首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Background

Pancreas preservation by two-layer method (TLM) was recently established for clinical islet transplantation. The extensive use of TLM would require enormous efforts to solve logistical and technical problems. Omitting University of Wisconsin solution (UW) as second layer would facilitate the regular application of oxygenated perfluorocarbon; (PFC). To clarify whether long-term pancreas preservation is feasible by this simplified procedure, pancreases from retired breeder pigs were subjected to 7-hour preservation utilizing PFC alone in a one-layer method (OLM, n = 8) or in combination with UW (TLM, n = 10).

Methods

Resected pancreata were intraductally flushed with cold UW. Subsequently, pancreata were promptly processed (n = 6) as previously described or stored by TLM or OLM.

Results

Compared to unstored (429200 ± 86700 IEQ) and OLM-stored pancreases (338600 ± 42100 IEQ), (P = ns vs unstored) postpurification islet yield decreased after TLM storage (238000 ± 26600 IEQ, P < .05). No significant differences were found regarding purity (>90%), adenosine triphosphate (ATP) content, and viability as determined by formazan production and trypan-blue exclusion (>95%). Glucose stimulation index of freshly isolated islets (2.5 ± 0.4) was significantly decreased after TLM storage (1.8 ± 0.2, P < .05) but not after OLM storage (2.3 ± 0.6). Islet transplantation in diabetic nude mice demonstrated sustained graft function in all experimental groups.

Conclusions

This study demonstrates that viable pig islets can be successfully isolated after prolonged ischemia utilizing PFC alone for oxygenation of cold-stored pig pancreases. The easy handling of OLM could facilitate the regular application of PFC as pancreas preservation solution.  相似文献   

2.
BACKGROUND: The introduction of the two-layer method (TLM) for long-term human pancreas preservation revealed the enormous potential of TLM to improve graft function of isolated islets. It is still unclear whether pig islets can be successfully isolated from pancreases after prolonged cold ischemia. To clarify this question, pig pancreases were subjected to 7-hour preservation by University of Wisconsin solution (UWS) storage or TLM. Another aim was to verify whether TLM can be synergistically combined with intraductal collagenase injection before cold storage. METHODS: After intraductal flush with UWS, organs were distended with 4.4 PZ-U/g of UWS-dissolved collagenase NB-8 and neutral protease adjusted to respectively 1.1, 0.2, 0.5, or 0.8 DMC-U/g for pancreases freshly procured (n=6) or distended with enzymes before (TLM preloaded, n=7) or after cold storage (UWS storage, n=4; TLM postloaded, n=10). RESULTS: Purified islet yield decreased from 429,200+/-86,700 islet equivalents (IEQ) in unstored pancreases to respectively 37,670+/-19620, 210,400+/-22900 and 238,000+/-26600 IEQ in UWS-stored (P<0.01), TLM-preloaded, or postloaded organs (P<0.05). Purity (>90%), viability (>95%), and insulin content were not different between groups. Islets from UWS-stored pancreases fragmented extensively, preventing further assessment of in vivo function. Compared with other experimental groups, islets from TLM-preloaded organs were characterized by enhanced basal and stimulated insulin release. Sustained normoglycemia was observed in diabetic nude mice transplanted with islets from TLM-postloaded or unstored pancreases in contrast with transient function in TLM-preloaded islets. CONCLUSIONS: This study demonstrates that significant amounts of intact pig islets can be isolated after prolonged pancreas preservation by TLM. Enzyme administration before TLM preservation decreases islet graft function.  相似文献   

3.
4.
BACKGROUND: We sought to determine whether the two-layer method (TLM) offers advantages over UW storage solution for locally procured pancreata with cold ischemia time of <8 hours for successful islet isolation. METHODS: From October 2003 through February 2005, 22 human pancreata were procured locally from cadaveric donors and preserved using UW solution (n = 11) or TLM (n = 11). RESULTS: Donor characteristics were similar in the two groups, with no statistical difference. Cold ischemia time was 4.5 +/- 0.6 (2.5 to 8) hours in the UW and 5.1 +/- 0.5 (3 to 8) hours in TLM group (P > .05). Organs preserved with TLM were exposed to PFC for 4 +/- 0.5 (2 to 7.5) hours. After TLM preservation, 8 of 11 (72%) pancreata yielded >300,000 IEQ pancreatic islets, which met all criteria for clinical transplantation; after UW cold storage, only 3 of 11 isolations were equally successful (27%) (P < .05). Mean IEQ was higher in the TLM than in the UW group: 349,000 +/- 37,000 vs 277,800 +/- 34,000; IEQ/g was also higher at 5100 +/- 760 vs 3000 +/- 570, respectively (P < .05). Islet quality, characterized by purity, viability, and insulin SI, did not differ statistically in the two groups: 67 +/- 4 vs 74 +/- 4%, 87 +/- 2 vs 83 +/- 4%, and 4 +/- 0.7 vs 4.8 +/- 1, respectively (P > .05). CONCLUSIONS: The Two Layer Method for locally procured human pancreata with cold ischemia time lower than 8 hours offers significant advantage over UW cold storage increasing the pancreatic islet isolation yield and the isolation success rate.  相似文献   

5.
6.
7.
8.
9.
BACKGROUND: Human pancreas preservation for islet transplantation holds additional challenges and considerations compared with whole pancreas transplantation. The purpose of this study was to clarify the limitations of the University of Wisconsin (UW) solution and the potentials of the two-layer method (TLM) for pancreas preservation before human islet isolation. METHODS: We retrospectively evaluated human islet isolation records between January 2001 and February 2003. One hundred forty-two human pancreata were procured from cadaveric donors and preserved by means of the UW solution (n=112) or TLM (n=30). Human islet isolations were performed using a standard protocol and assessed by islet recovery and in vitro function of islets. RESULTS: Eight to ten hours of cold ischemia in the UW solution is a critical point for successful islet isolations. It is difficult to recover a sufficient number of viable islets for transplantation from human pancreata with more than 10 hours of cold storage in the UW solution. The overall islet recovery in the TLM group was significantly higher than in the UW group. With 10 to 16 hours of cold storage, the success rates of islet isolations remained at 62% in the TLM group but decreased to 22% in the UW group. Transplanted islets in the TLM group worked well in the recipients. CONCLUSIONS: There are time limitations for using the UW solution for pancreas preservation before human islet isolation. The TLM is a potential method to prolong the optimal cold storage time for successful islet isolations.  相似文献   

10.
BACKGROUND: Several solutions are used to preserve the pancreas prior to islet isolation. This study sought to assess whether the type of solution had an impact on the isolation outcome. METHODS: We reviewed data from 125 islet isolation procedures performed from January 2002 to January 2005. Pancreata were preserved in University of Wisconsin (UW) (n = 101), Celsior (CS) (n = 19), or IGL-1 (n = 5) solutions. Islet isolation results and transplantation rates were compared between groups. RESULTS: UW, CS, and IGL-1 groups were similar according to donor's age, weight, and body mass index. Weight of undigested pancreas was 20 +/- 13.1, 21.4 +/- 15.7, and 17.4 +/- 8.7 g for UW, CS, and IGL-1, respectively (P > .2). Final total number of IEQ was 267,000 +/- 132,000, 277,000 +/- 155,000, and 311,000 +/- 163,000, respectively (P > .4). Success rate (defined as >250,000 IEQ) was 55.5%, 52.9%, and 60% for UW, Celsior, and IGL-1 (P > .9); the transplantation rate was 42.2% for UW, 36.8% for Celsior, and 80% for IGL-1 preservation (P > .2). CONCLUSIONS: In this preliminary study, UW, Celsior, and IGL-1 solutions demonstrated similar islet isolation results. The new IGL-1 solution appears promising.  相似文献   

11.
12.
Cold-storage preservation of the canine pancreas prior to islet isolation has previously been noted to reduce the intrasplenic islet autograft success rate; but the mechanism of this deleterious effect has not been determined. We undertook a study in both outbred dogs and Lewis (RT1-1) rats to determine the influence of cold-storage preservation interval, preservation solution, and flushing technique on islet yield and islet viability. The preservation solutions used were those that had proved most efficacious in preserving segmental canine pancreases--namely, the modifications of silica gel fractionated plasma (SGF-III and SGF-IV) and an hydroxyethylstarch/lactobionate solution (UW-1). In the first set of experiments, the traditional vascular flush was used; this was followed by storage at 4 degrees C. After brief periods of preservation (3 hr in the rat, 12 hr in the dog) there was a significant (P less than 0.006) reduction in islet yield. The reduced yields were similar with each solution tested, were made worse with increasing intervals of storage, and resulted in a significant reduction in autograft success rate. The second set of experiments examined the effect of using an intraductal flush prior to preservation, along with the effect of adding collagenase to the preservation fluid. Islet yields were maintained at control values in both animal models using preservation intervals of up to 24 hr. These islet yields produced auto- or isograft success rates similar to those obtained by transplanting freshly obtained tissue; verifying adequate islet viability. We recommend that a pre-storage ductal flush technique be used for cold-storage preservation of the pancreas prior to islet isolation and transplantation.  相似文献   

13.
14.
15.
Procurement of donor pancreata for islet isolation and transplantation is not yet widely practiced due to concerns about the impact of postmortem ischemia on functional islet yields. Perfusion/preservation technology may help to circumvent ischemic injury as applied in this study of porcine pancreata prior to islet isolation. Pancreata harvested from adult pigs were assigned to 1 of 3 preservation treatment groups: G1, fresh controls, processed immediately with minimum cold ischemia (<1 hour); G2, static cold storage, flushed with cold UW-Viaspan and stored at 2 degrees -4 degrees C for 24 hours; and G3, hypothermic machine perfusion (HMP) on a pulsatile LifePort machine Organ Recovery Systems, Inc., Des Plaines, Ill, United States with KPS1 solution at 4-7 degrees C and low pressure (10 mm Hg) for 24 hours. Islet isolation was then accomplished using conventional methods. Product release criteria were used to assess islet yield and function. Islet yield was markedly different between the treatment groups. There was a statistically significant increased yield in the HMP group over static cold storage in UW-Viaspan (P < .05). Functionally, the islets from each experimental group were equivalent and not significantly different from fresh controls (G1). Dithizone staining of islets showed consistently more uniform digestion of pancreata from G3 compared with G1 and G2, with greater separation of the tissue and fewer entrapped islets. HMP for 24 hours was well tolerated, leading to moderate edema but no loss of function of the harvested islets. The edema appeared to aid in enzymatic digestion, producing a greater yield and purity of islets compared with pancreata subjected to 24 hours of static cold storage.  相似文献   

16.
Pancreas preservation by cold storage using University of Wisconsin solution was the mainstay method used for pancreas transplantation during the past 2 decades. Other solutions, such as HTK, Celsior, and SCOT 15, could not demonstrate any advantage for short preservation periods. But the advent of clinical islet transplantation and the larger use of controlled non-heart-beating donors have prompted the transplantation community to develop methods for increasing pancreas graft quality while preventing ischemic reperfusion damages. Oxygenation by 1- or 2-layer methods during pancreas preservation, as well as the use of perfluorocarbons, might increase the islet yield. Based on the former methods, there is a renewed interest in machine perfusion and oxygenation in pancreas preservation for pancreas transplantation and islet preparation.  相似文献   

17.
18.
Since the successful demonstration of the Edmonton protocol, islet transplantation has advanced significantly on several fronts, including improved pancreas preservation systems. In this study, we evaluated two different types of organ preservation solutions for human islet isolation. Modified Celsior (Celsior solution with hydroxyethyl starch and nafamostat mesilate; HNC) solution and modified Kyoto (MK) solution were compared for pancreas preservation prior to islet isolation. Islet yield after purification was significantly higher in the MK group than in the HNC group (MK = 6186 ± 985 IE/g; HNC = 3091 ± 344 IE/g). The HNC group had a longer phase I period (digestion time), a higher volume of undigested tissue, and a higher percentage of embedded islets, suggesting that the solution may inhibit collagenase. However, there was no significant difference in ATP content in the pancreata or in the attainability of posttransplant normoglycemia in diabetic nude mice between the two groups, suggesting that the quality of islets was similar among the two groups. In conclusion, MK solution is better for pancreas preservation before islet isolation than HNC solution due to the higher percentage of islets that can be isolated from the donor pancreas. MK solution should be the solution of choice among the commercially available solutions for pancreatic islet isolation leading to transplantation.  相似文献   

19.
BACKGROUND: Current success of islet transplantation has led to donor shortage and the need for marginal donor utilization to alleviate this shortage. The goal of this study was to improve the efficacy of islet transplantation using nonheartbeating donors (NHBDs). METHODS: First, we used porcine pancreata for the implementation of several strategies and applied to human pancreata. These strategies included ductal injection with trypsin inhibitor for protection of pancreatic ducts, ET-Kyoto solution for pancreas preservation, and Iodixanol for islet purification. RESULTS: These strategies significantly improved both porcine and human islet isolation efficacy. Average 399,469+/-36,411 IE human islets were obtained from NHBDs (n=13). All islet preparations met transplantation criteria and 11 out of 13 cases (85%) were transplanted into six type 1 diabetic patients for the first time in Japan. All islets started to secrete insulin and all patients showed better blood glucose control without hypoglycemic loss of consciousness. The average HbA1c levels of the six recipients significantly improved from 7.5+/-0.4% at transplant to 5.1+/-0.2% currently (P<0.0003). The average insulin amounts of the six recipients significantly reduced from 49.2+/-3.3 units at transplant to 11+/-4.4 units (P<0.0005) and five out of six patients reduced to less than half dose. The first patient is now insulin free, the first such case in Japan. CONCLUSION: This demonstrates that our current protocol makes it feasible to use NHBDs for islet transplant into type 1 diabetic patients efficiently.  相似文献   

20.
Previous reports indicate that the two-layer method (TLM) of human pancreas preservation is superior to University of Wisconsin solution (UW) when pancreata are preserved for extended periods (i.e., >24 h) prior to islet isolation. In this study, the efficacy of using the TLM for preserving pancreata for short periods (i.e., <13 h) was evaluated using both nonhuman primate and human pancreata preserved with a TLM kit precharged with oxygen. An oxygen precharged TLM (static TLM) was established and compared with the original TLM with continuous oxygen supply. For the static TLM, the perfluorochemical was fully oxygenated and the oxygen supply removed prior to pancreas preservation. In the primate model, pancreata were preserved by the static TLM, the original TLM, and UW for 5 h prior to islet isolation. In the human model, pancreata were preserved with the static TLM or the original TLM or UW for 4-13 h. Both primate and human pancreata were processed by intraductal collagenase injection and digestion followed by continuous density gradient purification to isolate islets. Islets were assessed for islet yield, purity, viability, and in vitro functionality. In the primate model, islet yield, viability, and in vitro functionality were significantly improved by both the static TLM and the original TLM with similar results. Postculture islet yields were 23,877 +/- 3619 IE/g in the static TLM, 21,895 +/- 3742 IE/g in the original TLM, and 6773 +/- 735 IE/g in UW. In the human model, both the static TLM and the original TLM significantly increased islet yield compared with UW with postculture islet yields of 2659 +/- 549 IE/g in the static TLM, 2244 +/- 557 IE/g in the original TLM, and 1293 +/- 451 IE/g in UW. Nonhuman primate and human pancreata stored in the static TLM, immediately upon procurement, yield isolated islets of a substantially higher quantity than when pancreata are stored in UW. Thus, the use of the static TLM should replace the use of UW for storage of pancreata during transport prior to islet isolation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号