首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Odorant specificity to l-alpha-amino acids was determined electrophysiologically for 93 single catfish olfactory receptor neurons (ORNs) selected for their narrow excitatory molecular response range (EMRR) to only one type of amino acid (i.e., Group I units). These units were excited by either a basic amino acid, a neutral amino acid with a long side chain, or a neutral amino acid with a short side chain when tested at 10(-7) to 10(-5) M. Stimulus-induced inhibition, likely for contrast enhancement, was primarily observed in response to the types of amino acid stimuli different from that which activated a specific ORN. The high specificity of single Group I ORNs to type of amino acid was also previously observed for single Group I neurons in both the olfactory bulb and forebrain of the same species. These results indicate that for Group I neurons olfactory information concerning specific types of amino acids is processed from receptor neurons through mitral cells of the olfactory bulb to higher forebrain neurons without significant alteration in unit odorant specificity.  相似文献   

2.
3.
A paucity of information exists concerning the processing of odorant information by single neurons in any vertebrate above the level of the olfactory bulb (OB). In this report, odorant specificity to four types of L-alpha-amino acids (neutral with long side-chains, neutral with short side-chains, basic and acidic), known biologically relevant odorants for teleosts, was determined for 217 spontaneously active forebrain (FB) neurons in the channel catfish. Group I FB units were identified that were excited by only one of four types of amino acids; no Group I unit was encountered that was excited by an acidic amino acid. The Group I FB units exhibited similar preferences as described previously for OB neurons, suggesting that no major modifications of olfactory information for at least some of these units occurred between the OB and FB. Evidence, however, for the convergence of odor information between the OB and FB was suggested by Group II FB units that exhibited a broader excitatory molecular receptive range (EMRR) than those of previously recorded types of OB units or the Group I FB units. Group II FB units were excited by both neutral and basic amino acids and a few also by acidic amino acids, EMRRs not observed previously in OB units. Stimulus-induced inhibition, likely for contrast enhancement, was also often observed for the many of the FB units encountered. The observed EMRRs of the FB units presently identified and those of the OB units previously studied are consistent with the ability of catfish to behaviorally discriminate these compounds.  相似文献   

4.
Odorant specificity to l-alpha-amino acids was determined for 245 olfactory bulb (OB) neurons recorded from 121 channel catfish. The initial tests included 4 amino acids representing acidic [monosodium glutamate (Glu)], basic [arginine (Arg)], and neutral [possessing short: alanine (Ala) and long: methionine (Met) side chains] amino acids that were previously indicated to bind to independent olfactory receptor sites. Ninety-one (37%) units (Group I) tested at 1, 10, and 100 microM showed high selectivity and were excited by only one of the 4 amino acids. Odorant specificity for the vast majority of Group I units did not change over the 3 s of response time analyzed. A total of 154 OB units (63%) (Group II) were excited by a second amino acid, but only at >/=10x odorant concentration. An additional 69 Group I units were tested with related amino acids and derivatives from 10(-9) to 10(-5) M to determine their excitatory odorant thresholds and selectivities. Two groups of units originally selective for Met were evident: those most sensitive to neutral amino acids having branched and linear side chains, respectively. OB units originally selective for Ala responded at low concentration to other similar amino acids. Units originally selective for Arg were excited at low concentration by amino acids possessing in their side chains at least 3 methylene groups and a terminal amide or guanidinium group. The specificities of the OB units determined electrophysiologically are sufficient to account for many of the previous results of behavioral discrimination of amino acids in this and related species.  相似文献   

5.
6.
Citrate, a normal constituent of cellular metabolism, in a binary mixture with an amino acid enhanced asynchronous olfactory receptor responses in the channel catfish, Ictalurus punctatus. In addition, high concentrations of either citrate (> or =3 mM) alone or an amino acid (> or =0.1 mM) in a binary mixture with citrate (> or =1 mM) triggered synchronized voltage oscillations of olfactory receptor neurons (ORNs) known as "peripheral waves" (PWs). Binary mixtures containing lower concentrations of an amino acid also triggered PW activity if the concentration of citrate in the mixture was increased. Both the enhancement of asynchronous activity and the generation of PW activity were the result of citrate chelating calcium, which lowers the surface potential of ORNs making them hyperexcitable. These effects of citrate are replicated by EGTA. Inactivation of the chelating ability of citrate and EGTA with 1 mM calcium chloride, barium chloride, or strontium chloride abolished both the enhancement of asynchronous olfactory responses and PW activity, while not affecting olfactory receptor responses to the amino acids alone.  相似文献   

7.
We investigated the neural processing of binary gustatory mixtures of amino acids by the facial taste system of the channel catfish, Ictalurus punctatus. In vivo electrophysiological recordings indicated that the magnitude of both integrated and single-unit facial taste responses to binary mixtures of amino acids was greatest if the components bound to independent receptor sites. Facial taste responses were obtained from 32 multiunit and 55 single taste fiber preparations to binary mixtures of amino acids whose components bind to independent taste receptor sites (group I) or to the same or highly cross-reactive taste receptor sites (group II). All component stimuli were adjusted in concentration to provide approximately equal response magnitude as determined by either the height of the integrated multiunit taste response or by the number of action potentials generated/3 s of response time/single taste fiber. The mixture discrimination index (MDI), defined as the response to the mixture divided by the average of the responses to the component stimuli, was calculated for each test of a binary mixture. MDIs of group I binary mixtures for both the integrated multiunit and single fiber data were significantly greater than those for either the control or group II binary mixtures. In a subset of multiunit recordings, the MDIs of a group I binary mixture across three log units of stimulus concentration were similar and significantly greater than those of a group II binary mixture. Analysis of the single fiber data also indicated that the MDIs of group I binary mixtures were significantly larger than those of group II binary mixtures for both alanine-best and arginine-best taste fibers; however, the MDIs of group I binary mixtures calculated from recordings from arginine-best taste fibers were significantly greater than those recorded from alanine-best taste fibers.  相似文献   

8.
9.
10.
3-Olfactory receptor neurons begin to differentiate from stem cells on day E10 of embryonic life in the rat. By day E16, the receptor epithelium is well populated. On this day single neuron action potentials could be recorded with some ease and the electro-olfactogram was well developed. The receptor neurons were functional in that they responded to the vapors of odorous substances. However, they were not selective. Each cell responded to nearly all of the substances in the stimulus set. The first synaptic connections between receptors and mitral cells are established on day E18. The olfactory marker protein is reported to appear first in the receptors on the same day. By day E21, single unit responses changed dramatically. The cells became selective, responding to about half of the substances in our set. The electro-olfactogram reached its limiting amplitude well before this time.  相似文献   

11.
We have systematically studied the physiological responses elicited by amino acids from the principal taste organ of the Drosophila head. Although the detection and coding of sugars and bitter compounds have been examined extensively in this organism, little attention has been paid to the physiology of amino acid taste. We find that one class of sensilla, the S sensilla, yield the strongest responses to amino acids, although these responses were much weaker than the most robust responses to sugar or bitter compounds. S sensilla are heterogeneous in their amino acid responses and amino acids differ in the responses they elicit from individual sensilla. Tryptophan elicited relatively strong responses from S sensilla and these responses were eliminated when bitter-sensing neurons were ablated. Although tryptophan yielded little if any response in a behavioral paradigm, phenylalanine elicited a relatively strong response in the same paradigm and had a different physiological profile, supporting the notion that different amino acids are differentially encoded by the repertoire of taste neurons.  相似文献   

12.
Neuronal-class diversification is central during neurogenesis. This requirement is exemplified in the olfactory system, which utilizes a large array of olfactory receptor neuron (ORN) classes. We discovered an epigenetic mechanism in which neuron diversity is maximized via locus-specific chromatin modifications that generate context-dependent responses from a single, generally used intracellular signal. Each ORN in Drosophila acquires one of three basic identities defined by the compound outcome of three iterated Notch signaling events during neurogenesis. Hamlet, the Drosophila Evi1 and Prdm16 proto-oncogene homolog, modifies cellular responses to these iteratively used Notch signals in a context-dependent manner, and controls odorant receptor gene choice and ORN axon targeting specificity. In nascent ORNs, Hamlet erases the Notch state inherited from the parental cell, enabling a modified response in a subsequent round of Notch signaling. Hamlet directs locus-specific modifications of histone methylation and histone density and controls accessibility of the DNA-binding protein Suppressor of Hairless at the Notch target promoter.  相似文献   

13.
Glycoprotein components of epidermal mucous cells in control (pH 6.8) and acid-stressed (pH 5.8, 4.8, 4.0) brown bullhead catfish were studied by histochemical and autoradiographic methods. Following exposure to acid, increased numbers of epidermal mucous cells were noted in all tissue sites studied, particularly dorsal and ventral skin. Mucous cells of control fish and acid-stressed (pH 5.8) fish contained a mixture of neutral and acidic mucosubstances, the latter including both sialomucins and sulfomucins, with sialomucins predominating. An apparent shift toward increased sulfomucin production was observed in skin from fish exposed to pH 4.8 and 4.0. In addition, autoradiographic studies using 35S showed increased labeling of mucous cells in acid-exposed (pH 4.0) epidermis, offering further support for a shift toward sulfomucin production in acid-stressed fish. Absence of appreciable sulfomucin production in younger fish (less than 1 year old) suggested that this shift may be partly age-dependent. The functional significance of increased sulfomucin production in acid-stressed epidermal mucous cells is uncertain but may be related to maintenance of ionic equilibrium.  相似文献   

14.
Glycoprotein components of epidermal mucous cells in control (pH 6.8) and acid-stressed (pH 5.8, 4.8, 4.0) brown bullhead catfish were studied by histochemical and autoradiographic methods. Following exposure to acid, increased numbers of epidermal mucous cells were noted in all tissue sites studied, particularry dorsal and ventral skin. Mucous cells of control fish and acid-stressed (pH 5.8) fish contained a mixture of neutral and acidic mucosubsf ances, the latter including both sialomucins and sulfomucins, with sialomucins predominating. An apparent shift toward increased sulfomucin production was observed in skin from fish exposed to pH 4.8 and 4.0. In addition, autoradiographic studies using 35S showed increased labeling of mucous cells in acid-exposed (pH 4.0) epidermis, offering further support for a shift toward sulfomucin production in acid-stressed fish. Absence of appreciable sulfomucin production in younger fish (<1 year old) suggested that this shift may be partly age-dependent. The functional significance of increased sulfomucin production in acid-stressed epidermal mucous cells is uncertain but may be related to maintenance of ionic equilibrium.  相似文献   

15.
Whether odorants are transduced by only one or more than one second messenger has been a long-standing question in olfactory research. In a previous study we started to address this question mainly by using calcium imaging in the olfactory bulb. Here, we present direct evidence for our earlier conclusions using the calcium imaging technique in the mucosa slice. The above question can now unambiguously be answered. We show that some olfactory receptor neurons (ORNs) respond to stimulation with amino acids with an increase of the intracellular calcium concentration [Ca2+]i. In order to see whether or not these responses were mediated by the cAMP transduction pathway we applied forskolin or the membrane-permeant cAMP analogue pCPT-cAMP to the olfactory epithelium. The ensemble of ORNs that was activated by amino acids markedly differed from the ensemble of neurons activated by forskolin or pCPT-cAMP. Less than 6 % of the responding ORNs showed a response to both amino acids and the pharmacological agents activating the cAMP transduction pathway. We conclude that ORNs of Xenopus laevis tadpoles have both cAMP-dependent and cAMP-independent olfactory transduction pathways and that most amino acids are transduced in a cAMP-independent way.  相似文献   

16.
Two assays, a conditioned feeding response and a conditioned cardiac reflex, were developed to place previous electrophysiological, biochemical and gradient detection data into an organismal sensitivity perspective. Both assays yielded consistent chemosensory detection thresholds for several amino acids. The resultant stimulus effectiveness hierarchy is in very good agreement with biochemical binding data and the threshold values are quite similar to those obtained electrophysiologically. Thresholds ranged from 1×10?9 M for the most effective stimuli (e.g., L-cysteine, L-arginine) to 1×10?7 M for the least effective stimulus (glycine). Unlike previous applications of the cardiac conditioning technique, the present study extensively describes the methodology and the various response characteristics and compares the resultant thresholds with those obtained using a behavioral assay. Results obtained using the two techniques were in excellent agreement. Contrary to previous findings, the cutaneous gustatory system was capable of mediating both types of conditioned response. The behavioral implications of high gustatory sensitivity are discussed.  相似文献   

17.
Summary Spontaneous action potentials recorded from 126 neurons in the olfactory bulb of Salmo gairdneri show a higher tendency towards bursting patterns of activity than those shown in previous reports about other fish. Granule cells and periglomerular cells are more likely to fire in bursts than mitral cells. Natural chemical stimulation of the olfactory mucosa with amino acid solutions produced a unique pattern of excitatory and inhibitory responses across all units. Chi-square values were calculated for stimulatory effectiveness between forty-five pairs of odours. L-serine and L-alanine consistently showed a high degree of similarity with several other odours. The converse was true for GABA and L-histidine, although this pair had a high chi-square value when mutually compared. Enantiomeric pairs of amino acids were often found to have opposite stimulatory effects on bulbar units. These results are discussed in relation to the possible properties and configurations of odorant receptor sites for amino acids in the fish olfactory mucosa.  相似文献   

18.
The glossopharyngeal (IX) taste system of the largemouth bass, Micropterus salmoides, is highly selective to amino acids and is poorly responsive to trisodium citrate; however, IX taste responses to specific concentrations of L- and D-arginine and L-lysine but not L-proline were enhanced by citrate but not sodium ions. Binary mixtures of L-arginine (3 x 10(-4)M and 10(-3)M) or D-arginine (10(-3)M) + trisodium citrate (10(-3)M; pH 7-9) resulted in enhanced taste activity, whereas binary mixtures of higher concentrations (10(-2)M and 10(-1)M) of L- or D-arginine + 10(-3)M trisodium citrate were not significantly different from the response to the amino acid alone. Under continuous adaptation to 10(-3)M citrate, taste responses to L-arginine were also enhanced at the identical concentrations previously indicated, but responses to 10(-2)M and 10(-1)M L-arginine were significantly suppressed. Under continuous adaptation to 10(-2)M L-arginine, taste responses to 10(-2)M, 10(-1)M, and 10(0) M citrate were significantly enhanced. Cellular concentrations of both citrate and amino acids in prey of the carnivorous largemouth bass are sufficient for this taste-enhancing effect to occur naturally during consummatory feeding behavior. Citrate acting as a calcium chelator is presented as a possible mechanism of action for the enhancement effect.  相似文献   

19.
20.
1. Taste buds in catfish are found not only within the oropharyngeal cavity, as in mammals, but are also located along the external body surface of the animal from the barbels and lips to the caudal fin. Because these taste buds are innervated by the facial (cranial VII) nerve, the extraoral taste system of catfish is analogous to the mammalian taste system of the anterior two-thirds of the tongue, which contains taste buds innervated by the chorda tympani nerve, and of the soft palate and nasoincisor ducts, which contain taste buds innervated by the greater superficial petrosal nerve. 2. The majority of information concerning the specificity of individual taste fibers in vertebrates has been obtained primarily in mammals to stimuli representing the four basic human taste qualities (i.e., salty, sweet, sour, and bitter). In the present report, we examine the evidence for gustatory fiber types within the stimulus class of amino acids, compounds known to be especially relevant gustatory stimuli for catfish and other teleosts. 3. Action potentials were recorded from 60 individual facial taste neurons obtained from 28 sea catfish (Arius felis). Stimuli were 10(-4) M concentrations of L-alanine, D-alanine, glycine, L-proline, L-histidine, and L-arginine, compounds selected from an original stimulus list of 28 amino acids. Responses were quantified as the number of action potentials evoked at various time intervals from the first 0.5 s up to 10 s of response time. 4. The spontaneous activity of 42 fully characterized neurons was 0.8 +/- 2.1 SD spikes/3 s. The average rate of spike discharge increased 50-fold during stimulation with the most effective amino acid (42 +/- 31 spikes/3 s, mean +/- SD). The majority of the sampled neurons were not narrowly tuned to the amino acid stimulants tested (mean breadth of responsiveness, H = 0.60; range 0-0.95). 5. Hierarchical cluster analysis of the fully characterized neurons identified two large and two small groups of cells. The largest group (n = 22) of neurons was stimulated most by L-alanine and glycine; the other large group (n = 17) was stimulated most by D-alanine. For this latter group, the response to glycine was relatively low, whereas the responses to L-alanine varied from 0 to nearly 100% of the D-alanine response.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号