首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Although the ferret has become an important model species for studying both fundamental and clinical aspects of spatial hearing, previous behavioral work has focused on studies of sound localization and spatial release from masking in the free field. This makes it difficult to tease apart the role played by different spatial cues. In humans and other species, interaural time differences (ITDs) and interaural level differences (ILDs) play a critical role in sound localization in the azimuthal plane and also facilitate sound source separation in noisy environments. In this study, we used a range of broadband noise stimuli presented via customized earphones to measure ITD and ILD sensitivity in the ferret. Our behavioral data show that ferrets are extremely sensitive to changes in either binaural cue, with levels of performance approximating that found in humans. The measured thresholds were relatively stable despite extensive and prolonged (>16 weeks) testing on ITD and ILD tasks with broadband stimuli. For both cues, sensitivity was reduced at shorter durations. In addition, subtle effects of changing the stimulus envelope were observed on ITD, but not ILD, thresholds. Sensitivity to these cues also differed in other ways. Whereas ILD sensitivity was unaffected by changes in average binaural level or interaural correlation, the same manipulations produced much larger effects on ITD sensitivity, with thresholds declining when either of these parameters was reduced. The binaural sensitivity measured in this study can largely account for the ability of ferrets to localize broadband stimuli in the azimuthal plane. Our results are also broadly consistent with data from humans and confirm the ferret as an excellent experimental model for studying spatial hearing.  相似文献   

2.
Head-related transfer functions of the Rhesus monkey   总被引:1,自引:0,他引:1  
Head-related transfer functions (HRTFs) are direction-specific acoustic filters formed by the head, the pinnae and the ear canals. They can be used to assess acoustical cues available for sound localization and to construct virtual auditory environments. We measured the HRTFs of three anesthetized Rhesus monkeys (Macaca mulatta) from 591 locations in the frontal hemisphere ranging from -90 degrees (left) to 90 degrees (right) in azimuth and -60 degrees (down) to 90 degrees (up) in elevation for frequencies between 0.5 and 15 kHz. Acoustic validation of the HRTFs shows good agreement between free field and virtual sound sources. Monaural spectra exhibit deep notches at frequencies above 9 kHz, providing putative cues for elevation discrimination. Interaural level differences (ILDs) and interaural time differences (ITDs) generally vary monotonically with azimuth between 0.5 and 8 kHz, suggesting that these two cues can be used to discriminate azimuthal position. Comparison with published subsets of HRTFs from squirrel monkeys (Saimiri sciureus) shows good agreement. Comparison with published human HRTFs from the frontal hemisphere demonstrates overall similarity in the patterns of ILD and ITD, suggesting that the Rhesus monkey is a good acoustic model for these two sound localization cues in humans. Finally, the measured ITDs in the horizontal plane agree well between -40 degrees and 40 degrees in azimuth with those calculated from a spherical head model with a radius of 52 mm, one-half the interaural distance of the monkey.  相似文献   

3.
Sounds are filtered in a spatial- and frequency-dependent manner by the head and pinna giving rise to the acoustical cues to sound source location. These spectral and temporal transformations are dependent on the physical dimensions of the head and pinna. Therefore, the magnitudes of binaural sound location cues—the interaural time (ITD) and level (ILD) differences—are hypothesized to systematically increase while the lower frequency limit of substantial ILD production is expected to decrease due to the increase in head and pinna size during development. The frequency ranges of the monaural spectral notch cues to source elevation are also expected to decrease. This hypothesis was tested here by measuring directional transfer functions (DTFs), the directional components of head-related transfer functions, and the linear dimensions of the head and pinnae for chinchillas from birth through adulthood. Dimensions of the head and pinna increased by factors of 1.8 and 2.42, respectively, reaching adult values by ~6 weeks. From the DTFs, the ITDs, ILDs, and spectral shape cues were computed. Maximum ITDs increased by a factor of 1.75, from ~160 μs at birth (P0-1, first postnatal day) to 280 μs in adults. ILDs depended on source location and frequency exhibiting a shift in the frequency range of substantial ILD (>10 dB) from higher to lower frequencies with increasing head and pinnae size. Similar trends were observed for the spectral notch frequencies which ranged from 14.7–33.4 kHz at P0-1 to 5.3–19.1 kHz in adults. The development of the spectral notch cues, the spatial- and frequency-dependent distributions of DTF amplitude gain, acoustic directionality, maximum gain, and the acoustic axis were systematically related to the dimensions of the head and pinnae. The dimension of the head and pinnae in the chinchilla as well as the acoustical properties associated with them are mature by ~6 weeks.  相似文献   

4.
Objectives: To investigate if the interaural time difference (ITD) ability is dependent of stimulation strategy. To examine the correlation between ITD, interaural level differences (ILD) and the ability to localize different sounds.

Methods: Thirty subjects aged 8–13 who were implanted bilaterally before 3 years of age were tested. Twenty of the subjects used processors programmed with fine structure (FS) strategy on both sides. ITD and ILD just noticeable difference (JND) of a 250?Hz pure tone was measured using their clinical processors. Furthermore, their ability to localize sound in the horizontal plane was measured using eye tracking.

Results: Ten of the 20 subjects with FS obtained an ITD threshold compared to none in the group without FS (0/10). ILD JND was correlated to localization ability of the broadband (BB) sound. Mean absolute error of the localization of a low-frequency (LF) sound was larger than that of a BB sound.

Conclusions: The ability to detect ITD was present only when the cochlear implant stimulation had FS. The LF sound was more difficult to localize than the BB sound and ITD ability of FS strategies did not affect the localization ability of either sound. A low ILD seems necessary to improve the localization ability.  相似文献   

5.
Conductive hearing loss (CHL) is known to produce hearing deficits, including deficits in sound localization ability. The differences in sound intensities and timing experienced between the two tympanic membranes are important cues to sound localization (ILD and ITD, respectively). Although much is known about the effect of CHL on hearing levels, little investigation has been conducted into the actual impact of CHL on sound location cues. This study investigated effects of CHL induced by earplugs on cochlear microphonic (CM) amplitude and timing and their corresponding effect on the ILD and ITD location cues. Acoustic and CM measurements were made in 5 chinchillas before and after earplug insertion, and again after earplug removal using pure tones (500?Hz to 24?kHz). ILDs in the unoccluded condition demonstrated position and frequency dependence where peak far-lateral ILDs approached 30?dB for high frequencies. Unoccluded ear ITD cues demonstrated positional and frequency dependence with increased ITD cue for both decreasing frequency (±420?μs at 500?Hz, ±310?μs for 1-4?kHz) and increasingly lateral sound source locations. Occlusion of the ear canal with foam plugs resulted in a mild, frequency-dependent conductive hearing loss of 10-38?dB (mean 31?±?3.9?dB) leading to a concomitant frequency dependent increase in ILDs at all source locations. The effective ITDs increased in a frequency dependent manner with ear occlusion as a direct result of the acoustic properties of the plugging material, the latter confirmed via acoustical measurements using a model ear canal with varying volumes of acoustic foam. Upon ear plugging with acoustic foam, a mild CHL is induced. Furthermore, the CHL induced by acoustic foam results in substantial changes in the magnitudes of both the ITD and ILD cues to sound location.  相似文献   

6.
CONCLUSIONS: We conclude that: (1) among several cues examined, the monaural cue of direct-to-reverberant (D/R) ratio in the ipsilateral ear provides the most information about sound-source distance; (2) interaural level difference (ILD) provides less information about sound-source distance; and (3) a comprehensive theory of three-dimensional auditory localization must incorporate the fact that all of the major acoustic cues change with distance. OBJECTIVE: Neural mechanisms underlying auditory localization of distance are poorly understood. The present study was an initial step toward filling this gap in knowledge. MATERIALS AND METHODS: The binaural room impulse responses of adult barn owls were measured. The sound source was placed at various distances (up to 80 cm) and azimuths (0-90 degrees) relative to the owl's head, with the elevation kept at 0 degrees . RESULTS: We determined the value of each cue for a 3-10 kHz band, and found that: (1) D/R ratio of signal amplitudes provided the most information about sound-source distance; (2) the ipsilateral D/R ratio represented distance more clearly than the contralateral or binaural-average D/R ratios; (3) ILD of direct signals increased with decreasing distance under certain conditions; (3) interaural time difference (ITD) of direct signals increased with decreasing distance at 90 degrees azimuth; and (4) the spectral patterns of ILD and the monaural direct signals changed with distance in complex ways.  相似文献   

7.
The interaural time difference (ITD) is a major cue to sound localization along the horizontal plane. The maximum natural ITD occurs when a sound source is positioned opposite to one ear. We examined the ability of owls and humans to detect large ITDs in sounds presented through headphones. Stimuli consisted of either broad or narrow bands of Gaussian noise, 100 ms in duration. Using headphones allowed presentation of ITDs that are greater than the maximum natural ITD. Owls were able to discriminate a sound leading to the left ear from one leading to the right ear, for ITDs that are 5 times the maximum natural delay. Neural recordings from optic-tectum neurons, however, show that best ITDs are usually well within the natural range and are never as large as ITDs that are behaviorally discriminable. A model of binaural cross-correlation with short delay lines is shown to explain behavioral detection of large ITDs. The model uses curved trajectories of a cross-correlation pattern as the basis for detection. These trajectories represent side peaks of neural ITD-tuning curves and successfully predict localization reversals by both owls and human subjects.  相似文献   

8.
Interaural timing cues are important for sound source localization and for binaural unmasking of speech that is spatially separated from interfering sounds. Users of a cochlear implant (CI) with residual hearing in the non-implanted ear (bimodal listeners) can only make very limited use of interaural timing cues with their clinical devices. Previous studies showed that bimodal listeners can be sensitive to interaural time differences (ITDs) for simple single- and three-channel stimuli. The modulation enhancement strategy (MEnS) was developed to improve the ITD perception of bimodal listeners. It enhances temporal modulations on all stimulated electrodes, synchronously with modulations in the acoustic signal presented to the non-implanted ear, based on measurement of the amplitude peaks occurring at the rate of the fundamental frequency in voiced phonemes. In the first experiment, ITD detection thresholds were measured using the method of constant stimuli for five bimodal listeners for an artificial vowel, processed with either the advanced combination encoder (ACE) strategy or with MEnS. With MEnS, detection thresholds were significantly lower, and for four subjects well within the physically relevant range. In the second experiment, the extent of lateralization was measured in three subjects with both strategies, and ITD sensitivity was determined using an adaptive procedure. All subjects could lateralize sounds based on ITD and sensitivity was significantly better with MEnS than with ACE. The current results indicate that ITD cues can be provided to bimodal listeners with modified sound processing.  相似文献   

9.
Interaural level and time differences (ILD and ITD), the primary binaural cues for sound localization in azimuth, are known to modulate the tuned responses of neurons in mammalian auditory cortex (AC). The majority of these neurons respond best to cue values that favor the contralateral ear, such that contralateral bias is evident in the overall population response and thereby expected in population-level functional imaging data. Human neuroimaging studies, however, have not consistently found contralaterally biased binaural response patterns. Here, we used functional magnetic resonance imaging (fMRI) to parametrically measure ILD and ITD tuning in human AC. For ILD, contralateral tuning was observed, using both univariate and multivoxel analyses, in posterior superior temporal gyrus (pSTG) in both hemispheres. Response-ILD functions were U-shaped, revealing responsiveness to both contralateral and—to a lesser degree—ipsilateral ILD values, consistent with rate coding by unequal populations of contralaterally and ipsilaterally tuned neurons. In contrast, for ITD, univariate analyses showed modest contralateral tuning only in left pSTG, characterized by a monotonic response-ITD function. A multivoxel classifier, however, revealed ITD coding in both hemispheres. Although sensitivity to ILD and ITD was distributed in similar AC regions, the differently shaped response functions and different response patterns across hemispheres suggest that basic ILD and ITD processes are not fully integrated in human AC. The results support opponent-channel theories of ILD but not necessarily ITD coding, the latter of which may involve multiple types of representation that differ across hemispheres.  相似文献   

10.
There are three main cues to sound location: the interaural differences in time (ITD) and level (ILD) as well as the monaural spectral shape cues. These cues are generated by the spatial- and frequency-dependent filtering of propagating sound waves by the head and external ears. Although the chinchilla has been used for decades to study the anatomy, physiology, and psychophysics of audition, including binaural and spatial hearing, little is actually known about the sound pressure transformations by the head and pinnae and the resulting sound localization cues available to them. Here, we measured the directional transfer functions (DTFs), the directional components of the head-related transfer functions, for 9 adult chinchillas. The resulting localization cues were computed from the DTFs. In the frontal hemisphere, spectral notch cues were present for frequencies from ~6-18?kHz. In general, the frequency corresponding to the notch increased with increases in source elevation as well as in azimuth towards the ipsilateral ear. The ILDs demonstrated a strong correlation with source azimuth and frequency. The maximum ILDs were <10?dB for frequencies <5?kHz, and ranged from 10-30?dB for the frequencies >5?kHz. The maximum ITDs were dependent on frequency, yielding 236?μs at 4?kHz and 336?μs at 250?Hz. Removal of the pinnae eliminated the spectral notch cues, reduced the acoustic gain and the ILDs, altered the acoustic axis, and reduced the ITDs.  相似文献   

11.
Sound localization is important for orienting and focusing attention and for segregating sounds from different sources in the environment. In humans, horizontal sound localization mainly relies on interaural differences in sound arrival time and sound level. Despite their perceptual importance, the neural processing of interaural time and level differences (ITDs and ILDs) remains poorly understood. Animal studies suggest that, in the brainstem, ITDs and ILDs are processed independently by different specialized circuits. The aim of the current study was to investigate whether, at higher processing levels, they remain independent or are integrated into a common code of sound laterality. For that, we measured late auditory cortical potentials in response to changes in sound lateralization elicited by perceptually matched changes in ITD and/or ILD. The responses to the ITD and ILD changes exhibited significant morphological differences. At the same time, however, they originated from overlapping areas of the cortex and showed clear evidence for functional coupling. These results suggest that the auditory cortex contains an integrated code of sound laterality, but also retains independent information about ITD and ILD cues. This cue-related information might be used to assess how consistent the cues are, and thus, how likely they would have arisen from the same source.  相似文献   

12.
Soeta Y  Nakagawa S 《Hearing research》2006,220(1-2):106-115
The detection of interaural time differences (ITD) for sound localization depends on the similarity between the left and right ear signals, namely interaural correlation (IAC). Human localization performance deteriorates with decreasing IACs. In order to examine activity related to localization performance in the human cortex, auditory evoked magnetic fields to the ITD of bandpass noises with different IACs were analyzed. When the IAC was 0.95, the N1m amplitudes, i.e., the estimated equivalent current dipole moments, increased with increasing ITD. However the effect of ITD on the N1m amplitudes was not significant when the IAC was 0.5. When the ITD was 0.7 ms, the N1m amplitudes decreased with decreasing IACs. There were no systematic changes in the source location of N1m in the auditory cortex related to changes in ITD or IAC. The results suggest that localization performance is reflected in N1m amplitudes.  相似文献   

13.
Normal-hearing (NH) listeners rely on two binaural cues, the interaural time (ITD) and level difference (ILD), for azimuthal sound localization. Cochlear-implant (CI) listeners, however, rely almost entirely on ILDs. One reason is that present-day clinical CI stimulation strategies do not convey salient ITD cues. But even when presenting ITDs under optimal conditions using a research interface, ITD sensitivity is lower in CI compared to NH listeners. Since it has recently been shown that NH listeners change their ITD/ILD weighting when only one of the cues is consistent with visual information, such reweighting might add to CI listeners’ low perceptual contribution of ITDs, given their daily exposure to reliable ILDs but unreliable ITDs. Six bilateral CI listeners completed a multi-day lateralization training visually reinforcing ITDs, flanked by a pre- and post-measurement of ITD/ILD weights without visual reinforcement. Using direct electric stimulation, we presented 100- and 300-pps pulse trains at a single interaurally place-matched electrode pair, conveying ITDs and ILDs in various spatially consistent and inconsistent combinations. The listeners’ task was to lateralize the stimuli in a virtual environment. Additionally, ITD and ILD thresholds were measured before and after training. For 100-pps stimuli, the lateralization training increased the contribution of ITDs slightly, but significantly. Thresholds were neither affected by the training nor correlated with weights. For 300-pps stimuli, ITD weights were lower and ITD thresholds larger, but there was no effect of training. On average across test sessions, adding azimuth-dependent ITDs to stimuli containing ILDs increased the extent of lateralization for both 100- and 300-pps stimuli. The results suggest that low-rate ITD cues, robustly encoded with future CI systems, may be better exploitable for sound localization after increasing their perceptual weight via training.  相似文献   

14.
Monaural rate discrimination and binaural interaural time difference (ITD) discrimination were studied as functions of pulse rate in a group of bilaterally implanted cochlear implant users. Stimuli for the rate discrimination task were pulse trains presented to one electrode, which could be in the apical, middle, or basal part of the array, and in either the left or the right ear. In each two-interval trial, the standard stimulus had a rate of 100, 200, 300, or 500 pulses per second and the signal stimulus had a rate 35 % higher. ITD discrimination between pitch-matched electrode pairs was measured for the same standard rates as in the rate discrimination task and with an ITD of +/− 500 μs. Sensitivity (d′) on both tasks decreased with increasing rate, as has been reported previously. This study tested the hypothesis that deterioration in performance at high rates occurs for the two tasks due to a common neural basis, specific to the stimulation of each electrode. Results show that ITD scores for different pairs of electrodes correlated with the lower rate discrimination scores for those two electrodes. Statistical analysis, which partialed out overall differences between listeners, electrodes, and rates, supports the hypothesis that monaural and binaural temporal processing limitations are at least partly due to a common mechanism.  相似文献   

15.
The main purpose of this study was to describe and compare lateralization of earphone-presented stimuli in younger and older individuals. Lateralization functions, relating perceived location to either interaural time differences (ITDs) or interaural level differences (ILDs) were determined for 78 subjects, aged 21-88 years, who responded by pressing one of nine keys to indicate the perceived location of the stimulus. All subjects were healthy, without any history of hearing loss or ear surgery and within the normal pure tone audiometric range for their age group. Interaural pure tone and click thresholds did not differ by more than 5 dB across ears. The ILD lateralization functions, ranging from 10 dB favoring the left ear to 10 dB favoring the right ear were linear. In contrast, the ITD lateralization functions were S-shaped with a clear linear component ranging from 750 micros favoring one ear to 750 micros favoring the other ear and with an asymptote from 750 micros to 1 ms. The same general shape of the ITD and ILD lateralization functions was found at all ages, but the linear slope of the ITD lateralization function became shallower with age. The ability to discriminate midline-located click trains (ITD and ILD=0) from ITD-lateralized click trains deteriorated with age, while the comparable ability to discriminate ILD-lateralized click trains did not change significantly with age. The data support two general conclusions. First there seems to be an overall reduction in the range of ITD-based lateralization due to aging. Second, there is a greater reduction in sensitivity due to aging in changes from the perceived midline position (ITD and ILD=0) when ITD is manipulated than when ILD is manipulated.  相似文献   

16.
17.
The effect of externalization and spatial cues on the generation of auditory brainstem responses (ABRs) and middle latency responses (MLRs) was investigated in this study. Most previous evoked potential studies used click stimuli with variations of interaural time (ITDs) and interaural level differences (ILDs) which merely led to a lateralization of sound inside the subject's head. In contrast, in the present study potentials were elicited by a virtual acoustics stimulus paradigm with 'natural' spatial cues and compared to responses to a diotic, non-externalized reference stimulus. Spatial sound directions were situated on the horizontal plane (corresponding to variations in ITD, ILD, and spectral cues) or the midsagittal plane (variation of spectral cues only). An optimized chirp was used which had proven to be advantageous over the click since it compensates for basilar membrane dispersion. ABRs and MLRs were recorded from 32 scalp electrodes and both binaural potentials (B) and binaural difference potentials (BD, i.e., the difference between binaural and summed monaural responses) were investigated. The amplitudes of B and BD to spatial stimuli were not higher than those to the diotic reference. ABR amplitudes decreased and latencies increased with increasing laterality of the sound source. A rotating dipole source exhibited characteristic patterns in dependence on the stimulus laterality. For the MLR data, stimulus laterality was reflected in the latency of component N(a). In addition, dipole source analysis revealed a systematic magnitude increase for the dipole contralateral to the azimuthal position of the sound source. For the variation of elevation, the right dipole source showed a stronger activation for stimuli away from the horizontal plane. The results indicate that at the level of the brainstem and primary auditory cortex binaural interaction is mostly affected by interaural cues (ITD, ILD). Potentials evoked by stimuli with natural combinations of ITD, ILD, and spectral cues were not larger than those elicited by diotic chirps.  相似文献   

18.
Specific cues in a sound signal are naturally linked to certain parameters in acoustic space. In the barn owl, interaural time difference (ITD) varies mainly with azimuth, while interaural level difference (ILD) varies mainly with elevation. Previous data suggested that ITD is indeed the main cue for azimuthal sound localization in this species, while ILD is an important cue for elevational sound localization. The exact contributions of these parameters could be tested only indirectly because it was not possible to generate a stimulus that contained all relevant spatial information on the one hand, and allowed for a clean separation of these parameters on the other hand. Virtual auditory worlds offer this opportunity. Here we show that barn owls responded to azimuthal variations in virtual space in the same way as to variations in free-field stimuli. We interpret the increase of turning angle with sound-source azimuths (up to +/- 140 degrees) such that the owls did not experience front/back confusions with virtual stimuli. We then separated the influence of ITD from the influence of all other stimulus parameters by fixing the overall ITD in virtual stimuli to a constant value (+100 micros or +100 micros) while leaving all other sound characteristics unchanged. This manipulation influenced both azimuthal and elevational components of head arms. Since the owls' azimuthal head-turn amplitude always resembled the value signified by the ITD, these data demonstrated that azimuthal sound localization is influenced only by ITD both in the frontal hemisphere and in large parts of the rear hemisphere. ILDs did not have an influence on azimuthal components of head turns. While response latency to normal virtual stimuli was found to be largely independent of stimulus position, response delays of the head turns became longer if the ITD information pointed into a different hemisphere as the other cues of the sounds.  相似文献   

19.
The discrimination of a change in a stimulus is determined both by the magnitude of that change and by the variability in the neural response to the stimulus. When the stimulus is itself noisy, then the relative contributions of the neural (intrinsic) and stimulus induced variability becomes a critical question. We measured the contribution of intrinsic neural noise and interstimulus variability to the discrimination of interaural time differences (ITDs) and interaural correlation (IAC). We measured discharge rate versus characteristic frequency (CF) tone ITD functions, and CF-centered narrowband noise ITD and IAC functions in interleaved blocks in the same units in the inferior colliculus of urethane-anesthetized guinea pigs. Ten “frozen” tokens of noise were synthesized and the responses to each token were separately analyzed to allow the relative contributions of intrinsic and stimulus variability to be assessed. ITD and IAC discrimination thresholds were determined for a simulated two-interval forced-choice experiment, based on the firing rate distributions, using receiver operating characteristic analysis. On average, between stimulus variability contributed 19% (range, 1.5–30%) of the variance in noise ITD discrimination and 27% (range, 3–50%) in IAC discrimination. Noise ITD thresholds were slightly higher than tone ITD thresholds. Taking the mean of the thresholds for individual noise tokens gave a similar result to pooling across all noise tokens. This implies that although the stimulus induced variability is measurable, it is insignificant in relation to the intrinsic noise in ITD and IAC discrimination.  相似文献   

20.
Sound source localization is paramount for comfort of life, determining the position of a sound source in 3 dimensions: azimuth, height and distance. It is based on 3 types of cue: 2 binaural (interaural time difference and interaural level difference) and 1 monaural spectral cue (head-related transfer function). These are complementary and vary according to the acoustic characteristics of the incident sound. The objective of this report is to update the current state of knowledge on the physical basis of spatial sound localization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号