首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Armato SG  Altman MB  Wilkie J  Sone S  Li F  Doi K  Roy AS 《Medical physics》2003,30(6):1188-1197
We have evaluated the performance of an automated classifier applied to the task of differentiating malignant and benign lung nodules in low-dose helical computed tomography (CT) scans acquired as part of a lung cancer screening program. The nodules classified in this manner were initially identified by our automated lung nodule detection method, so that the output of automated lung nodule detection was used as input to automated lung nodule classification. This study begins to narrow the distinction between the "detection task" and the "classification task." Automated lung nodule detection is based on two- and three-dimensional analyses of the CT image data. Gray-level-thresholding techniques are used to identify initial lung nodule candidates, for which morphological and gray-level features are computed. A rule-based approach is applied to reduce the number of nodule candidates that correspond to non-nodules, and the features of remaining candidates are merged through linear discriminant analysis to obtain final detection results. Automated lung nodule classification merges the features of the lung nodule candidates identified by the detection algorithm that correspond to actual nodules through another linear discriminant classifier to distinguish between malignant and benign nodules. The automated classification method was applied to the computerized detection results obtained from a database of 393 low-dose thoracic CT scans containing 470 confirmed lung nodules (69 malignant and 401 benign nodules). Receiver operating characteristic (ROC) analysis was used to evaluate the ability of the classifier to differentiate between nodule candidates that correspond to malignant nodules and nodule candidates that correspond to benign lesions. The area under the ROC curve for this classification task attained a value of 0.79 during a leave-one-out evaluation.  相似文献   

2.
We have investigated the effect of computed tomography (CT) image reconstruction algorithm on the performance of our automated lung nodule detection method. Commercial CT scanners offer a choice of several algorithms for the reconstruction of projection data into transaxial images. Different algorithms produce images with substantially different properties that are apparent not only quantitatively, but also through visual assessment. During some clinical thoracic CT examinations, patient scans are reconstructed with multiple reconstruction algorithms. Thirty-eight such cases were collected to form two databases: one with patient projection data reconstructed with the "standard" reconstruction algorithm and the other with the same patient projection data reconstructed with the "lung" reconstruction algorithm. The automated nodule detection method was applied to both databases. This method is based on gray-level-thresholding techniques to segment the lung regions from each CT section to create a segmented lung volume. Further gray-level-thresholding techniques are applied within the segmented lung volume to identify a set of lung nodule candidates. Rule-based and linear discriminant classifiers are used to differentiate between lung nodule candidates that correspond to actual nodules and those that correspond to non-nodules. The automated method that was applied to both databases was exactly the same, except that the classifiers were calibrated separately for each database. For comparison, the classifier then was trained on one database and tested independently on the other database. When applied to the databases in this manner, the automated method demonstrated overall a similar level of performance, indicating an encouraging degree of robustness.  相似文献   

3.
Lung nodule detection in low-dose and thin-slice computed tomography   总被引:3,自引:0,他引:3  
A computer-aided detection (CAD) system for the identification of small pulmonary nodules in low-dose and thin-slice CT scans has been developed. The automated procedure for selecting the nodule candidates is mainly based on a filter enhancing spherical-shaped objects. A neural approach based on the classification of each single voxel of a nodule candidate has been purposely developed and implemented to reduce the amount of false-positive findings per scan. The CAD system has been trained to be sensitive to small internal and sub-pleural pulmonary nodules collected in a database of low-dose and thin-slice CT scans. The system performance has been evaluated on a data set of 39 CT containing 75 internal and 27 sub-pleural nodules. The FROC curve obtained on this data set shows high values of sensitivity to lung nodules (80-85% range) at an acceptable level of false positive findings per patient (10-13 FP/scan).  相似文献   

4.
Pu J  Zheng B  Leader JK  Wang XH  Gur D 《Medical physics》2008,35(8):3453-3461
The authors present a new computerized scheme to automatically detect lung nodules depicted on computed tomography (CT) images. The procedure is performed in the signed distance field of the CT images. To obtain an accurate signed distance field, CT images are first interpolated linearly along the axial direction to form an isotropic data set. Then a lung segmentation strategy is applied to smooth the lung border aiming to include as many juxtapleural nodules as possible while minimizing over segmentations of the lung regions. Potential nodule regions are then detected by locating local maximas of signed distances in each subvolume with values and the sizes larger than the smallest nodule of interest in the three-dimensional space. Finally, all detected candidates are scored by computing the similarity distance of their medial axis-like shapes obtained through a progressive clustering strategy combined with a marching cube algorithm from a sphere based shape. A free-response receiver operating characteristics curve is computed to assess the scheme performance. A performance test on 52 low-dose CT screening examinations that depict 184 verified lung nodules showed that during the initial stage the scheme achieved an asymptotic maximum sensitivity of 95.1% (175/184) with an average of 1200 suspicious voxels per CT examination. The nine missed nodules included two small solid nodules (with a diameter < or =3.1 mm) and seven nonsolid nodules. The final performance level after the similarity scoring stage was an absolute sensitivity level, namely, including the nine missed during the initial stage, of 81.5% (150/184) with 6.5 false-positive identifications per CT examination. This preliminary study demonstrates the feasibility of applying a simple and robust geometric model using the signed distance field to identify suspicious lung nodules. In the authors' data set the sensitivity of this scheme is not affected by nodule size. In addition to potentially being a stand alone approach, the signed distance field based method can be easily implemented as an initial filtering step in other computer-aided detection schemes.  相似文献   

5.
We are developing a computer-aided diagnosis (CAD) system to classify malignant and benign lung nodules found on CT scans. A fully automated system was designed to segment the nodule from its surrounding structured background in a local volume of interest (VOI) and to extract image features for classification. Image segmentation was performed with a three-dimensional (3D) active contour (AC) method. A data set of 96 lung nodules (44 malignant, 52 benign) from 58 patients was used in this study. The 3D AC model is based on two-dimensional AC with the addition of three new energy components to take advantage of 3D information: (1) 3D gradient, which guides the active contour to seek the object surface, (2) 3D curvature, which imposes a smoothness constraint in the z direction, and (3) mask energy, which penalizes contours that grow beyond the pleura or thoracic wall. The search for the best energy weights in the 3D AC model was guided by a simplex optimization method. Morphological and gray-level features were extracted from the segmented nodule. The rubber band straightening transform (RBST) was applied to the shell of voxels surrounding the nodule. Texture features based on run-length statistics were extracted from the RBST image. A linear discriminant analysis classifier with stepwise feature selection was designed using a second simplex optimization to select the most effective features. Leave-one-case-out resampling was used to train and test the CAD system. The system achieved a test area under the receiver operating characteristic curve (A(z)) of 0.83 +/- 0.04. Our preliminary results indicate that use of the 3D AC model and the 3D texture features surrounding the nodule is a promising approach to the segmentation and classification of lung nodules with CAD. The segmentation performance of the 3D AC model trained with our data set was evaluated with 23 nodules available in the Lung Image Database Consortium (LIDC). The lung nodule volumes segmented by the 3D AC model for best classification were generally larger than those outlined by the LIDC radiologists using visual judgment of nodule boundaries.  相似文献   

6.
Mullally W  Betke M  Wang J  Ko JP 《Medical physics》2004,31(4):839-848
Several segmentation methods to evaluate growth of small isolated pulmonary nodules on chest computed tomography (CT) are presented. The segmentation methods are based on adaptively thresholding attenuation levels and use measures of nodule shape. The segmentation methods were first tested on a realistic chest phantom to evaluate their performance with respect to specific nodule characteristics. The segmentation methods were also tested on sequential CT scans of patients. The methods' estimation of nodule growth were compared to the volume change calculated by a chest radiologist. The best method segmented nodules on average 43% smaller or larger than the actual nodule when errors were computed across all nodule variations on the phantom. Some methods achieved smaller errors when examined with respect to certain nodule properties. In particular, on the phantom individual methods segmented solid nodules to within 23% of their actual size and nodules with 60.7 mm3 volumes to within 14%. On the clinical data, none of the methods examined showed a statistically significant difference in growth estimation from the radiologist.  相似文献   

7.
针对肺结节检测的肺实质CT图像分割   总被引:1,自引:0,他引:1  
目的:针对CT图像上肺结节的自动检测,开发并评价对全肺螺旋CT扫描中的肺实质进行自动分割的一种综合方法。方法:首先利用全局阈值对CT图像进行二值化,然后消除由于支气管、细支气管等低密度影和由于结节、血管等高密度影以及由检查床造成的条状伪影等噪声,最后对包含胸膜连接结节的图像利用数学形态学运算和图像凸包运算进行完善形成肺实质掩膜。结果:利用该方法对从LIDC数据库中所有包含结节的505张CT扫描片(来自69个病例)进行肺实质分割,正确率为95.4%。其中,包含胸膜连接结节的139张CT扫描片的正确分割率为94.2%。结论:本文提出的方法较好地完成了肺实质分割任务,为利用CT图像进行计算机辅助肺结节的检测打下了基础。  相似文献   

8.
We present a number of approaches based on the radial gradient index (RGI) to achieve false-positive reduction in automated CT lung nodule detection. A database of 38 cases was used that contained a total of 82 lung nodules. For each CT section, a complementary image known as an "RGI map" was constructed to enhance regions of high circularity and thus improve the contrast between nodules and normal anatomy. Thresholds on three RGI parameters were varied to construct RGI filters that sensitively eliminated false-positive structures. In a consistency approach, RGI filtering eliminated 36% of the false-positive structures detected by the automated method without the loss of any true positives. Use of an RGI filter prior to a linear discriminant classifier yielded notable improvements in performance, with the false-positive rate at a sensitivity of 70% being reduced from 0.5 to 0.28 per section. Finally, the performance of the linear discriminant classifier was evaluated with RGI-based features. RGI-based features achieved a substantial improvement in overall performance, with a 94.8% reduction in the false-positive rate at a fixed sensitivity of 70%. These results demonstrate the potential role of RGI analysis in an automated lung nodule detection method.  相似文献   

9.
A completely automated system for the identification of pleural nodules in low-dose and thin-slice computed tomography (CT) of the lung has been developed. The directional-gradient concentration method has been applied to the pleura surface and combined with a morphological opening-based procedure to generate a list of nodule candidates. Each nodule candidate is characterized by 12 morphological and textural features, which are analyzed by a rule-based filter and a neural classifier. This detection system has been developed and validated on a dataset of 42 annotated CT scans. The k-fold cross validation has been used to evaluate the neural classifier performance. The system performance variability due to different ground truth agreement levels is discussed. In particular, the poor 44% sensitivity obtained on the ground truth with agreement level 1 (nodules annotated by only one radiologist) with six FP per scan grows up to the 72% if the underlying ground truth is changed to the agreement level 2 (nodules annotated by two radiologists).  相似文献   

10.
A computer-aided diagnosis (CAD) scheme is being developed to identify image regions considered suspicious for lung nodules in chest radiographs to assist radiologists in making correct diagnoses. Automated classifiers—an artificial neural network, discriminant analysis, and a rule-based scheme—are used to reduce the number of false-positive detections of the CAD scheme. The CAD scheme first detects nodule candidates from chest radiographs based on a difference image technique. Nine image features characterizing nodules are extracted automatically for each of the nodule candidates. The extracted image features are then used as input data to the classifiers for distinguishing actual nodules from the false-positive detections. The performances of the classifiers are evaluated by receiver-operating characteristic analysis. On the basis of the database of 30 normal and 30 abnormal chest images, the neural network achieves an AZ value (area under the receiver-operating-characteristic curve) of 0.79 in detecting lung nodules, as tested by the round-robin method. The neural network, after being trained with a training database, is able to eliminate more than 83% of the false-positive detections reported by the CAD scheme. Moreover, the combination of the trained neural network and a rule-based scheme eliminates 96% of the false-positive detections of the CAD scheme.  相似文献   

11.
We are developing a computer-aided diagnosis (CAD) system for lung nodule detection on thoracic helical computed tomography (CT) images. In the first stage of this CAD system, lung regions are identified by a k-means clustering technique. Each lung slice is classified as belonging to the upper, middle, or the lower part of the lung volume. Within each lung region, structures are segmented again using weighted k-means clustering. These structures may include true lung nodules and normal structures consisting mainly of blood vessels. Rule-based classifiers are designed to distinguish nodules and normal structures using 2D and 3D features. After rule-based classification, linear discriminant analysis (LDA) is used to further reduce the number of false positive (FP) objects. We performed a preliminary study using 1454 CT slices from 34 patients with 63 lung nodules. When only LDA classification was applied to the segmented objects, the sensitivity was 84% (53/63) with 5.48 (7961/1454) FP objects per slice. When rule-based classification was used before LDA, the free response receiver operating characteristic (FROC) curve improved over the entire sensitivity and specificity ranges of interest. In particular, the FP rate decreased to 1.74 (2530/1454) objects per slice at the same sensitivity. Thus, compared to FP reduction with LDA alone, the inclusion of rule-based classification lead to an improvement in detection accuracy for the CAD system. These preliminary results demonstrate the feasibility of our approach to lung nodule detection and FP reduction on CT images.  相似文献   

12.
We developed an advanced computer-aided diagnostic (CAD) scheme for the detection of various types of lung nodules on chest radiographs intended for implementation in clinical situations. We used 924 digitized chest images (992 noncalcified nodules) which had a 500 x 500 matrix size with a 1024 gray scale. The images were divided randomly into two sets which were used for training and testing of the computerized scheme. In this scheme, the lung field was first segmented by use of a ribcage detection technique, and then a large search area (448 x 448 matrix size) within the chest image was automatically determined by taking into account the locations of a midline and a top edge of the segmented ribcage. In order to detect lung nodule candidates based on a localized search method, we divided the entire search area into 7 x 7 regions of interest (ROIs: 64 x 64 matrix size). In the next step, each ROI was classified anatomically into apical, peripheral, hilar, and diaphragm/heart regions by use of its image features. Identification of lung nodule candidates and extraction of image features were applied for each localized region (128 x 128 matrix size), each having its central part (64 x 64 matrix size) located at a position corresponding to a ROI that was classified anatomically in the previous step. Initial candidates were identified by use of the nodule-enhanced image obtained with the average radial-gradient filtering technique, in which the filter size was varied adaptively depending on the location and the anatomical classification of the ROI. We extracted 57 image features from the original and nodule-enhanced images based on geometric, gray-level, background structure, and edge-gradient features. In addition, 14 image features were obtained from the corresponding locations in the contralateral subtraction image. A total of 71 image features were employed for three sequential artificial neural networks (ANNs) in order to reduce the number of false-positive candidates. All parameters for ANNs, i.e., the number of iterations, slope of sigmoid functions, learning rate, and threshold values for removing the false positives, were determined automatically by use of a bootstrap technique with training cases. We employed four different combinations of training and test image data sets which was selected randomly from the 924 cases. By use of our localized search method based on anatomical classification, the average sensitivity was increased to 92.5% with 59.3 false positives per image at the level of initial detection for four different sets of test cases, whereas our previous technique achieved an 82.8% of sensitivity with 56.8 false positives per image. The computer performance in the final step obtained from four different data sets indicated that the average sensitivity in detecting lung nodules was 70.1% with 5.0 false positives per image for testing cases and 70.4% sensitivity with 4.2 false positives per image for training cases. The advanced CAD scheme involving the localized search method with anatomical classification provided improved detection of pulmonary nodules on chest radiographs for 924 lung nodule cases.  相似文献   

13.
Considering that the traditional lung segmentation algorithms are not adaptive for the situations that most of the juxtapleural nodules, which are excluded as fat, and lung are not segmented perfectly. In this paper, several methods are comprehensively utilized including optimal iterative threshold, three-dimensional connectivity labeling, three-dimensional region growing for the initial segmentation of the lung parenchyma, based on improved chain code, and Bresenham algorithms to repair the lung parenchyma. The paper thus proposes a fully automatic method for lung parenchyma segmentation and repairing. Ninety-seven lung nodule thoracic computed tomography scans and 25 juxtapleural nodule scans are used to test the proposed method and compare with the most-cited rolling-ball method. Experimental results show that the algorithm can segment lung parenchyma region automatically and accurately. The sensitivity of juxtapleural nodule inclusion is 100 %, the segmentation accuracy of juxtapleural nodule regions is 98.6 %, segmentation accuracy of lung parenchyma is more than 95.2 %, and the average segmentation time is 0.67 s/frame. The algorithm can achieve good results for lung parenchyma segmentation and repairing in various cases that nodules/tumors adhere to lung wall.  相似文献   

14.
The purpose of this study is to investigate the effects of CT scanning and reconstruction parameters on automated segmentation and volumetric measurements of nodules in CT images. Phantom nodules of known sizes were used so that segmentation accuracy could be quantified in comparison to ground-truth volumes. Spherical nodules having 4.8, 9.5 and 16 mm diameters and 50 and 100 mg cc(-1) calcium contents were embedded in lung-tissue-simulating foam which was inserted in the thoracic cavity of a chest section phantom. CT scans of the phantom were acquired with a 16-slice scanner at various tube currents, pitches, fields-of-view and slice thicknesses. Scans were also taken using identical techniques either within the same day or five months apart for study of reproducibility. The phantom nodules were segmented with a three-dimensional active contour (3DAC) model that we previously developed for use on patient nodules. The percentage volume errors relative to the ground-truth volumes were estimated under the various imaging conditions. There was no statistically significant difference in volume error for repeated CT scans or scans taken with techniques where only pitch, field of view, or tube current (mA) were changed. However, the slice thickness significantly (p < 0.05) affected the volume error. Therefore, to evaluate nodule growth, consistent imaging conditions and high resolution should be used for acquisition of the serial CT scans, especially for smaller nodules. Understanding the effects of scanning and reconstruction parameters on volume measurements by 3DAC allows better interpretation of data and assessment of growth. Tracking nodule growth with computerized segmentation methods would reduce inter- and intraobserver variabilities.  相似文献   

15.
A computer-aided detection (CAD) system for the selection of lung nodules in computer tomography (CT) images is presented. The system is based on region growing (RG) algorithms and a new active contour model (ACM), implementing a local convex hull, able to draw the correct contour of the lung parenchyma and to include the pleural nodules. The CAD consists of three steps: (1) the lung parenchymal volume is segmented by means of a RG algorithm; the pleural nodules are included through the new ACM technique; (2) a RG algorithm is iteratively applied to the previously segmented volume in order to detect the candidate nodules; (3) a double-threshold cut and a neural network are applied to reduce the false positives (FPs). After having set the parameters on a clinical CT, the system works on whole scans, without the need for any manual selection. The CT database was recorded at the Pisa center of the ITALUNG-CT trial, the first Italian randomized controlled trial for the screening of the lung cancer. The detection rate of the system is 88.5% with 6.6 FPs/CT on 15 CT scans (about 4700 sectional images) with 26 nodules: 15 internal and 11 pleural. A reduction to 2.47 FPs/CT is achieved at 80% efficiency.  相似文献   

16.
A fully automated and three-dimensional (3D) segmentation method for the identification of the pulmonary parenchyma in thorax X-ray computed tomography (CT) datasets is proposed. It is meant to be used as pre-processing step in the computer-assisted detection (CAD) system for malignant lung nodule detection that is being developed by the Medical Applications in a Grid Infrastructure Connection (MAGIC-5) Project. In this new approach the segmentation of the external airways (trachea and bronchi), is obtained by 3D region growing with wavefront simulation and suitable stop conditions, thus allowing an accurate handling of the hilar region, notoriously difficult to be segmented. Particular attention was also devoted to checking and solving the problem of the apparent ‘fusion’ between the lungs, caused by partial-volume effects, while 3D morphology operations ensure the accurate inclusion of all the nodules (internal, pleural, and vascular) in the segmented volume. The new algorithm was initially developed and tested on a dataset of 130 CT scans from the Italung-CT trial, and was then applied to the ANODE09-competition images (55 scans) and to the LIDC database (84 scans), giving very satisfactory results. In particular, the lung contour was adequately located in 96% of the CT scans, with incorrect segmentation of the external airways in the remaining cases. Segmentation metrics were calculated that quantitatively express the consistency between automatic and manual segmentations: the mean overlap degree of the segmentation masks is 0.96 ± 0.02, and the mean and the maximum distance between the mask borders (averaged on the whole dataset) are 0.74 ± 0.05 and 4.5 ± 1.5, respectively, which confirms that the automatic segmentations quite correctly reproduce the borders traced by the radiologist. Moreover, no tissue containing internal and pleural nodules was removed in the segmentation process, so that this method proved to be fit for the use in the framework of a CAD system. Finally, in the comparison with a two-dimensional segmentation procedure, inter-slice smoothness was calculated, showing that the masks created by the 3D algorithm are significantly smoother than those calculated by the 2D-only procedure.Key words: CAD, image segmentation, lung nodules, region growing, grid, 3D imaging, biomedical image analysis  相似文献   

17.
An automated method is being developed in order to identify corresponding nodules in serial thoracic CT scans for interval change analysis. The method uses the rib centerlines as the reference for initial nodule registration. A spatially adaptive rib segmentation method first locates the regions where the ribs join the spine, which define the starting locations for rib tracking. Each rib is tracked and locally segmented by expectation-maximization. The ribs are automatically labeled, and the centerlines are estimated using skeletonization. For a given nodule in the source scan, the closest three ribs are identified. A three-dimensional (3D) rigid affine transformation guided by simplex optimization aligns the centerlines of each of the three rib pairs in the source and target CT volumes. Automatically defined control points along the centerlines of the three ribs in the source scan and the registered ribs in the target scan are used to guide an initial registration using a second 3D rigid affine transformation. A search volume of interest (VOI) is then located in the target scan. Nodule candidate locations within the search VOI are identified as regions with high Hessian responses. The initial registration is refined by searching for the maximum cross-correlation between the nodule template from the source scan and the candidate locations. The method was evaluated on 48 CT scans from 20 patients. Experienced radiologists identified 101 pairs of corresponding nodules. Three metrics were used for performance evaluation. The first metric was the Euclidean distance between the nodule centers identified by the radiologist and the computer registration, the second metric was a volume overlap measure between the nodule VOIs identified by the radiologist and the computer registration, and the third metric was the hit rate, which measures the fraction of nodules whose centroid computed by the computer registration in the target scan falls within the VOI identified by the radiologist. The average Euclidean distance error was 2.7 +/- 3.3 mm. Only two pairs had an error larger than 10 mm. The average volume overlap measure was 0.71 +/- 0.24. Eighty-three of the 101 pairs had ratios larger than 0.5, and only two pairs had no overlap. The final hit rate was 93/101.  相似文献   

18.
Wang J  Engelmann R  Li Q 《Medical physics》2007,34(12):4678-4689
Accurate segmentation of pulmonary nodules in computed tomography (CT) is an important and difficult task for computer-aided diagnosis of lung cancer. Therefore, the authors developed a novel automated method for accurate segmentation of nodules in three-dimensional (3D) CT. First, a volume of interest (VOI) was determined at the location of a nodule. To simplify nodule segmentation, the 3D VOI was transformed into a two-dimensional (2D) image by use of a key "spiral-scanning" technique, in which a number of radial lines originating from the center of the VOI spirally scanned the VOI from the "north pole" to the "south pole." The voxels scanned by the radial lines provided a transformed 2D image. Because the surface of a nodule in the 3D image became a curve in the transformed 2D image, the spiral-scanning technique considerably simplified the segmentation method and enabled reliable segmentation results to be obtained. A dynamic programming technique was employed to delineate the "optimal" outline of a nodule in the 2D image, which corresponded to the surface of the nodule in the 3D image. The optimal outline was then transformed back into 3D image space to provide the surface of the nodule. An overlap between nodule regions provided by computer and by the radiologists was employed as a performance metric for evaluating the segmentation method. The database included two Lung Imaging Database Consortium (LIDC) data sets that contained 23 and 86 CT scans, respectively, with 23 and 73 nodules that were 3 mm or larger in diameter. For the two data sets, six and four radiologists manually delineated the outlines of the nodules as reference standards in a performance evaluation for nodule segmentation. The segmentation method was trained on the first and was tested on the second LIDC data sets. The mean overlap values were 66% and 64% for the nodules in the first and second LIDC data sets, respectively, which represented a higher performance level than those of two existing segmentation methods that were also evaluated by use of the LIDC data sets. The segmentation method provided relatively reliable results for pulmonary nodule segmentation and would be useful for lung cancer quantification, detection, and diagnosis.  相似文献   

19.
20.
The aim of this study is to evaluate the effect of multiscale processing in digital chest radiography on automated detection of lung nodule with a computer-aided diagnosis (CAD) system. The study involved 58 small-nodule patient cases and 58 normal cases. The 58 patient cases included a total of 64 noncalcified lung nodules up to 15 mm in diameter. Each case underwent an examination with a digital radiography system (Digital Diagnost, Philips Medical Systems), and the acquired image was processed by the following three types of multiscale processing (Unique Image Processing Package, Philips Medical Systems) respectively: (1) standard image from the default processing parameter (structure preference, 0.0), (2) high-pass image with structure preference of 0.4, (3) low-pass image with structure preference of ?0.4. The CAD output images were produced with a real-time computer assistance system (IQQA?-Chest, EDDA Technology). Two experienced chest radiologists established the nodule gold standard by consensus reading according to computed tomography results, and analyzed and recorded the detection of lung nodules and false-positive detections of these CAD output images. For the entire cases involved (each case with three types of different processing), a total of 348 observations were evaluated by the receiver operating characteristic (ROC) analysis. The mean area under the ROC curve (A z ) value was 0.700 for the standard images, 0.587 for the high-pass images, and 0.783 for the low-pass images. There were statistically significant A z values among these three types of processed images (p?<?0.01). Multiscale processing in digital chest radiography can affect the automated detection of lung nodule by CAD, which is consistent with effects from visual inspection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号