首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the expression profiles of lacto-series type 2 antigens in hematopoietic cells and their progenitors, in comparison with leukemic leukocytes. Reactivity profiles of various anti-type 2 chain monoclonal antibodies (MoAbs) with leukemic blasts from 12 patients with acute myeloblastic leukemia (AML) and those from two patients with acute unclassified leukemia (AUL) show that anti-sialosyl-Le(x) MoAb SNH3 reacted strongly with greater than 95% of leukemic blast leukocyte populations from all patients (14 of 14). Another anti-sialosyl-Le(x) MoAb, FH6, showed less reactivity than SNH3 (12 of 14 patients), while anti-Le(y) MoAb AH6 showed reactivity with only 8 of 14 patients. On the other hand, none of the anti-type 2 chain MoAbs reacted with CD34+ normal adult bone marrow (BM) mononuclear cells obtained independently from three healthy volunteers. MoAb SNH3, but not FH6 or AH6, showed complement-mediated cytotoxicity to leukemic blasts from these patients, as well as to myelogenous leukemia cell line HL60. Colony-forming unit granulocyte-macrophage (CFU-GM), but not burst-forming unit-erythroid (BFU-E), was incompletely inhibited by treatment of normal BM mononuclear cells with SNH3 and complement. The absence of type 2 chain antigen expression in hematopoietic progenitor cells and in in vitro hematopoietic colonies (CFU-GM and BFU-E) strongly suggests that application of anti-carbohydrate MoAbs, particularly anti-sialosyl-Le(x) could be useful for elimination of leukemic myeloblasts infiltrating in BM, for purging of leukemic blasts in BM, and for facilitation of autologous BM transplantation.  相似文献   

2.
3.
Summary The ability of the in vitro long-term bone marrow culture (LTBMC) system to impair the survival of leukemic cells and to enhance the growth of normal progenitors has been studied. Bone marrow cells from 19 acute lymphoblastic leukemia (ALL) and 30 acute myeloid leukemia (AML) patients at diagnosis were grown in LTBMC for 4–10 weeks. In half of the cases the leukemic population declined down to undetectable levels and was replaced by putative normal hemopoietic precursors, both in ALL and in AML. In the remaining cases, leukemic cells persisted throughout the culture time and few if any normal hemopoietic cells were detected. These data led us to extend to the lymphoid compartment the previous observation of decreasing leukemic myeloid blasts in LTBMC. The potential of such cultures as an in vitro purging system for autologous bone marrow transplantation in selected poor-prognosis lymphoid malignancies should be explored, as has been done for acute and chronic myeloid leukemias.  相似文献   

4.
The epitopes Tn and sialosyl-Tn are expressed on erythrocytes of individuals with a very rare blood group, who often suffer from "Tn syndrome." We surveyed expression of Tn and sialosyl-Tn in normal blood cells, malignant transformed cells, and progenitor stem cells from bone marrow (BM). An anti-Tn antibody, IE3, and an anti-sialosyl-Tn antibody, TKH2, were used in this study. TKH2 reacted with erythroblasts, B cells, and a subset of CD4+ cells; but not with erythrocytes. Erythroblastic cell lines (K562, HEL, and UT7/EPO) and B- cell lines (Daudi, Raji, and B-cell lines transformed by Epstein-Barr virus) showed reactivity to TKH2. Similar results from the reactivity of TKH2 with transformed cells from leukemia patients and lymphoma patients were obtained; TKH2 reacted with blasts from erythroleukemia (M6; for 4 of 4 cases) and with lymphocytes from B-cell chronic lymphocytic leukemia (3 of 3), B-cell lymphoma (5 of 5), and CD4+ adult T-cell leukemia (4 of 4), but did not react with blasts from acute myeloid leukemia (M0 to M5; 0 of 22) or acute lymphoid leukemia (B- lymphoid leukemia, 0 of 11; T-lymphoid leukemia, 0 of 2; undifferentiated leukemia, 0 of 1). IE3 did not react with all of the tested cells. CD2-CD19-TKH2+ normal BM cells (BMC) contained blasts and various maturation stages of erythroblasts. The TKH2+ cells produced a large number of colony-forming unit-erythroid (CFU-E) colonies, whereas they produced a small number of burst-forming unit-erythroid colonies and CFU-granulocyte-macrophage colonies. CD34+ normal BMC did not express Tn and sialosyl-Tn. These findings suggest that sialosyl-Tn expresses in CFU-E to erythroblasts.  相似文献   

5.
Proliferation of normal and malignant human immature lymphoid cells   总被引:5,自引:0,他引:5  
Campana  D; Janossy  G 《Blood》1988,71(5):1201-1210
In this study, the proliferative activity of human B and T cell precursors in central lymphoid organs, acute lymphoblastic leukemia (ALL) cells, and permanent cell lines was investigated with double- and triple-color-labeling methods for the analysis of cell cycle-associated features such as 5-bromo-2'-deoxyuridine (BrdU) incorporation and the expression of a nuclear proliferation-associated antigen, Ki67, together with the phenotypic profile of the cells. In infant and regenerating bone marrow (BM), 41.5% +/- 4.0% of terminal deoxynucleotidyl transferase (TdT+) cells were Ki67+, and 30.0% +/- 4.0% incorporated BrdU. A similar proportion of TdT+ dividing cells was observed in adult BM. The proliferative activity of the B cell progenitors reached the peak at the pre-B stage: 80.8% +/- 7.6% and 35.3% +/- 6.1% of c mu +, RFB7- cells were Ki67+ and BrdU+, respectively. In contrast, greater than 95% of surface immunoglobulin- positive BM lymphocytes were resting cells. In infant thymus the highest dividing capacity (95% Ki67+, 60% to 90% BrdU+) was observed in large cortical thymocytes (TdT+, CD1-, cCD3+), and TdT+, CD1+ cortical thymocytes also showed a high proliferative activity (74.3% +/- 2.3% Ki67+, 22.0% +/- 1.0% BrdU+), but TdT-, mCD3+ thymic lymphocytes were mainly resting cells (less than 5% Ki67+, less than 1% BrdU+). The proliferative activity of null and common ALL blasts was significantly lower than that of normal BM TdT+ cells (15.5% +/- 4.2% Ki67+, 6.2% +/- 2.1% BrdU+; P less than .001). Dividing ALL blasts were TdT+ and expressed surface antigens detected by CD10 and/or CD19 antibodies. In T cell-ALL, the percentages of Ki67+ and BrdU+ blasts were also lower than those found in the corresponding normal immature thymocytes (13.0% +/- 3.1% and 2.4% +/- 1.3%, respectively; P less than .001). Thus, ALLs derive from actively proliferating lymphoid precursors but have a lower dividing capacity than the corresponding normal cell types. In ALL cases with heterogeneous expression of markers such as cmu and CD1, dividing blasts were distributed among both negative and positive populations, thus indicating that blasts with signs of differentiation also remain within the dividing pool.  相似文献   

6.
OBJECTIVE: To study the clonality of cytogenetically normal progenitors detected in the peripheral blood (PB) of acute myeloid leukemia (AML) patients. METHODS: Five female patients with cytogenetically abnormal, newly-diagnosed AML who were heterozygous for informative alleles of the androgen receptor (AR) gene were studied using the human androgen receptor allele (HUMARA) assay. RESULTS: PB mononuclear cells and bone marrow (BM) fibroblasts from these patients were monoclonal and polyclonal, respectively. Both cytogenetically normal and abnormal colony-forming cells (CFC) were detected from 3 AML samples and the HUMARA assay determined that most of these CFC were part of the leukemic clone. The fourth sample generated colonies that were 100% normal by cytogenetics and polyclonal by HUMARA. In contrast, 5-week-old long-term culture (LTC)-derived colonies were 100% cytogenetically normal by FISH and polyclonal by HUMARA in 4 of the 5 samples. The fifth sample, which showed a small number of karyotypically abnormal LTC-derived colonies, nevertheless showed amplification of the "leukemia-associated" AR allele in 46/50 LTC-derived colonies as well as all 40 directly clonogenic cells tested.CONCLUSIONS: Thus in 4 of 5 AML samples tested, both cytogenetics and the HUMARA assay indicate that a substantial number of normal, polyclonal hematopoietic progenitors often persist in AML PB at diagnosis in spite of the predominance of malignant blasts and the severe cytopenias of normal mature blood cells that are typically seen clinically.  相似文献   

7.
We have compared in various clonogenic assays the in vitro sensitivity to etoposide (VP16) of 1) human leukemic precursors (leukemia colony-forming units; L-CFU), 2) normal erythroid progenitors (erythroid burst-forming units; BFU-E, and 3) normal committed myeloid progenitors (granulocyte-macrophage colony-forming units; CFU-GM and more primitive hemopoietic precursors (PPC) that adhere to cultured marrow stromal cells. Bone marrow samples were obtained from 15 normal subjects and 16 leukemic patients: 9 in the acute phase of acute nonlymphoblastic leukemia (ANLL) and 7 in complete remission. VP16 was tested at concentrations ranging from 10(-8) to 10(-3) M. The median recoveries at 10(-3) M VP16 were respectively 0%, 0.5%, 0%, and 0% for leukemic progenitors, CFU-GM from leukemic patients in complete remission, normal CFU-GM, and BFU-E, and 23% for PPC. This indicates that CFU-GM, BFU-E, and L-CFU are highly sensitive to VP16, whereas PPC, more primitive myeloid precursors, are spared. These results suggest that VP16 may be used as an "ex vivo" purging agent for autologous bone marrow.  相似文献   

8.
We used an in vitro clonogenic assay in semi-solid medium to test the sensitivity of normal bone marrow and acute myeloid and lymphoid leukaemia progenitors to the flavonol quercetin. We have studied 14 acute myeloid (AML) and four acute lymphoid (ALL) leukaemias. All ALL and the vast majority of AML (12/14) had a high sensitivity to quercetin with more than 50% growth inhibition at 2 x 10(-6) M quercetin. One M3-AML was partially quercetin-sensitive displaying 60% surviving AML-colony forming units (CFU-AML) at a quercetin concentration of 10(-5) M. One M1-AML was resistant to the growth inhibitory effect of quercetin at a concentration of 2 x 10(-5) M. The clonogenic efficiency of both AML and ALL positively correlated with leukaemic colony-forming unit (CFU-L) sensitivity to quercetin suggesting that this parameter can be useful in predicting quercetin responsiveness of leukaemic cells. We have also studied the effect of various quercetin concentrations on colony formation by normal bone marrow cells. At a quercetin concentration of 10(-5) M, we observed (in five different experiments) a mean recovery of 53% and 65% of erythroid blast-forming units (BFU-E) and granulocyte-macrophage colony-forming units (CFU-GM), respectively. Thus, normal bone marrow appeared partially resistant to quercetin, being inhibited less than 50% by quercetin concentration higher than 2 x 10(-5). When normal bone marrow were deprived in CD34+ haematopoietic progenitors the resultant population became highly sensitive to quercetin, with a mean recovery of BFU-E and CFU-GM of 5% and 12% of controls respectively in the presence of 2 x 10(-5) M quercetin. Furthermore, CD34 progenitors, positively selected, appeared fully resistant to quercetin concentrations as high as 2 x 10(-5) M. Thus, CD34+ progenitors are a quercetin-resistant component in normal bone marrow. In conclusion, our results further provide a biological basis for the therapeutic use of quercetin, considering that this compound could inhibit leukaemic cell growth without suppressing normal haematopoiesis.  相似文献   

9.
OBJECTIVE: To determine the response of bone marrow progenitor cells from patients with myelodysplastic syndromes (MDS) to culture in physiologic oxygen tension. METHODS: Methylcellulose progenitor assays using both unfractionated bone marrow mononuclear cells (MNCs) and purified CD34(+) progenitors were performed in atmospheric oxygen (18.6% O(2)) or one of two levels of hypoxia (1% and 3% O(2)). Assays were performed using normal donor marrow, MDS patient marrow, acute myelogenous leukemia marrow or peripheral blood blasts, chronic phase chronic myelogenous leukemia (CML) marrow MNCs, and blast crisis CML peripheral blood. RESULTS: The majority of MDS samples showed decreased colony-forming units (CFU) in 18.6% O(2) compared to normal controls, as expected. However, in either 1% or 3% O(2), 9 of 13 MDS samples demonstrated augmentation of CFUs beyond that observed in normal controls, with 6 of 13 demonstrating a greater than ninefold augmentation. This effect is cell autonomous, as it persisted after purification of CD34(+) progenitor cells. Additionally, the augmented response to physiologic oxygen tension is specific to MDS, as it was not observed in either acute or chronic myelogenous leukemia samples. CONCLUSION: These results suggest that the reported decrease in MDS CFUs reflects greater sensitivity of MDS progenitors or their progeny to the nonphysiologic oxygen tensions routinely used in vitro, rather than a true decrease in progenitor frequency. Importantly, these experiments for the first time describe an experimental system that can be used to study the growth of primary cells from patients with MDS.  相似文献   

10.
The disappearance of normal hematopoiesis during acute nonlymphoblastic leukemia (ANLL) is poorly understood. Several reports indicate that conditioned medium obtained from leukemic cells might inhibit the formation of normal hematopoietic progenitors. However, these blast-conditioned medium (BCM) inhibitory activities are not well characterized. In order to evaluate whether BCM might contain an activity inhibiting the growth of normal marrow progenitors, BCM from 13 consecutive patients with ANLL were tested on normal bone marrow in methylcellulose assays. In all the cases, a significant inhibition of the growth of granulocyte-macrophage colony-forming unit (CFU-GM) progenitors was observed, whereas erythroid burst-forming unit (BFU-E) progenitors were not affected. Further characterization of the BCM inhibitory activity showed using both a biological assay and RIA, the presence of tumor necrosis factor-alpha (TNF-alpha) in 10 out of 13 BCM. Northern blot analysis performed in six patients showed a correlation between the expression of TNF-alpha mRNA by leukemic cells and the presence of TNF-alpha in BCM. Moreover, the BCM inhibitory activity could be neutralized with an anti-TNF-alpha antiserum. These data indicate that leukemic cells express and release frequently TNF-alpha, which may therefore play an important role in the inhibition of granulopoiesis during leukemia.  相似文献   

11.
We evaluated the potential role of photoradiation therapy with a benzoporphyrin derivative, monoacid ring A (BPD-MA), and dihematoporphyrin ether (DHE), for the ex vivo purging of residual tumor cells from autologous bone marrow (BM) grafts. BPD-MA and DHE photosensitizing activity was tested against two human large-cell lymphoma cell lines and colony-forming unit-leukemia (CFU-L) derived from patients with acute myelogenous leukemia (AML). In mixing experiments, 4-log elimination of tumor cell lines was observed after 1 hour of incubation with 75 ng/mL of BPD-MA or 30 minutes of treatment with 12.5 micrograms/mL of DHE followed by white light exposure. By comparison, using the same concentration of BPD-MA, the mean recovery of normal BM progenitors was 4% +/- 0.8% (mean +/- SD) for granulocyte- macrophage colony-forming unit (CFU-GM) and 5% +/- 0.8% for burst- forming unit-erythroid (BFU-E). Similarly, DHE treatment resulted in the recovery of 5.2% +/- 2% and 9.8% +/- 3% of CFU-GM and BFU-E, respectively. Furthermore, equivalently cytotoxic concentrations of both DHE and BPD-MA and light were found not to kill normal pluripotent stem cells in BM, as demonstrated by their survival in two-step long- term marrow culture at levels equal to untreated controls. The T- lymphoblastic leukemia cell line CEM and its vinblastine (VBL)- resistant subline CEM/VBL, along with the acute promyelocyte leukemia cell line HL-60 and its vincristine (VCR)-resistant subline HL-60/VCR, were also tested. BPD-MA at 75 ng/mL was able to provide a greater than 4-log elimination of the drug-sensitive cell lines, but only a 34% and 55% decrease of the drug-resistant HL-60/VCR and CEM/VBL cell lines, respectively. On the contrary, 12.5 micrograms/mL of DHE reduced the clonogenic growth of all the cell lines by more than 4 logs. Further experiments demonstrated decreased uptake of both BPD-MA and DHE by the resistant cell lines. However, all the cell lines took up more DHE than BPD-MA under similar experimental conditions. Our results demonstrate the preferential cytotoxicity of BPD-MA and DHE toward neoplastic cell lines and CFU-L from AML patients. In addition, DHE was slightly more effective in purging tumor cells expressing the p-170 glycoprotein. These results suggest that photoradiation with DHE would be useful for in vitro purging of residual drug-resistant leukemia and lymphoma cells.  相似文献   

12.
13.
Although monoclonal antibodies (MoAbs) to CD15, especially PM-81, react with leukemic blasts from the majority of patients with acute myeloid leukemia (AML), a small subset of patients have cells that are CD15 negative or dim. We determined previously that neuraminidase will increase the reactivity of PM-81 with AML blasts, as well as blasts from many patients with acute lymphoblastic leukemia (ALL). In this report, we describe the laboratory results and clinical course of the first patient with AML whose harvested bone marrow was treated with neuraminidase prior to MoAbs and complement treatment. Neuraminidase increased the percentage of the patient's leukemia cells that reacted with PM-81 from 18% to 90% and more than doubled the percentage of AML blasts that were lysed by PM-81 and complement. The patient suffered no acute toxicity, engrafted rapidly, and was transfusion independent by day 21 post-ABMT. This report demonstrates the probable safety and efficacy of pretreatment of bone marrow with neuraminidase, and increases the number of patients with AML or ALL who may benefit from ABMT using marrow purging with MoAb to CD15.  相似文献   

14.
Previous studies by others using metabolic labeling, cell lysis, and immunoprecipitation have reported elevated levels of p53 protein in blast cells derived from patients with acute lymphoblastic leukemia (ALL) and acute myeloblastic leukemia (AML), whereas p53 protein was not detected in normal light-density bone marrow cells. In this report, using the same detection methods, we confirm the negligible expression of p53 protein in normal light density marrow cells. However, we find clearly significant levels of p53 protein expression in enriched normal human marrow blast populations. Furthermore, using a panel of p53 specific monoclonal antibodies, we find the p53 protein constitutively synthesized by normal marrow blasts has the immunologic phenotype identified by PAb240 that reportedly recognizes a common conformational-dependent epitope on mutant p53. We have also found that the p53 immunologic subclass identified by PAb240 exists in normal human circulating lymphocytes either resting, serum starved, or PHA activated. In summary, it is clear that (1) normal marrow blast populations provide the appropriate control for assessing the levels of p53 protein expression in leukemic blast cells; and (2) PAb240 cannot be used to distinguish p53 mutated at the DNA level from normal p53 in fresh human hematopoietic cells.  相似文献   

15.
Smith  RG; Kitchens  RL 《Blood》1989,74(1):312-319
Terminal deoxynucleotidyl transferase (TdT) is a useful marker for normal lymphocyte precursors and acute lymphoblastic leukemia (ALL). Our previous studies, however, have shown that for monitoring minimal residual disease in the circulation, assay for TdT alone is not sufficiently specific to distinguish leukemia cells from the background of rare normal blood TdT+ cells. In an attempt to increase specificity for leukemic cells, we have used double and triple immunophenotypic analysis to characterize normal circulating and bone marrow TdT+ cells. Overall, normal TdT+ cells were about 1000-fold more frequent in the marrow than in the blood. More than 75% of TdT+ cells in both the blood and marrow expressed the CD34, CD22, and HLA-DR antigens. However, circulating TdT+ cells infrequently expressed CD19 (4.5%) and CD9 (2.3%), compared with their marrow counterparts (74% and 47%, respectively). The brightly staining CD10+ phenotype, frequently associated with ALL blasts, was significantly less common among normal blood (5.7%) than marrow (31%) TdT+ cells. Although T-lineage markers were rarely expressed on TdT+ cells in either site, CD7+ cells were far more prevalent within the circulating TdT+ subset (4%) than among the marrow population (less than 0.2%). The results suggest a selective release of lineage-uncommitted and/or thymus-destined TdT+ cells from the marrow into the circulation. Moreover, since CD19, CD9, and high- density CD10 are frequently found on ALL blasts, staining for these markers on TdT+ cells in the circulation should improve the specificity of assay for residual common ALL cells. Likewise, assay for CD5+ and possibly CD7+ TdT+ cells in either marrow or blood should provide a very sensitive method of detection of T-ALL blasts.  相似文献   

16.
Fragoso R  Pereira T  Wu Y  Zhu Z  Cabeçadas J  Dias S 《Blood》2006,107(4):1608-1616
The presence of persistent circulating leukemia cells, or engrafted into extramedullary tissues, is a bad prognostic factor for patients with acute leukemia. However, little is known about the mechanisms that regulate the exit of leukemia cells from the bone marrow (BM) microenvironment. We reveal that vascular endothelial growth factor receptor 1 (FLT-1) modulates acute leukemia distribution within the BM, along VEGF and PlGF gradients, regulating leukemia survival and exit into the peripheral circulation. FLT-1 activation on acute lymphoblastic leukemia (ALL) cells results in cell migration and proliferation in vitro, whereas in vivo FLT-1-overexpressing cells accumulate in the BM epiphysis of nonobese diabetic-severe combined immunodeficient (NOD-SCID) recipients and are detected in circulation 2 weeks after inoculation. In turn, FLT-1 neutralization affects leukemia localization (now in the BM diaphysis), increases leukemia apoptosis, and impedes the exit of ALL cells, prolonging the survival of inoculated mice. We demonstrate further that FLT-1-induced cell migration involves actin polymerization and lipid raft formation. Taken together, we show that FLT-1 regulates the BM localization of ALL cells, determining their survival and exit into the circulation and ultimately the survival of inoculated recipients. FLT-1 targeting on subsets of acute leukemias may delay the onset of extramedullary disease, which may be advantageous in combinatorial therapeutic settings.  相似文献   

17.
The tetrapeptide acetyl-N-Ser-Asp-Lys-Pro (AcSDKP) inhibits the entry into DNA synthesis of murine spleen colony-forming units (CFU-S) and protects these cells during chemotherapy. This synthetic peptide also inhibits the growth of normal human marrow progenitors granulocyte-macrophage colony-forming units (CFU-GM) and erythroid burst-forming units (BFU-E) and decreases their percentage in DNA synthesis at nanomolar concentration. In view of its clinical application as a marrow protector, we have investigated its effects on malignant cells. Studies were carried out on HL-60 cells and on fresh leukemic cells from patients with either chronic myeloid leukemia (CML) or acute myeloid leukemia (AML). Results showed that AcSDKP, whatever the doses used, did not modify the proliferation of both HL-60 cells and AML cells even when enhanced by stimulating factors such as interleukin 3 or granulocyte-macrophage colony-stimulating factor (GM-CSF). In addition, no change in the number and the percentage in S-phase of both HL-60 clonogenic cells and CML progenitors was observed. Our data clearly demonstrate that the tetrapeptide AcSDKP was ineffective on leukemic cells and therefore by acting selectively on normal progenitors represents a potent therapeutical agent for the protection of normal bone marrow progenitors during chemotherapy.  相似文献   

18.
Granulocyte-macrophage colony-stimulating factor (GM-CSF) has been used recently to recruit undifferentiated acute myelogenous leukemia (AML) blasts into the S-phase of the cell cycle and increase the fraction of cells killed by cell cycle-specific drugs. Using three AML blast colony assays combined with a suspension culture (delta assay), we determined the in vitro effect of GM-CSF on mature and undifferentiated AML blast progenitors obtained from bone marrow aspirates of six AML patients. GM-CSF stimulated AML blast colony proliferation at a concentration of 5 ng/ml in the methylcellulose and the agar clonogenic assays in six of six AML marrow samples. However, in the delta assay, which selects for immature AML progenitors, GM-CSF did not affect AML blast colony-forming cells in five of six AML marrow samples at concentrations ranging from 5 to 300 ng/ml. Our data imply that GM-CSF stimulates mature but not undifferentiated AML blast progenitors. It is therefore possible that GM-CSF may not be beneficial as a recruiting agent in most AML patients.  相似文献   

19.
AML1-ETO, a chimeric gene frequently detected in acute myelogenous leukemia (AML), inhibits the differentiation of myeloid progenitors by suppressing genes associated with myeloid differentiation and increases the replating ability of clonogenic myeloid progenitors. However, AML1-ETO alone cannot induce AML and thus additional genetic events are required for the onset of AML. The Wilms tumor gene (WT1), which has been identified as the gene responsible for Wilms tumor, is expressed at high levels in almost all human leukemias. In this study, we have generated transgenic mice (WT1-Tg) that overexpress WT1 in hematopoietic cells to investigate the effects of WT1 on AML1-ETO-associated leukemogenesis. AML1-ETO-transduced bone marrow (BM) cells from WT1-Tg mice exhibited inhibition of myeloid differentiation at more immature stages and higher in vitro colony-forming ability compared with AML1-ETO-transduced BM cells from wild-type mice. Most importantly, all of the mice that received a transplant of AML1-ETO-transduced BM cells from the WT1-Tg mice rapidly developed AML. These results demonstrate that AML1-ETO may exert its leukemogenic function in cooperation with the expression of WT1.  相似文献   

20.
Shen JB  Tang JY  Zhao JC  Pan C  Chen J  Zhou X  Wang YP 《Acta haematologica》2002,107(4):208-212
OBJECTIVE: To explore telomerase activity and its association with the proliferative potential of hematopoietic stem cells in bone marrow (BM) in patients with aplastic anemia (AA). METHODS: Telomerase activity of mononuclear cells separated from BM was determined with the TRAPeze kit. BM specimens from 22 cases with AA and 7 normal controls were included. SPSS10.0 was applied to analyze data derived from telomerase activity and colony-forming unit-granulocyte and monocyte. RESULTS: The median telomerase activity level of BM in AA was 2-fold higher than that in normal controls. There was an inverse correlation in AA between telomerase activity and colony-forming unit (r = 0.78, p < 0.05). BM of chronic AA expressed higher telomerase than that of acute AA. CONCLUSIONS: Telomerase activity in AA was increased and may be the result of the negative feedback of hematopoietic potential. Telomerase activity varied between the subtypes of AA. Telomerase activity was conversely correlated with the proliferative potential of BM in AA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号