients and mice.  相似文献   

4.
《Molecular immunology》2012,49(15-16):1851-1858
Ca2+ acts ubiquitously as a second messenger in transmembrane signal transduction. In lymphocytes, calcium mobilization is triggered by antigen and chemokine receptors, among others, and controls cell functions ranging from proliferation to migration. The primary mechanism of extracellular Ca2+ entry in lymphocytes is the CRAC influx. STIM1 is a crucial component of the CRAC influx mechanism in lymphocytes, acting as a sensor of low Ca2+ concentration in the ER and an activator of the Ca2+ selective channel ORAI1 in the plasma membrane. While STIM1 function has been studied extensively, little is known regarding whether it is differentially expressed and thereby affects the magnitude of calcium mobilization responses. We report here that STIM1 expression differs in murine T and B lymphocytes, and in respective subsets. For example, mature T cells express ∼4 times more STIM1 than mature B cells. Furthermore, we show that through the physiologic range of expression, STIM1 levels determine the magnitude of Ca2+ influx responses that follow BCR-induced intracellular store depletion. Considered in view of previous reports that differences in amplitude of lymphocyte Ca2+ mobilization determine alternate biological responses, these findings suggest that differential STIM1 expression may be important determinant of biological responses.  相似文献   

5.
6.
Entry of lymphocytes into secondary lymphoid organs (SLOs) involves intravascular arrest and intracellular calcium ion ([Ca2+]i) elevation. TCR activation triggers increased [Ca2+]i and can arrest T‐cell motility in vitro. However, the requirement for [Ca2+]i elevation in arresting T cells in vivo has not been tested. Here, we have manipulated the Ca2+ release‐activated Ca2+ (CRAC) channel pathway required for [Ca2+]i elevation in T cells through genetic deletion of stromal interaction molecule (STIM) 1 or by expression of a dominant‐negative ORAI1 channel subunit (ORAI1‐DN). Interestingly, the absence of CRAC did not interfere with homing of naïve CD4+ T cells to SLOs and only moderately reduced crawling speeds in vivo. T cells expressing ORAI1‐DN lacked TCR activation induced [Ca2+]i elevation, yet arrested motility similar to control T cells in vitro. In contrast, antigen‐specific ORAI1‐DN T cells had a twofold delayed onset of arrest following injection of OVA peptide in vivo. CRAC channel function is not required for homing to SLOs, but enhances spatiotemporal coordination of TCR signaling and motility arrest.  相似文献   

7.
Calcium (Ca2+) is a physiological key factor, and the precise modulation of free cytosolic Ca2+ levels regulates multiple cellular functions. Store‐operated Ca2+ entry (SOCE) is a major mechanism controlling Ca2+ homeostasis, and is mediated by the concerted activity of the Ca2+ sensor STIM1 and the Ca2+ channel ORAI1. Dominant gain‐of‐function mutations in STIM1 or ORAI1 cause tubular aggregate myopathy (TAM) or Stormorken syndrome, whereas recessive loss‐of‐function mutations are associated with immunodeficiency. Here, we report the identification and functional characterization of novel ORAI1 mutations in TAM patients. We assess basal activity and SOCE of the mutant ORAI1 channels, and we demonstrate that the G98S and V107M mutations generate constitutively permeable ORAI1 channels, whereas T184M alters the channel permeability only in the presence of STIM1. These data indicate a mutation‐dependent pathomechanism and a genotype/phenotype correlation, as the ORAI1 mutations associated with the most severe symptoms induce the strongest functional cellular effect. Examination of the non‐muscle features of our patients strongly suggests that TAM and Stormorken syndrome are spectra of the same disease. Overall, our results emphasize the importance of SOCE in skeletal muscle physiology, and provide new insights in the pathomechanisms involving aberrant Ca2+ homeostasis and leading to muscle dysfunction.  相似文献   

8.
Calcium (Ca2+) acts as a ubiquitous second messenger, and normal cell and tissue physiology strictly depends on the precise regulation of Ca2+ entry, storage, and release. Store‐operated Ca2+ entry (SOCE) is a major mechanism controlling extracellular Ca2+ entry, and mainly relies on the accurate interplay between the Ca2+ sensor STIM1 and the Ca2+ channel ORAI1. Mutations in STIM1 or ORAI1 result in abnormal Ca2+ homeostasis and are associated with severe human disorders. Recessive loss‐of‐function mutations impair SOCE and cause combined immunodeficiency, while dominant gain‐of‐function mutations induce excessive extracellular Ca2+ entry and cause tubular aggregate myopathy (TAM) and Stormorken syndrome (STRMK). TAM and STRMK are spectra of the same multisystemic disease characterized by muscle weakness, miosis, thrombocytopenia, hyposplenism, ichthyosis, dyslexia, and short stature. To date, 42 TAM/STRMK families have been described, and here we report five additional families for which we provide clinical, histological, ultrastructural, and genetic data. In this study, we list and review all new and previously reported STIM1 and ORAI1 cases, discuss the pathomechanisms of the mutations based on the known functions and the protein structure of STIM1 and ORAI1, draw a genotype/phenotype correlation, and delineate an efficient screening strategy for the molecular diagnosis of TAM/STRMK.  相似文献   

9.
Plasma membrane store-operated Ca2+ release-activated Ca2+ (CRAC) channels are a widespread and conserved Ca2+ influx pathway, driving activation of a range of spatially and temporally distinct cellular responses. Although CRAC channels are activated by the loss of Ca2+ from the endoplasmic reticulum, their gating is regulated by mitochondria. Through their ability to buffer cytoplasmic Ca2+, mitochondria take up Ca2+ released from the endoplasmic reticulum by InsP3 receptors, leading to more extensive store depletion and stronger activation of CRAC channels. Mitochondria also buffer Ca2+ that enters through CRAC channels, reducing Ca2+-dependent slow inactivation of the channels. In addition, depolarised mitochondria impair movement of the CRAC channel activating protein STIM1 across the endoplasmic reticulum membrane. Because they regulate CRAC channel activity, particularly Ca2+-dependent slow inactivation, mitochondria influence CRAC channel-driven enzyme activation, secretion and gene expression. Mitochondrial regulation of CRAC channels therefore provides an important control element to the regulation of intracellular Ca2+ signalling.  相似文献   

10.
Airway smooth muscle cell (ASMC) remodeling contributes to the structural changes in the airways that are central to the clinical manifestations of asthma. Ca2+ signals play an important role in ASMC remodeling through control of ASMC migration and hypertrophy/proliferation. Upregulation of STIM1 and Orai1 proteins, the molecular components of the store-operated Ca2+ entry (SOCE) pathway, has recently emerged as an important mediator of vascular remodeling. However, the potential upregulation of STIM1 and Orai1 in asthmatic airways remains unknown. An important smooth muscle migratory agonist with major contributions to ASMC remodeling is the platelet-derived growth factor (PDGF). Nevertheless, the Ca2+ entry route activated by PDGF in ASMC remains elusive. Here, we show that STIM1 and Orai1 protein levels are greatly upregulated in ASMC isolated from ovalbumin-challenged asthmatic mice, compared to control mice. Furthermore, we show that PDGF activates a Ca2+ entry pathway in rat primary ASMC that is pharmacologically reminiscent of SOCE. Molecular knockdown of STIM1 and Orai1 proteins inhibited PDGF-activated Ca2+ entry in these cells. Whole-cell patch clamp recordings revealed the activation of Ca2+ release-activated Ca2+ (CRAC) current by PDGF in ASMC. These CRAC currents were abrogated upon either STIM1 or Orai1 knockdown. We show that either STIM1 or Orai1 knockdown significantly inhibited ASMC proliferation and chemotactic migration in response to PDGF. These results implicate STIM1 and Orai1 in PDGF-induced ASMC proliferation and migration and suggest the potential use of STIM1 and Orai1 as targets for ASMC remodeling during asthma.  相似文献   

11.
Store-operated Ca2+ entry (SOCE) is activated in response to depletion of intracellular Ca2+ from the endoplasmic reticulum (ER). A variety of agonists stimulate SOCE via IP3-dependent Ca2+ depletion. SOCE is also activated by thapsigargin, an inhibitor of Ca2+ reuptake into the ER that induces a net Ca2+ loss from the ER by unmasking a Ca2+ “leak” pathway. The molecular identity of this Ca2+ leak channel and the physiological conditions under which such agonist-independent Ca2+ depletion might occur remain poorly characterized. In this study, we report that inhibition of the initiation step of protein synthesis (with pactamycin) resulted in detectable Ca2+ depletion in ER and activation of SOCE. This was completely prevented if the ribosome–nascent chain complexes were first stabilized with an irreversible inhibitor of translational elongation (emetine), suggesting that ER Ca2+ depletion had occurred through open translocons at the ER. Notably, emetine pretreatment also attenuated thapsigargin-mediated Ca2+ release and SOCE. Furthermore, both pactamycin and thapsigargin stimulated translocation of STIM1, a protein required for activation of SOCE, to the subplasma membrane region and activated the SOCE-associated current, I SOC. In aggregate, these data reveal an agonist-independent mechanism for internal Ca2+ store depletion and activation of SOCE. We suggest that the functional coupling between SOCE and protein synthesis is likely to be critical for maintaining [Ca2+]ER within a range that is required to prevent ER stress during changes in cellular translational activity.  相似文献   

12.
Changes in [Ca2+]i are a central step in platelet activation. In nonexcitable cells, receptor-mediated depletion of intracellular Ca2+ stores triggers Ca2+ entry through store-operated calcium (SOC) channels. Stromal interaction molecule 1 (STIM1) has been identified as an endoplasmic reticulum (ER)-resident Ca2+ sensor that regulates store-operated calcium entry (SOCE), but the identity of the SOC channel in platelets has been controversially debated. Some investigators proposed transient receptor potential (TRP) C1 to fulfil this function based on the observation that antibodies against the channel impaired SOCE in platelets. However, others could not detect TRPC1 in the plasma membrane of platelets and raised doubts about the specificity of the inhibiting anti-TRPC1 antibodies. To address the role of TRPC1 in SOCE in platelets, we analyzed mice lacking TRPC1. Platelets from these mice display fully intact SOCE and also otherwise unaltered calcium homeostasis compared to wild-type. Furthermore, platelet function in vitro and in vivo is not altered in the absence of TRPC1. Finally, studies on human platelets revealed that the presumably inhibitory anti-TRPC1 antibodies have no specific effect on SOCE and fail to bind to the protein. Together, these results provide evidence that SOCE in platelets is mediated by channels other than TRPC1. David Varga-Szabo and Kalwant S. Authi contributed equally to this article.  相似文献   

13.
Stromal interaction molecule 1 (STIM1)‐dependent store operated calcium‐entry (SOCE) through Orai1‐mediated calcium (Ca2+) influx is considered a major pathway of Ca2+ signaling, serving T‐cell, mast cell, and platelet responses. Here, we show that Orai1 is critical for neutrophil function. Orai1‐deficient neutrophils present defects in fMLP and complement C5a‐induced Ca2+ influx and migration, although they respond normally to another chemoattractant, CXCL2. Up until now, no specific contribution of Orai1 independent from STIM1 or SOCE has been recognized in immune cells. Here, we observe that Orai1‐deficient neutrophils exhibit normal STIM1‐dependent SOCE and STIM1‐deficient neutrophils respond to fMLP and C5a efficiently. Despite substantial cytokine production, Orai1?/? chimeric mice show impaired neutrophil recruitment in LPS‐induced peritonitis. Moreover, Orai1 deficiency results in profoundly defective C5a‐triggered neutrophil lung recruitment in hypersensitivity pneumonitis. Comparative evaluation of inflammation in Stim1?/? chimeras reveals a distinct pathogenic contribution of STIM1, including its involvement in IgG‐induced C5a production. Our data establish Orai1 as key signal mediator of C5aR activation, contributing to inflammation by a STIM1‐independent pathway of Ca2+‐influx in neutrophils.  相似文献   

14.
Depletion of the endoplasmic reticulum (ER) calcium store triggers translocation of stromal interacting molecule one (STIM1) to the sub-plasmalemmal region and formation of puncta—structures in which STIM1 interacts and activates calcium channels. ATP depletion induced the formation of STIM1 puncta in PANC1, RAMA37, and HeLa cells. The sequence of events triggered by inhibition of ATP production included a rapid decline of ATP, depletion of phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) and a slow calcium leak from the ER followed by formation of STIM1 puncta. STIM1 puncta induced by ATP depletion were co-localized with clusters of ORAI1 channels. STIM1–ORAI1 clusters that developed as a result of ATP depletion were very poor mediators of Ca2+ influx. Re-translocation of STIM1 from puncta back to the ER was observed during total ATP depletion. We can therefore conclude that STIM1 translocation and re-translocation as well as formation of STIM1–ORAI1 clusters occur in an ATP-independent fashion and under conditions of PI(4,5)P2 depletion. Michael Chvanov and Ciara M. Walsh are considered as equal first authors.  相似文献   

15.
Presenilin-1 is required for γ-secretase activity, which participates in Notch receptor processing, the pathogenesis of Alzheimer's disease and the modulation of Ca2+ signaling. We tested the hypothesis that γ-secretase proteolytic activity modulates store-operated Ca2+ entry (SOCE) in rat dorsal root ganglion (DRG) neurons. Depletion of intracellular Ca2+ stores by blocking the endoplasmic reticulum (ER) Ca2+ pump with cyclopiazonic acid (CPA) evoked a transient increase in [Ca2+]i but no sustained Ca2+ influx. However, in cells expressing a dominant negative presenilin-1 mutant (PS1-D257A), γ-secretase activity was inhibited and treatment with CPA evoked sustained Ca2+ influx. Similarly, pharmacologic inhibition of γ-secretase with DAPT for 48 h enhanced SOCE. SKF96365, an inhibitor of store-operated channels, blocked SOCE in cells expressing PS1-D257A. Thus, γ-secretase proteolytic activity regulates a SOCE pathway in sensory neurons.  相似文献   

16.
The initial bronchoconstrictor response of the asthmatic airway depends on airway smooth muscle (ASM) contraction. Intracellular calcium is a key signaling molecule, mediating a number of responses, including proliferation, gene expression, and contraction of ASM. Ca(2+) influx through receptor-operated calcium (ROC) or store-operated calcium (SOC) channels is believed to mediate longer term signals. The mechanisms of SOC activation in ASM remain to be elucidated. Recent literature has identified the STIM and ORAI proteins as key signaling players in the activation of the SOC subtype; calcium release-activated channel current (I(CRAC)) in a number of inflammatory cell types. However, the role for these proteins in activation of SOC in smooth muscle is unclear. We have previously demonstrated a role for STIM1 in SOC channel activation in human ASM. The aim of this study was to investigate the expression and define the potential roles of the ORAI proteins in SOC-associated Ca(2+) influx in human ASM cells. Here we show that knockdown of ORAI1 by siRNA resulted in reduced thapsigargin- or cyclopiazonic acid (CPA)-induced Ca(2+) influx, without affecting Ca(2+) release from stores or basal levels. CPA-induced inward currents were also reduced in the ORAI1 knockdown cells. We propose that ORAI1 together with STIM1 are important contributors to SOC entry in ASM cells. These data extend the major tissue types in which these proteins appear to be major determinants of SOC influx, and suggest that modulation of these pathways may prove useful in the treatment of bronchoconstriction.  相似文献   

17.
Stromal interaction molecules (STIM1 and STIM2) are critical components of store-operated calcium entry. Sensing depletion of endoplasmic reticulum (ER) Ca2+ stores, STIM couples with plasma membrane Orai channels, resulting in the influx of Ca2+ across the PM into the cytosol. Although best recognized for their primary role as ER Ca2+ sensors, increasing evidence suggests that STIM proteins have a broader variety of sensory capabilities than first envisaged, reacting to cell stressors such as oxidative stress, temperature, and hypoxia. Further, the array of partners for STIM proteins is now understood to range far beyond the Orai channel family. Here we discuss the implications of STIM’s expanding role, both as a stress sensor and a general modulator of multiple physiological processes in the cell.  相似文献   

18.
Calcium handling is critical for the oocyte function, since the first steps of fertilization are dependent on the appropriate Ca(2+) mobilization to originate transient spikes of the cytosolic Ca(2+) concentration. It is well known that the Ca(2+) influx from the extracellular milieu is required to maintain this signaling in mammalian oocytes. However, the regulation of the Ca(2+) channels involved in this process is still unknown in oocytes. STIM1, a key regulator of store-operated Ca(2+) entry (SOCE), relocates in the mouse oocyte shortly after sperm stimulation, suggesting that SOCE is involved in the maintenance of cytosolic Ca(2+)-spiking in the fertilized oocyte. Here, we show that there is an up-regulation of the expression of STIM1 at the germinal vesicle breakdown stage, and this expression remains steady during following maturation stages. We found that oocytes express ORAI1, a store-operated Ca(2+) channel, and that ORAI1 expression level was stable during oocyte maturation. Immature oocytes showed no Ca(2+) entry and no increase in STIM1-ORAI1 colocalization in response to the store depletion induced by thapsigargin. On the contrary, in mature oocytes, STIM1-ORAI1 colocalization is enhanced 3-fold by depletion of Ca(2+) stores, enabling the activation of store-operated calcium channels and therefore Ca(2+) entry. Finally, the correlation between SOCE activation during the maturation of oocytes and STIM1-ORAI1 colocalization strongly suggests that ORAI1 is involved in the Ca(2+) entry pathway in the mature oocyte. SOCE up-regulation in the final stage of maturation is further evidence of a major role for SOCE in fully mature oocytes, and therefore in Ca(2+) signaling at fertilization.  相似文献   

19.
Stormorken syndrome is a rare autosomal‐dominant disease with mild bleeding tendency, thrombocytopathy, thrombocytopenia, mild anemia, asplenia, tubular aggregate myopathy, miosis, headache, and ichthyosis. A heterozygous missense mutation in STIM1 exon 7 (c.910C>T; p.Arg304Trp) (NM_003156.3) was found to segregate with the disease in six Stormorken syndrome patients in four families. Upon sensing Ca2+ depletion in the endoplasmic reticulum lumen, STIM1 undergoes a conformational change enabling it to interact with and open ORAI1, a Ca2+ release‐activated Ca2+ channel located in the plasma membrane. The STIM1 mutation found in Stormorken syndrome patients is located in the coiled‐coil 1 domain, which might play a role in keeping STIM1 inactive. In agreement with a possible gain‐of‐function mutation in STIM1, blood platelets from patients were in a preactivated state with high exposure of aminophospholipids on the outer surface of the plasma membrane. Resting Ca2+ levels were elevated in platelets from the patients compared with controls, and store‐operated Ca2+ entry was markedly attenuated, further supporting constitutive activity of STIM1 and ORAI1. Thus, our data are compatible with a near‐maximal activation of STIM1 in Stormorken syndrome patients. We conclude that the heterozygous mutation c.910C>T causes the complex phenotype that defines this syndrome.  相似文献   

20.
Cis-diamminedichloroplatinum (II) (cisplatin) is one of the most active antitumor agents used in human chemotherapy of non-small cell lung cancer. Cisplatin forms crosslinked DNA adducts and its cytotoxicity has been shown to be mediated by propagation of DNA damage recognition signals to downstream pathways prompting apoptosis. The steps involved in the process include changes in Ca2+ signaling with dysregulated tumor cell turn-over. Stromal interaction molecules 1 (STIM1), as one of the most potent tumor suppressor genes, are identified as the endoplasmic-reticulum (ER) Ca2+ sensor controlling store-operated Ca2+ entry (SOCE) in non-excitable cells, which is main pathway to extracellular Ca2+ influx. Its role in STIM1 cisplatin-induced apoptosis of non-small cell lung cancer was the focus of study with focus on SOCE inhibitors 2-APB- and SKF96365-cisplatin-induced apoptosis in the non-small cell lung cancer (NSCLC) cell lines A549 and H460. In this experimental model, cisplatin-induced apoptosis and decreased concentration of intracellular Ca2+ was demonstrated. The expression of STIM1 was significantly higher in carcinoma tissue than in the adjacent non-neoplastic lung tissue. These findings support the conclusion that STIM1 may play an important role in the development of NSCLC which makes drugs that repress the expression of STIM1 to be a potential target for lung cancer therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号