首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
To date, DNA-binding factors with a developmental pattern of expression have not been described in human erythroid cells to explain the switch from fetal (gamma-) to adult (delta- and beta-) globin gene expression. Here we describe a factor present in nuclear extracts from adult mouse and human hematopoietic cells that binds to an oligopyrimidine repeat approximately 960 base pairs upstream from the human delta-globin gene. The binding site for the factor is within an unusual 250-base-pair domain that is greater than 95% pyrimidines on one strand. This domain is preferentially sensitive to S1 nuclease in supercoiled plasmids, indicating that it can adopt an alternative non-B-DNA conformation. A number of S1-sensitive sites within the domain, including the factor-binding site, have sequence characteristics associated with the formation of a triple helix (H-DNA). The position of the binding site between the fetal and adult beta-globin-like genes, its potential for adopting an unusual secondary structure, and the restricted activity of the binding factor to adult hematopoietic tissues suggest possible roles in hematopoietic cell development and hemoglobin switching.  相似文献   

4.
5.
6.
7.
The [URE3] prion of Saccharomyces cerevisiae is a self-propagating inactive amyloid form of the Ure2 protein. Ure2p residues 1-65 constitute the prion domain, and the remaining C-terminal portion regulates nitrogen catabolism. We have examined the URE2 genes of wild-type isolates of S. cerevisiae and those of several pathogenic yeasts and a filamentous fungus. We find that the normal function of the S. cerevisiae Ure2p in nitrogen regulation is fully complemented by the Ure2p of Candida albicans, Candida glabrata, Candida kefyr, Candida maltosa, Saccharomyces bayanus, and Saccharomyces paradoxus, all of which have high homology in the C-terminal nitrogen regulation domain. However, there is considerable divergence of their N-terminal domains from that of Ure2p of S. cerevisiae. [URE3(Sc)] showed efficient transmission into S. cerevisiae ure2Delta cells if expressing a Ure2p of species within Saccharomyces. However, [URE3(Sc)] did not seed self-propagating inactivation of the Ure2p's from the other yeasts. When overexpressed as a fusion with green fluorescent protein, residues 5-47 of the S. cerevisiae prion domain are necessary for curing the [URE3] prion. Residues 11-39 are necessary for an inactivating interaction with the full-length Ure2p. A nearly identical region is highly conserved among many of the yeasts examined in this study, despite the wide divergence of sequences found in other parts of the N-terminal domains.  相似文献   

8.
9.
10.
11.
We have cloned a member of the nuclear receptor superfamily. The cDNA was isolated from a rat liver library and encodes a protein of 446 aa with a predicted mass of 50 kDa. This clone (OR-1) shows no striking homology to any known member of the steroid/thyroid hormone receptor superfamily. The most related receptor is the ecdysone receptor and the highest homologies represent < 10% in the amino-terminal domain, between 15-37% in the carboxyl-terminal domain and 50-62% in the DNA binding domain. The expression of OR-1 appears to be widespread in both fetal and adult rat tissues. Potential DNA response elements composed of a direct repeat of the hexameric motif AGGTCA spaced by 0-6 nt were tested in gel shift experiments. OR-1 was shown to interact with the 9-cis-retinoic acid receptor (retinoid X receptor, RXR) and the OR-1/RXR complex to bind to a direct repeat spaced by 4 nt (DR4). In transfection experiments, OR-1 appears to activate RXR-mediated function through the DR4. Therefore OR-1 might modulate 9-cis-retinoic acid signaling by interacting with RXR.  相似文献   

12.
13.
The U1 small nuclear ribonucleoprotein (snRNP) particle, a cofactor in mRNA splicing, contains nine proteins, six of which are also present in other U snRNPs and three of which are specific to the U1 snRNP. Here we have used a reconstituted human U1 snRNP together with snRNP monoclonal antibodies to define the RNA binding sites of one of the U1 snRNP-specific proteins. When Sm monoclonal antibody (specific for the B', B, and D proteins of U snRNPs) was bound to U1 snRNPs prior to micrococcal nuclease digestion, the same approximately equal to 24 nucleotide fragment of U1 RNA (corresponding to nucleotides 120-143 and termed the "Sm domain") was protected as when no antibody was bound prior to digestion. In contrast, when RNP monoclonal antibody, which reacts with the U1 snRNP-specific Mr 70,000 protein, was bound, additional U1 RNA regions were protected against nuclease digestion. This phenomenon, which we term "antibody-mediated nuclease protection," was exploited to map the position of the Mr 70,000 protein to stem-loop I of U1 RNA. However, there were also sites of Mr 70,000 protein interaction with more 3'-ward regions of U1 RNA, particularly the Sm domain. This indicates that in the three-dimensional structure of the U1 snRNP, the RNP and Sm antigens are in contact with each other. The proximity of the Mr 70,000 protein's RNA binding site (stem-loop I) to the functionally important 5' end of U1 RNA suggests that this protein may be involved in the recognition of, or stabilization of base pairing with, pre-mRNA 5' splice sites.  相似文献   

14.
An 84-amino acid segment of QRF-1 [glutamine (Q)-rich factor 1], a newly cloned, B-cell-derived DNA-binding protein, shows significant sequence homology with the DNA-binding domains of the hepatocyte nuclear factor 3/fork head family of proteins. Here we demonstrate that this 84-amino acid domain is necessary and sufficient for DNA binding. We also propose a secondary structural model for the domain. At the N-terminal portion of the model, a basic hook structure is followed by two amphipathic helices separated by a turn. Invariant amino acid residues within the two proposed helices form the hydrophobic cores. An aromatic kink and a third amphipathic helix comprise the center of the domain. At the C terminus, two variable-length loops flank a putative 7-amino acid helix followed by a short basic region.  相似文献   

15.
We present data which show that the Escherichia coli integration host factor (IHF) is an activator of phage f1 DNA replication. Phage f1 poorly infects bacterial strains lacking IHF because IHF is required for efficient expression of F-pili, the receptor for f1 phage. However, when F- strains are transfected with f1 DNA the phage replicates in IHF mutants (himA, himD, or himA himD) at a rate of only 3% of that in wild-type bacteria. A plasmid dependent on the f1 replicon fails to transform IHF mutants. By gel retardation analysis, we show that IHF specifically binds to the origin of replication. DNase I "footprinting" experiments demonstrate that IHF binds to multiple sites within the replication enhancer sequence, a cis-acting, A + T-rich sequence that potentiates f1 DNA replication. Moreover, the effect of IHF mutation on f1 growth is suppressed by initiator protein (f1 gene II) mutations that restore efficient replication from origins that lack a functional replication enhancer sequence. This genetic evidence supports the conclusion that the replication enhancer sequence is the site of action of IHF.  相似文献   

16.
17.
Vsx-1 is a paired-like:CVC homeobox gene whose expression is linked to bipolar cell differentiation during zebrafish retinogenesis. We used a yeast two-hybrid screen to identify proteins interacting with Vsx-1 and isolated Ubc9, an enzyme that conjugates the small ubiquitin-like modifier SUMO-1. Despite its interaction with Ubc9, we show that Vsx-1 is not a substrate for SUMO-1 in COS-7 cells or in vitro. When a yeast two-hybrid assay is used, deletion analysis of the interacting domain on Vsx-1 shows that Ubc9 binds to a nuclear localization signal (NLS) at the NH(2) terminus of the homeodomain. In SW13 cells, Vsx-1 localizes to the nucleus and is excluded from nucleoli. Deletion of the NLS disrupts this nuclear localization, resulting in a diffuse cytoplasmic distribution of Vsx-1. In SW13 AK1 cells that express low levels of endogenous Ubc9, Vsx-1 accumulates in a perinuclear ring and colocalizes with an endoplasmic reticulum marker. However, NLS-tagged STAT1 protein exhibits normal nuclear localization in both SW13 and SW13 AK1 cells, suggesting that nuclear import is not globally disrupted. Cotransfection of Vsx-1 with Ubc9 restores Vsx-1 nuclear localization in SW3 AK1 cells and demonstrates that Ubc9 is required for the nuclear localization of Vsx-1. Ubc9 continues to restore nuclear localization even after a C93S active site mutation has eliminated its SUMO-1-conjugating ability. These results suggest that Ubc9 mediates the nuclear localization of Vsx-1, and possibly other proteins, through a nonenzymatic mechanism that is independent of SUMO-1 conjugation.  相似文献   

18.
19.
20.
By performing DNase I footprint and band-shift analyses of a 170-base-pair region of the murine thymidine kinase promoter, we identified an inducible DNA binding activity that we named Yi. Yi binding activity was not detected in G0 and G1 extracts, but it was observed as cells crossed the G1/S boundary. Yi proteins bind specifically to a consensus sequence (CCCNCNNNCT) found at three distinct sites in this promoter region. We also observed a murine Sp1 binding activity that was constitutive throughout the cell cycle. We propose that the G1/S-specific Yi binding is important for murine thymidine kinase gene regulation and perhaps also for initiation of DNA synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号