首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hawkins M  Tonelli J  Kishore P  Stein D  Ragucci E  Gitig A  Reddy K 《Diabetes》2003,52(11):2748-2758
Increased circulating free fatty acids (FFAs) inhibit both hepatic and peripheral insulin action. Because the loss of effectiveness of glucose to suppress endogenous glucose production and stimulate glucose uptake contributes importantly to fasting hyperglycemia in type 2 diabetes, we examined whether the approximate twofold elevations in FFA characteristic of poorly controlled type 2 diabetes contribute to this defect. Glucose levels were raised from 5 to 10 mmol/l while maintaining fixed hormonal conditions by infusing somatostatin with basal insulin, glucagon, and growth hormone. Each individual was studied at two FFA levels: with (NA+) and without (NA-) infusion of nicotinic acid in nine individuals with poorly controlled type 2 diabetes (HbA(1c) = 10.1 +/- 0.7%) and with (LIP+) and without (LIP-) infusion of lipid emulsion in nine nondiabetic individuals. Elevating FFA to approximately 500 micro mol/l blunted the ability of glucose to suppress endogenous glucose production (LIP- = -48% vs. LIP+ = -28%; P < 0.01) and increased glucose uptake (LIP- = 97% vs. LIP+ = 51%; P < 0.01) in nondiabetic individuals. Raising FFA also blunted the endogenous glucose production response in 10 individuals with type 2 diabetes in good control (HbA(1c) = 6.3 +/- 0.3%). Conversely, normalizing FFA nearly restored the endogenous glucose production (NA- = -7% vs. NA+ = -41%; P < 0.001) and glucose uptake (NA- = 26% vs. NA+ = 64%; P < 0.001) responses to hyperglycemia in individuals with poorly controlled type 2 diabetes. Thus, increased FFA levels contribute substantially to the loss of glucose effectiveness in poorly controlled type 2 diabetes.  相似文献   

2.
Boden G  Chen X  Capulong E  Mozzoli M 《Diabetes》2001,50(4):810-816
Effects of endogenously derived free fatty acids (FFAs) on rates of gluconeogenesis (GNG) (determined with 2H2O), glycogenolysis (GL), and endogenous glucose production (EGP) were studied in 18 type 2 diabetic patients and in 7 nondiabetic control subjects under three experimental conditions: 1) during an 8-h fast (from 16-24 h after the last meal), when plasma FFA levels increased slowly; 2) during 4 h (from 16-20 h) of nicotinic acid (NA) administration (fasting plus NA), when plasma FFAs decreased acutely; and 3) during 4 h (from 20-24 h) after discontinuation of NA (FFA rebound), when plasma FFAs increased acutely. During fasting, FFAs increased from 636 to 711 micromol/l in type 2 diabetic patients and from 462 to 573 micromol/l in control subjects (P < 0.04), but GNG did not change in diabetic patients (6.9 vs. 6.5 micromol x kg(-1) x min(-1), P > 0.05) or in control subjects (5.1 vs. 5.4 micromol x kg(-1) x min(-1), P > 0.05). During fasting plus NA, FFAs decreased in diabetic patients and control subjects (from 593 to 193 and from 460 to 162 micromol/l, respectively); GNG decreased (from 6.1 to 4.2 and from 4.7 to 3.5 micromol x kg(-1) x min(-1)), whereas GL decreased in diabetic patients (from 5.3 to 4.4 micromol x kg(-1) x min(-1)) but increased in control subjects (from 5.4 to 7.2 micromol x kg(-1) min(-1)). During the FFA rebound, FFAs increased in diabetic patients and control subjects (from 193 to 1,239 and from 162 to 1,491 micromol/l, respectively); GNG increased (from 4.2 to 5.4 and from 3.4 to 5.3 micromol x kg(-1) x min(-1) respectively), and GL decreased (from 4.4 to 3.4 and from 7.3 to 4.3 micromol x kg(-1) x min(-1), respectively). In summary, during an extended overnight fast, increasing plasma FFA levels stimulated GNG, whereas decreasing FFA levels inhibited GNG in both diabetic and control subjects; 20 h after the last meal, approximately one-third of GNG in both diabetic and control subjects was dependent on FFAs; and autoregulation of EGP by GL in response to decreasing GNG was impaired in diabetic patients.  相似文献   

3.
Effects of free fatty acids (FFAs) on endogenous glucose production (EGP) and gluconeogenesis (GNG) were examined in healthy subjects (n = 6) during stepwise increased Intralipid/heparin infusion (plasma FFAs 0.8+/-0.1, 1.8+/-0.2, and 2.8+/-0.3 mmol/l) and during glycerol infusion (plasma FFAs approximately 0.5 mmol/l). Rates of EGP were determined with D-[6,6-2H2]glucose and contributions of GNG from 2H enrichments in carbons 2 and 5 of blood glucose after 2H2O ingestion. Plasma glucose concentrations decreased by approximately 10% (P < 0.01), whereas plasma insulin increased by approximately 47% (P = 0.02) after 9 h of lipid infusion. EGP declined from 9.3+/-0.5 (lipid) and 9.0+/-0.8 pmol x kg(-1) x min(-1) (glycerol) to 8.4+/-0.5 and 8.2+/-0.7 micromol x kg(-1) x min(-1), respectively (P < 0.01). Contribution of GNG similarly rose (P < 0.01) from 46+/-4 and 52+/-3% to 65+/-8 and 78+/-7%. To exclude interaction of FFAs with insulin secretion, the study was repeated at fasting plasma insulin (approximately 35 pmol/l) and glucagon (approximately 90 ng/ml) concentrations using somatostatin-insulin-glucagon clamps. Plasma glucose increased by approximately 50% (P < 0.005) during lipid but decreased by approximately 12% during glycerol infusion (P < 0.005). EGP remained unchanged over the 9-h period (9.9+/-1.2 vs. 9.0+/-1.1 micromol x kg(-1) x min(-1)). GNG accounted for 62+/-5 (lipid) and 60+/-6% (glycerol) of EGP at time 0 and rose to 74+/-3% during lipid infusion only (P < 0.05 vs. glycerol: 64+/-4%). In conclusion, high plasma FFA concentrations increase the percent contribution of GNG to EGP and may contribute to increased rates of GNG in patients with type 2 diabetes.  相似文献   

4.
Alterations in postprandial hepatic glycogen metabolism in type 2 diabetes   总被引:8,自引:0,他引:8  
Decreased skeletal muscle glucose disposal and increased endogenous glucose production (EGP) contribute to postprandial hyperglycemia in type 2 diabetes, but the contribution of hepatic glycogen metabolism remains uncertain. Hepatic glycogen metabolism and EGP were monitored in type 2 diabetic patients and nondiabetic volunteer control subjects (CON) after mixed meal ingestion and during hyperglycemic-hyperinsulinemic-somatostatin clamps applying 13C nuclear magnetic resonance spectroscopy (NMRS) and variable infusion dual-tracer technique. Hepatocellular lipid (HCL) content was quantified by 1H NMRS. Before dinner, hepatic glycogen was lower in type 2 diabetic patients (227 +/- 6 vs. CON: 275 +/- 10 mmol/l liver, P < 0.001). After meal ingestion, net synthetic rates were 0.76 +/- 0.16 (type 2 diabetic patients) and 1.36 +/- 0.15 mg x kg(-1) x min(-1) (CON, P < 0.02), resulting in peak concentrations of 283 +/- 15 and 360 +/- 11 mmol/l liver. Postprandial rates of EGP were approximately 0.3 mg x kg(-1) x min(-1) (30-170 min; P < 0.05 vs. CON) higher in type 2 diabetic patients. Under clamp conditions, type 2 diabetic patients featured approximately 54% lower (P < 0.03) net hepatic glycogen synthesis and approximately 0.5 mg x kg(-1) x min(-1) higher (P < 0.02) EGP. Hepatic glucose storage negatively correlated with HCL content (R = -0.602, P < 0.05). Type 2 diabetic patients exhibit 1) reduction of postprandial hepatic glycogen synthesis, 2) temporarily impaired suppression of EGP, and 3) no normalization of these defects by controlled hyperglycemic hyperinsulinemia. Thus, impaired insulin sensitivity and/or chronic glucolipotoxicity in addition to the effects of an altered insulin-to-glucagon ratio or increased free fatty acids accounts for defective hepatic glycogen metabolism in type 2 diabetic patients.  相似文献   

5.
Impairment of hypoglycemic counterregulation in intensively treated type 1 diabetes has been attributed to deficits in counterregulatory hormone secretion. However, because the liver plays a critical part in recovery of plasma glucose, abnormalities in hepatic glycogen metabolism per se could also play an important role. We quantified the contribution of net hepatic glycogenolysis during insulin-induced hypoglycemia in 10 nondiabetic subjects and 7 type 1 diabetic subjects (HbA1c 6.5 +/- 0.2%) using 13C nuclear magnetic resonance spectroscopy, during 2 h of either hyperinsulinemic euglycemia (plasma glucose 92 +/- 4 mg/dl) or hypoglycemia (plasma glucose 58 +/- 3 mg/dl). In nondiabetic subjects, hypoglycemia was associated with a brisk counterregulatory hormone response (plasma epinephrine 246 +/- 38 vs. 2,785 +/- 601 pmol/l during hypoglycemia, plasma norepinephrine 1.9 +/- 0.2 vs. 2.5 +/- 0.3 nmol/l, and glucagon 38 +/- 7 vs. 92 +/- 17 pg/ml, respectively, P < 0.001 in all), and a relative increase in endogenous glucose production (EGP 0.83 +/- 0.14 mg x kg(-1) x min(-1) during euglycemia yet approximately 50% higher with hypoglycemia [1.30 +/- 0.20 mg x kg(-1) x min(-1)], P < 0.001). Net hepatic glycogen content declined progressively during hypoglycemia to 22 +/- 3% below baseline (P < 0.024). By the final 30 min of hypoglycemia, hepatic glycogen fell from 301 +/- 14 to 234 +/- 10 mmol/l (P < 0.001) and accounted for approximately 100% of EGP. In marked contrast, after an overnight fast, hepatic glycogen concentration in type 1 diabetic subjects (215 +/- 23 mmol/l) was significantly lower than in nondiabetic subjects (316 +/- 19 mmol/l, P < 0.001). Furthermore, the counterregulatory response to hypoglycemia was significantly reduced with small increments in plasma epinephrine and norepinephrine (126 +/- 22 vs. 448 +/- 16 pmol/l in hypoglycemia and 0.9 +/- 0.3 vs. 1.6 +/- 0.3 nmol/l, respectively, P < 0.05 for both) and no increase in plasma glucagon. EGP decreased during hypoglycemia with no recovery (1.3 +/- 0.5 vs. 1.2 +/- 0.3 mg x kg(-1) x min(-1) compared with euglycemia, P = NS), and hepatic glycogen concentration did not change significantly with hypoglycemia. We conclude that glycogenolysis accounts for the majority of EGP during the first 90 min of hypoglycemia in nondiabetic subjects. In intensively treated type 1 diabetes, despite some activation of counterregulation, hypoglycemia failed to stimulate hepatic glycogen breakdown or activation of EGP, factors that may contribute to the defective counterregulation seen in such patients.  相似文献   

6.
Glucose-6-phosphatase flux in vitro is increased in type 2 diabetes   总被引:5,自引:0,他引:5  
Clore JN  Stillman J  Sugerman H 《Diabetes》2000,49(6):969-974
Despite the effects of hyperinsulinemia and hyperglycemia, 2 factors known to inhibit endogenous glucose production (EGP) in nondiabetic subjects, increased EGP is a consistent feature of type 2 diabetes. Recent studies have suggested that increased glucose-6-phosphatase (G6Pase) and/or decreased glucokinase (GK) may explain the increase in EGP. However, no studies to date have clearly established this relationship in type 2 diabetes. The present studies were designed to determine rates of EGP and the activities of G6Pase and GK in obese patients scheduled for gastric bypass surgery. The study group consisted of 14 obese nondiabetic subjects and 13 patients with type 2 diabetes (BMI 53.7 +/- 2.4 vs. 50.1 +/- 1.6 kg/m2). Rates of EGP were determined after an overnight fast with a 4-h infusion of [6,6]-D-glucose, and they were significantly higher in the type 2 diabetic patients (85.9 +/- 10.0 vs. 137.8 +/- 14.4 mg x m(-2) x min(-1), P < 0.001) despite greater plasma glucose (5.1 +/- 0.1 vs. 12.0 +/- 1.1 mmol/l) and similar insulin concentrations (130.8 +/- 19.8 vs. 112.8 +/- 16.2 pmol/l, NS). Moreover, resistance to insulin-induced suppression of EGP was observed in the patients with type 2 diabetes when insulin concentrations were increased from approximately 120 to 180 pmol/l. Hepatic G6Pase activity determined from freshly isolated microsomes was significantly increased in the type 2 diabetic patients compared with the obese control subjects (0.16 +/- 0.02 vs. 0.09 +/- 0.01 micromol x min(-1) x mg(-1) protein, P < 0.02), whereas levels of GK were decreased (1.20 +/- 0.16 vs. 2.01 +/- 0.01 micromol x min(-1) x mg(-1) protein, P < 0.01). Net flux through G6Pase was significantly increased in type 2 diabetic patients (P < 0.01). We conclude that increased EGP is mediated in part by increased G6Pase flux in type 2 diabetes.  相似文献   

7.
Boden G  Chen X 《Diabetes》1999,48(3):577-583
The objective of this study was to assess the role of free fatty acids (FFAs) as insulin secretagogues in patients with type 2 diabetes. To this end, basal insulin secretion rates (ISR) in response to acute increases in plasma FFAs were evaluated in patients with type 2 diabetes and in age- and weight-matched nondiabetic control subjects during 1) intravenous infusion of lipid plus heparin (L/H), which stimulated intravascular lipolysis, and 2) the FFA rebound, which followed lowering of plasma FFAs with nicotinic acid (NA) and was a consequence of increased lipolysis from the subject's own adipose tissue. At comparable euglycemia, diabetic patients had similar ISR but higher plasma beta-hydroxybutyrate (beta-OHB) levels during L/H infusion and higher plasma FFA and beta-OHB levels during the FFA rebound than nondiabetic control subjects. Correlating ISR with plasma FFA plus beta-OHB levels showed that in response to the same changes in FFA plus beta-OHB levels, diabetic patients secreted approximately 30% less insulin than nondiabetic control subjects. In addition, twice as much insulin was secreted during L/H infusion as during the FFA rebound in response to the same FFA/beta-OHB stimulation by both diabetic patients and control subjects. Glycerol, which was present in the infused lipid (272 mmol/l) did not affect ISR. We concluded that 1) assessment of FFA effects on ISR requires consideration of effects on ISR by ketone bodies; 2) ISR responses to FFA/beta-OHB were defective in patients with type 2 diabetes (partial beta-cell lipid blindness), but this defect was compensated by elevated plasma levels of FFAs and ketone bodies; and 3) approximately two times more insulin was released per unit change in plasma FFA plus beta-OHB during L/H infusion than during the FFA rebound after NA. The reason for this remains to be explored.  相似文献   

8.
Glucose effectiveness is impaired in type 2 diabetes. We hypothesize that chronic hyperglycemia and hyperlipidemia contribute importantly to this defect. To test this hypothesis, we compared the effect of acute hyperglycemia on glucose turnover in type 2 diabetic subjects in good control (GC) (n = 14, age 51.7 +/- 3.7 years, BMI 28.4 +/- 1.0 kg/ m(2), HbA(1c) 5.9 +/- 0.2%) and poor control (PC) (n = 10, age 50.0 +/- 2.5 years, BMI 27.9 +/- 1.5 kg/m(2), HbA(1c) 9.9 +/- 0.6%) with age- and weight-matched nondiabetic subjects (ND) (n = 11, age 47.0 +/- 4.4 years, BMI 28.5 +/- 1.0 kg/m(2), HbA(1c) 5.1 +/- 0.2%). Fixed hormonal conditions were attained by infusing somatostatin for 6 h with replacement of basal insulin, glucagon, and growth hormone. Glucose fluxes ([3-(3)H]glucose) were compared during euglycemic (5 mmol/l, t = 180-240 min) and hyperglycemic (Hy) (10 mmol/l, t = 300-360 min, variable glucose infusion) clamp intervals. Acute hyperglycemia suppressed hepatic glucose production (GP) by 43% and increased peripheral glucose uptake (GU) by 86% in the ND subjects. Conversely, GP failed to suppress (-7%) and GU was suboptimally increased (+34%) in response to Hy in the PC group. However, optimal glycemic control was associated with normal glucose effectiveness in GC subjects (GP -38%, GU +72%; P > 0.05 for GC vs. ND). To determine whether short-term correction of hyperglycemia and/or hyperlipidemia is sufficient to reverse the impairment in glucose effectiveness, five PC subjects were restudied after 72 h of normoglycemia ( approximately 100 mg/dl; variable insulin infusions). These subjects regained normal effectiveness of glucose to suppress GP and stimulate GU and in response to Hy (GP -47%, GU + 71%; P > 0.05 vs. baseline studies). Thus, chronic hyperglycemia and/or hyperlipidemia contribute to impaired effectiveness of glucose in regulating glucose fluxes in type 2 diabetes and hence to worsening of the overall metabolic condition. Short-term normalization of plasma glucose might break the vicious cycle of impaired glucose effectiveness in type 2 diabetes.  相似文献   

9.
P C Butler  R A Rizza 《Diabetes》1991,40(1):73-81
Excessive amounts of glucose enter the systemic circulation when patients with non-insulin-dependent diabetes mellitus (NIDDM) eat a carbohydrate-containing meal. To determine the contribution of hepatic glucose cycling (defined as the net effect of glucose/glucose-6-phosphate cycling and uptake and release of glucose from hepatic glycogen) to postprandial hyperglycemia, diabetic, glucose-intolerant, and nondiabetic subjects were fed mixed meals. The meal contained both [2-3H]glucose (an isotope that is extensively detritiated during hepatic glucose cycling) and [6-3H]glucose (an isotope that is not detritiated during hepatic glucose cycling). Of the 50 g of carbohydrate contained in the meal, approximately 4-8 g underwent hepatic glucose cycling. Although total cycling of ingested glucose did not differ between diabetic, glucose-intolerant, and nondiabetic subjects (361 +/- 67 vs. 494 +/- 106 vs. 322 +/- 44 mumol.kg-1.5 h-1, respectively), the data suggested that hepatic cycling was increased in the diabetic and glucose-intolerant individuals but not in the nondiabetic subjects during the first 2 h after eating. Hepatic cycling during the first 2 h after eating was correlated with the prevailing glucagon concentration (r = 0.6, P less than 0.01) and increased (P less than 0.05) as hepatic glucose release increased. Hepatic glucose cycling had a marked effect on the measurement of so-called initial splanchnic glucose uptake. Nevertheless, however measured, initial splanchnic glucose uptake was not decreased and, if anything, was increased in diabetic and glucose-intolerant patients. Integrated postprandial hepatic glucose release increased (r less than 0.01) with the severity of fasting hyperglycemia.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The ability of hyperglycemia per se to suppress endogenous glucose production (GP) is blunted in type 2 diabetes. This could be due in part to decreased glucose-induced flux through glucokinase (GK). Because fructose activates hepatic GK, we examined whether catalytic amounts of fructose could restore inhibition of GP by hyperglycemia in humans with type 2 diabetes. Glucose fluxes ([3-(3)H]glucose) were measured during euglycemia (5 mmol/l) and after abrupt onset of hyperglycemia (10 mmol/l; variable dextrose infusion) under fixed hormonal conditions (somatostatin infusion for 6 h with basal insulin/glucagon/growth hormone replacement). A total of 10 subjects with moderately controlled type 2 diabetes and 7 age- and BMI-matched nondiabetic subjects were studied on up to three separate occasions under the following conditions: without fructose (F(-)) or with infusion of fructose at two dosages: 0.6 mg/kg center dot min (low F) and 1.8 mg/kg center dot min (high F). Although GP failed to decrease in response to hyperglycemia in type 2 diabetes, the coinfusion of both doses of fructose was associated with comparable decreases in GP in response to hyperglycemia (low F = -27%, high F = -33%; P < 0.01 vs. F(-) at both dosages), which approached the 44% decline in GP observed without fructose in the nondiabetic subjects. GP responses to hyperglycemia were not altered by the addition of fructose in the nondiabetic group (low F = -47%, high F = -42%; P > 0.05 vs. F(-)). Thus, the administration of small amounts of fructose to type 2 diabetic subjects partially corrected the regulation of GP by hyperglycemia per se, yet did not affect this regulation in the nondiabetic subjects. This suggests that the liver's inability to respond to hyperglycemia in type 2 diabetes, likely caused by impaired GK activity, contributes substantially to the increased GP in these individuals.  相似文献   

11.
Acute elevations in free fatty acids (FFAs) stimulate insulin secretion, but prolonged lipid exposure impairs beta-cell function in both in vitro studies and in vivo animal studies. In humans data are limited to short-term (< or =48 h) lipid infusion studies and have led to conflicting results. We examined insulin secretion and action during a 4-day lipid infusion in healthy normal glucose tolerant subjects with (FH+ group, n = 13) and without (control subjects, n = 8) a family history of type 2 diabetes. Volunteers were admitted twice to the clinical research center and received, in random order, a lipid or saline infusion. On days 1 and 2, insulin and C-peptide concentration were measured as part of a metabolic profile after standardized mixed meals. Insulin secretion in response to glucose was assessed with a +125 mg/dl hyperglycemic clamp on day 3. On day 4, glucose turnover was measured with a euglycemic insulin clamp with [3-3H]glucose. Day-long plasma FFA concentrations with lipid infusion were increased within the physiological range, to levels seen in type 2 diabetes (approximately 500-800 micromol/l). Lipid infusion had strikingly opposite effects on insulin secretion in the two groups. After mixed meals, day-long plasma C-peptide levels increased with lipid infusion in control subjects but decreased in the FH+ group (+28 vs. -30%, respectively, P < 0.01). During the hyperglycemic clamp, lipid infusion enhanced the insulin secretion rate (ISR) in control subjects but decreased it in the FH+ group (first phase: +75 vs. -60%, P < 0.001; second phase: +25 vs. -35%, P < 0.04). When the ISR was adjusted for insulin resistance (ISRRd = ISR / [1/Rd], where Rd is the rate of insulin-stimulated glucose disposal), the inadequate beta-cell response in the FH+ group was even more evident. Although ISRRd was not different between the two groups before lipid infusion, in the FH+ group, lipid infusion reduced first- and second-phase ISR(Rd) to 25 and 42% of that in control subjects, respectively (both P < 0.001 vs. control subjects). Lipid infusion in the FH+ group (but not in control subjects) also caused severe hepatic insulin resistance with an increase in basal endogenous glucose production (EGP), despite an elevation in fasting insulin levels, and impaired suppression of EGP to insulin. In summary, in individuals who are genetically predisposed to type 2 diabetes, a sustained physiological increase in plasma FFA impairs insulin secretion in response to mixed meals and to intravenous glucose, suggesting that in subjects at high risk of developing type 2 diabetes, beta-cell lipotoxicity may play an important role in the progression from normal glucose tolerance to overt hyperglycemia.  相似文献   

12.
A Consoli  N Nurjhan  F Capani  J Gerich 《Diabetes》1989,38(5):550-557
Excessive hepatic glucose output is an important factor in the fasting hyperglycemia of non-insulin-dependent diabetes mellitus (NIDDM). To determine the relative contributions of gluconeogenesis and glycogenolysis in a quantitative manner, we applied a new isotopic approach, using infusions of [6-3H]glucose and [2-14C]acetate to trace overall hepatic glucose output and phosphoenolpyruvate gluconeogenesis in 14 postabsorptive NIDDM subjects and in 9 nondiabetic volunteers of similar age and weight. Overall hepatic glucose output was increased nearly twofold in the NIDDM subjects (22.7 +/- 1.0 vs. 12.0 +/- 0.6 mumol.kg-1.min-1 in the nondiabetic volunteers, P less than .001); phosphoenolpyruvate gluconeogenesis was increased more than threefold in the NIDDM subjects (12.7 +/- 1.4 vs. 3.6 +/- 0.4 mumol.kg-1.min-1 in the nondiabetic subjects, P less than .001) and was accompanied by increased plasma lactate, alanine, and glucagon concentrations (all P less than .05). The increased phosphoenolpyruvate gluconeogenesis accounted for 89 +/- 6% of the increase in overall hepatic glucose output in the NIDDM subjects and was significantly correlated with the fasting plasma glucose concentrations (r = .67, P less than .01). Glycogenolysis, calculated as the difference between overall hepatic glucose output and phosphoenolpyruvate gluconeogenesis, was not significantly different in the NIDDM subjects (9.9 +/- 0.06 mumol.kg-1.min-1) and the nondiabetic volunteers (8.4 +/- 0.3 mumol.kg-1.min-1). We conclude that increased gluconeogenesis is the predominant mechanism responsible for increased hepatic glucose output in NIDDM.  相似文献   

13.
To determine whether the deranged glucose metabolism in uremia, in addition to insulin resistance can be attributed also to reduced glucose-induced glucose uptake, a two-step sequential hyperglycemic clamp (plasma glucose: 120 and 300 mg/dl) was performed in 6 non-dialyzed uremic and 8 healthy subjects. A constant infusion of somatostatin (300 micrograms/h) and soluble insulin (0.2 mU/kg/min) resulted in peripheral serum insulin slightly higher than basal in both uremics (16 +/- 3 and 22 +/- 3 microU/ml; step 1 and 2, respectively) and controls (20 +/- 2 and 22 +/- 1 microU/ml). The glucose-induced glucose uptake (3-3H-glucose) assessed as the difference between step 2 and 1 glucose disposal at the final 30 min of each step was markedly reduced in uremics (3.2 +/- 0.5 mg/kg/min) compared to healthy subjects (5.7 +/- 0.8 mg/kg/min; p less than 0.03). However, the percentage increment in glucose uptake from step 1 to step 2 hyperglycemia was comparable in the two groups (134 +/- 27 and 148 +/- 17%). Modest hyperglycemia (120 mg/dl) and slightly raised insulinemia resulted in comparable suppression of the endogenous (hepatic) glucose production (EGP) in healthy (1.6 +/- 0.2 mg/kg/min) and uremic subjects (1.5 +/- 0.3 mg/kg/min). In controls, pronounced hyperglycemia (300 mg/dl) further reduced EGP (0.6 +/- 0.3 mg/kg/min; p less than 0.01) while EGP in uremics on the contrary tended to rise (2.0 +/- 0.4 mg/kg/min; p = 0.09), thus indicating an abnormal reaction of the liver.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Our recent in vivo observations in healthy nonobese humans have demonstrated that prolonged elevation of plasma free fatty acids (FFAs) results in diminished glucose-stimulated insulin secretion (GSIS) when the FFA-mediated decrease in insulin sensitivity is taken into account. In the present study, we investigated whether obese individuals and patients with type 2 diabetes are more sensitive than healthy control subjects to the inhibitory effect of prolonged elevation of plasma FFAs on GSIS. In seven patients with type 2 diabetes and seven healthy nondiabetic obese individuals, we assessed GSIS with a programmed graded intravenous glucose infusion on two occasions, 6-8 weeks apart, with and without a prior 48-h infusion of heparin and Intralipid, which was designed to raise plasma FFA concentration approximately twofold over basal. The nondiabetic obese subjects had a significant 21% decrease in GSIS (P = 0.0008) with the heparin and Intralipid infusion, associated with a decrease in whole body insulin clearance. The impairment in GSIS was evident at low (<11 mmol/l) but not at higher plasma glucose concentrations. In contrast, the patients with type 2 diabetes had a slight increase in GSIS (P = 0.027) and no change in insulin clearance, although there was marked interindividual variability in response. Plasma proinsulin concentrations measured in a subset of subjects were not altered in either group by the infusion of heparin and Intralipid. In summary, 1) obese nondiabetic individuals are susceptible to a desensitization of GSIS with heparin and Intralipid infusion, and 2) patients with type 2 diabetes do not demonstrate such susceptibility when FFAs are elevated approximately twofold above basal with heparin and Intralipid. Our results suggest that FFAs could play an important role in the development of beta-cell failure in obese individuals who are at risk for developing type 2 diabetes. They do not, however, seem to further deteriorate the beta-cell function of patients who already have established type 2 diabetes and may even result in a slight increase in GSIS in this latter group.  相似文献   

15.
Insulin sensitivity, glucose effectiveness, and endogenous glucose production (EGP) during stable-labeled, frequently sampled insulin-modified intravenous glucose tolerance test (FSIGT) were evaluated by a single-and two-compartment minimal model combined with nonparametric deconvolution in eleven nonobese Japanese type 2 diabetic patients. Four patients were treated with sulfonylureas, and the remaining seven with diet therapy alone. None had diabetic retinopathy and microalbuminuria. Their fasting glucose level was 117+/-7 mg/dl (mean +/- SE), and HbA1c was 6.6+/-0.3%. Age-, sex-, and BMI-matched subjects with normal glucose tolerance served as control subjects. Plasma insulin response to the stimuli and insulin sensitivity indexes (S(I), S(I)*, and S(I)2* were derived from a minimal model and single- and two-compartment-labeled minimal models) were impaired in the type 2 diabetic patients. The combined ability of glucose, per se, to increase its own uptake and suppress EGP (glucose effectiveness [SG]), which was derived from kinetic analysis of plasma glucose by a minimal model, was significantly lower in the type 2 diabetic patients (0.0132+/-0.0015 vs. 0.0203+/-0.0022; P<0.05). However, the ability of glucose, per se, to stimulate glucose uptake, assessed as S(G)* and S(G)2* from the kinetic analysis of labeled glucose by single- and two-compartment minimal model, was not impaired in those patients. EGP of the type 2 diabetic patients as a whole was suppressed to the level similar to that of the control subjects despite a higher plasma glucose level throughout FSIGT. When EGP in the diabetic subjects was analyzed, considering their recent glycemic control, the initial suppression was blunted in the patients with higher HbA1c levels. In conclusion, glucose mass action to stimulate glucose uptake remains near-normal in the lean Japanese type 2 diabetic patients of this study, whereas ability of glucose to suppress EGP is impaired in the patients with recent hyperglycemia. This blunted suppression of EGP might be one of the conspirators for decreased S(G) in subjects with type 2 diabetes.  相似文献   

16.
Obesity is commonly associated with elevated plasma free fatty acid (FFA) levels, as well as with insulin resistance and hyperinsulinemia, two important cardiovascular risk factors. What causes insulin resistance and hyperinsulinemia in obesity remains uncertain. Here, we have tested the hypothesis that FFAs are the link between obesity and insulin resistance/hyperinsulinemia and that, therefore, lowering of chronically elevated plasma FFA levels would improve insulin resistance/hyperinsulinemia and glucose tolerance in obese nondiabetic and diabetic subjects. Acipimox (250 mg), a long-acting antilipolytic drug, or placebo was given overnight (at 7:00 P.M., 1:00 A.M., 7:00 A.M.) to 9 lean control subjects, 13 obese nondiabetic subjects, 10 obese subjects with impaired glucose tolerance, and 11 patients with type 2 diabetes. Euglycemic-hyperinsulinemic clamps and oral glucose tolerance tests (75 g) were performed on separate mornings after overnight Acipimox or placebo treatment. In the three obese study groups, Acipimox lowered fasting levels of plasma FFAs (by 60-70%) and plasma insulin (by approximately 50%). Insulin-stimulated glucose uptake during euglycemic-hyperinsulinemic clamping was more than twofold higher after Acipimox than after placebo. Areas under the glucose and insulin curves during oral glucose tolerance testing were both approximately 30% lower after Acipimox administration than after placebo. We conclude that lowering of elevated plasma FFA levels can reduce insulin resistance/hyperinsulinemia and improve oral glucose tolerance in lean and obese nondiabetic subjects and in obese patients with type 2 diabetes.  相似文献   

17.
To assess the role of muscle and liver in the pathogenesis of postprandial hyperglycemia in non-insulin-dependent diabetes mellitus (NIDDM), we administered an oral glucose load enriched with [14C]glucose to 10 NIDDM subjects and 10 age- and weight-matched nondiabetic volunteers and compared muscle glucose disposal by measuring forearm balance of glucose, lactate, alanine, O2, and CO2 (with forearm calorimetry). In addition, we used the dual-lable isotope method to compare overall rates of glucose appearance (Ra) and disappearance (Rd), suppression of endogenous glucose output, and splanchnic glucose sequestration. During the initial 1-1.5 h after glucose ingestion, plasma glucose increased by approximately 8 mM in NIDDM vs. approximately 3 mM in nondiabetic subjects (P less than 0.01); overall glucose Ra was nearly 11 g greater in NIDDM than nondiabetic subjects (45.1 +/- 2.3 vs. 34.4 +/- 1.5 g, P less than 0.01), but glucose Rd was not significantly different in NIDDM (35.1 +/- 2.4 g) and nondiabetic (33.3 +/- 2.7 g) subjects. The greater overall glucose Ra of NIDDM subjects was due to 6.8 g greater endogenous glucose output (13.7 +/- 1.1 vs. 6.8 +/- 1.0 g, P less than 0.01) and 3.8 g less oral glucose splanchnic sequestration of the oral load (31.4 +/- 1.5 vs. 27.5 +/- 0.9 g, P less than 0.05). Although glucose taken up by muscle was not significantly different in NIDDM and nondiabetic subjects (39.3 +/- 3.5 vs. 41.0 +/- 2.5 g/5 h), a greater amount of the glucose taken up by muscle in NIDDM was released as lactate and alanine (11.7 +/- 1.0 vs. 5.2 +/- 0.3 g in nondiabetic subjects, P less than 0.01), and less was stored (11.7 +/- 1.3 vs. 16.9 +/- 1.5 g, P less than 0.05). We conclude that increased systemic glucose delivery, due primarily to reduced suppression of endogenous hepatic glucose output and, to a lesser extent, reduced splanchnic glucose sequestration, is the predominant factor responsible for postprandial hyperglycemia in NIDDM.  相似文献   

18.
We previously reported a fall in hepatic glucose output (HGO) during sleep accompanied by reductions in glucose utilization (Rd) and free fatty acids (FFAs). This study was undertaken to determine the potential role of changes in Rd and FFA on HGO in nondiabetic men. To determine if the fall in HGO during sleep could be reversed by FFA elevation, seven nondiabetic men underwent [3-3H]glucose infusions from 2200 to 0800, with heparin (90 mU.kg-1.min-1) added at 0200. Glucose appearance (Ra) fell from 11.7 +/- 1.1 at 2430 to 8.9 +/- 0.8 mumol.kg-1.min-1 (P less than 0.05) at 0200. The fall in Ra was associated with decreases in FFA (0.57 +/- 0.10 to 0.48 +/- 0.07 mM) and glycerol (0.08 +/- 0.01 to 0.06 +/- 0.01 mM). Infusion of heparin significantly increased FFA and glycerol (1.09 +/- 0.21 and 0.11 +/- 0.01 mM, respectively, P less than 0.01) and resulted in a significant fall in plasma alanine, suggesting that gluconeogenesis had been increased. However, rates of glucose turnover were indistinguishable from overnight studies without heparin. In additional studies (n = 6), intralipid and heparin-induced FFA elevation (from 0.61 +/- 0.07 to 0.95 +/- 0.05 mM, P less than 0.01) stimulated gluconeogenesis ([U-14C]alanine to glucose) twofold (188 +/- 22% increase compared to 114 +/- 6% in saline control studies, P less than 0.01). However, despite increasing gluconeogenesis, overall HGO did not change (10.6 +/- 0.5 vs. 10.7 +/- 0.6 mumol.kg-1.min-1) during lipid infusion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The effect of pioglitazone on splanchnic glucose uptake (SGU), endogenous glucose production (EGP), and hepatic fat content was studied in 14 type 2 diabetic patients (age 50 +/- 2 years, BMI 29.4 +/- 1.1 kg/m(2), HbA(1c) 7.8 +/- 0.4%). Hepatic fat content (magnetic resonance spectroscopy) and SGU (oral glucose load- insulin clamp technique) were quantitated before and after pioglitazone (45 mg/day) therapy for 16 weeks. Subjects received a 7-h euglycemic insulin (100 mU. m(-2). min(-1)) clamp, and a 75-g oral glucose load was ingested 3 h after starting the insulin clamp. Following glucose ingestion, the steady-state glucose infusion rate during the insulin clamp was decreased appropriately to maintain euglycemia. SGU was calculated by subtracting the integrated decrease in glucose infusion rate during the 4 h after glucose ingestion from the ingested glucose load. 3-[(3)H]glucose was infused during the initial 3 h of the insulin clamp to determine rates of EGP and glucose disappearance (R(d)). Pioglitazone reduced fasting plasma glucose (10.0 +/- 0.7 to 7.5 +/- 0.6 mmol/l, P < 0.001) and HbA(1c) (7.8 +/- 0.4 to 6.7 +/- 0.3%, P < 0.001) despite increased body weight (83 +/- 3 to 86 +/- 3 kg, P < 0.001). During the 3-h insulin clamp period before glucose ingestion, pioglitazone improved R(d) (6.9 +/- 0.5 vs. 5.2 +/- 0.5 mg. kg(-1). min(- 1), P < 0.001) and insulin-mediated suppression of EGP (0.21 +/- 0.04 to 0.06 +/- 0.02 mg. kg(-1). min(-1), P < 0.01). Following pioglitazone treatment, hepatic fat content decreased from 19.6 +/- 3.6 to 10.4 +/- 2.1%, (P < 0.005), and SGU increased from 33.0 +/- 2.8 to 46.2 +/- 5.1% (P < 0.005). Pioglitazone treatment in type 2 diabetes 1) decreases hepatic fat content and improves insulin-mediated suppression of EGP and 2) augments splanchnic and peripheral tissue glucose uptake. Improved splanchnic/peripheral glucose uptake and enhanced suppression of EGP contribute to the improvement in glycemic control in patients with type 2 diabetes.  相似文献   

20.
We have recently described a novel phenotype in a group of subjects with type 1 diabetes that is manifested by glucose >11.1 mmol/l 120 min after an oral glucose load, but with normal fasting glucose levels. We now describe the metabolic characteristics of these subjects by comparing parameters of islet hormone secretion and glucose disposal in these subjects to age-matched nondiabetic control subjects. The patients with type 1 diabetes had fasting glucose, insulin, and glucagon values similar to those of control subjects. Additionally, the insulin secretory response to intravenous arginine at euglycemia was similar in the control and diabetic groups (264 +/- 33.5 and 193 +/- 61.3 pmol/l; P = 0.3). However, marked differences in beta-cell function were found in response to hyperglycemia. Specifically, the first-phase insulin response was lower in diabetic subjects (329.1 +/- 39.6 vs. 91.3 +/- 34.1 pmol/l; P < 0.001), as was the slope of glucose potentiation of the insulin response to arginine (102 +/- 18.7 vs. 30.2 +/- 6.1 pmol/l per mmol/l; P = 0.005) and the maximum insulin response to arginine (2,524 +/- 413 vs. 629 +/- 159 pmol/l; P = 0.001). Although plasma levels of glucagon-like peptide (GLP)-1 and gastric inhibitory peptide (GIP) did not differ between control and diabetic subjects, the incretin effect was lower in the diabetic patients (70.3 +/- 5.4 vs. 52.1 +/- 5.9%; P = 0.03). Finally, there was a lack of suppression of glucagon in the patients after both oral and intravenous glucose administration, which may have contributed to their postprandial hyperglycemia. Glucose effectiveness did not differ between patients and control subjects, nor did insulin sensitivity, although there was a tendency for the patients to be insulin resistant (9.18 +/- 1.59 vs. 5.22 +/- 1.17 pmol.(-1).min(-1); P = 0.08). These data characterize a novel group of subjects with type 1 diabetes manifested solely by hyperglycemia following an oral glucose load in whom islet function is normal at euglycemia, but who have marked defects in both alpha- and beta-cell secretion at hyperglycemia. This pattern of abnormalities may be characteristic of islet dysfunction early in the development of type 1 diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号