首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The trabecular bone of the secondary spongiosa of mature rats shows a coupling of bone formation to resorption. It has been clearly shown that in adult man the coupling of formation and resorption involves a site-specific sequence of events, in which bone resorption is normally followed, at the same site, by bone formation. Whether the coupled processes of bone resorption and formation also occur at the same site in the rat is controversial. To elucidate the spatial relationship between bone formation and resorption in the rat, we compared the percentage of crenated and non-crenated cement lines with the percentage of crenated and non-crenated bone surfaces in the proximal tibia of adult rats aged 16 weeks to 2 years. A similar comparison was also made using bone from adult human iliac crest. We found that the trabecular bones of 16-week-old and 7-month-old rats exhibited a low percentage (7–11%) of crenated cement lines, which is opposite to the proportion (88%) we observed in human trabecular bone. In contrast, the surfaces of rat bone trabeculae showed a similar low proportion of crenated surface to human bone (rat 1.1–1.4% vs. 5% in humans). In older (2 years) rats, in which bones have ceased to grow in length, the percentage of cement lines that were crenated increased to 45%. These results imply that the major proportion of bone formation in the trabecular bone of growing rats occurs on non-resorbed surfaces. Thus, although there is substantial evidence that bone formation is coupled to resorption in the rat, such that increased resorption is associated with increased formation, and suppression of resorption suppresses bone formation, bone formation does not necessarily occur on a previously resorbed site. This suggests that in the rat, the processes are not coupled by local release of cytokines or local cell interactions but by some other signal, such as mechanical stimulation. Since site-specificity appears not to be crucial to the coupling of formation to resorption, the greater site-specificity of coupling in man, and in older rats, may be attributable to a more static skeleton, which engenders a closer spatial correlation between bone formation and the resorption that induced it. © 1993 Wiley-Liss, Inc.  相似文献   

2.
Nine-month-old female rats were double-labeled with bone markers and subjected to right hindlimb immobilization or served as control for 0, 2, 10, 18, or 26 weeks. The right limb was immobilized against the abdomen, thus unloading it, while the left limb was overloaded during ambulation. Single photon absorptiometry and cancellous bone histomorphometry were performed on dissected intact femur and 20-microns-thick undecalcified specimens of the proximal tibial metaphysis. In the unloaded limb, immobilization-induced muscle and cancellous bone loss occurred rapidly before 10 weeks and stabilized at 50% less bone mass after 18 weeks. Unloading caused a negative bone balance from a combination of elevated bone resorption and depressed bone formation. At 2, 10, and 18 weeks of immobilization, the ratios of bone resorption to bone formation surfaces were 1.6, 1.5, and 1.3, respectively; at 26 weeks, the ratio was 1. The bone loss was accompanied by poorer trabecular architecture (trabecular number decreased and trabecular separation increased), reaching the maximum at 18 weeks and stabilizing thereafter. These observations are in general agreement with Frost's postulate for mechanical effects on lamellar bone remodeling, and the findings on disuse osteoporosis in man. Therefore, the one-legged immobilization model can be useful in studies of the mechanisms of structural adaptation to mechanical usage.  相似文献   

3.
The process of bone remodeling is regulated by metabolic activities of many bone cells. While osteoclasts and osteoblasts are responsible for bone resorption and formation, respectively, activities of these cells are believed to be controlled by a mechanosensory system of osteocytes embedded in the extracellular bone matrix. Several experimental and theoretical studies have suggested that the strain-derived interstitial fluid flow in lacuno-canalicular porosity serves as the prime mover for bone remodeling. Previously, we constructed a mathematical model for trabecular bone remodeling that interconnects the microscopic cellular activities with the macroscopic morphological changes in trabeculae through the mechanical hierarchy. This model assumes that fluid-induced shear stress acting on osteocyte processes is a driving force for bone remodeling. The validity of this model has been demonstrated with a remodeling simulation using a two-dimensional trabecular model. In this study, to investigate the effects of loading frequency, which is thought to be a significant mechanical factor in bone remodeling, we simulated morphological changes of a three-dimensional single trabecula under cyclic uniaxial loading with various frequencies. The results of the simulation show the trabecula reoriented to the loading direction with the progress of bone remodeling. Furthermore, as the imposed loading frequency increased, the diameter of the trabecula in the equilibrium state was enlarged by remodeling. These results indicate that our simulation model can successfully evaluate the relationship between loading frequency and trabecular bone remodeling.  相似文献   

4.
Osteopontin deficiency and aging on nanomechanics of mouse bone   总被引:1,自引:0,他引:1  
Osteoporosis is a bone disease characterized by low bone mass and deterioration of the tissue leading to increased fragility. Osteopontin (OPN), a noncollageneous bone matrix protein, has been shown to play an important role in osteoporosis, bone resorption, and mineralization. However, OPN's role in bone mechanical properties on the submicron scale has not been studied in any detail. In this study, nanoindentation techniques were utilized to investigate how OPN and aging affect bone mechanical properties. Hardness and elastic modulus were calculated and compared between the OPN-deficient mice (OPN(-/-)) and their age and sex-matched wild-type (OPN(+/+)) controls. The results show that the mechanical properties of the young OPN(-/-) bones (age < 12 weeks) are significantly lower than that of the youngest OPN(+/+) bones. This finding was confirmed by additional microindentation testing. Biochemical analysis using micro-Raman spectroscopy indicated more mineral content in young OPN(+/+) bones. Older (age > 12 weeks) bones did not show any significant differences in mechanical properties with genotype. In addition, OPN(+/+) bones show a decrease in mechanical properties between young and older age groups. By contrast, OPN(-/-) bones showed no significant change in mechanical properties with aging.  相似文献   

5.
Summary Trabecular bone from fourth lumbar vertebral bodies of 30 autopsy subjects (18 male and 12 females, 30–91 years of age) was investigated using surface mode scanning electron microscopy. In the younger individuals, proper coupling of formation and resorption appeared to have maintained both the bone mass and the shape and structural integrity of the trabecular elements. In elderly individuals, including osteoporotics, irregularities and uncoupling of these activities brought about a loss of bone and a disruption of trabecular structure. Distinct resorption patterns (lateral and vertical) are responsible for trabecular thinning and removal of structural elements. Irregularities in the formative process in old age may account for the compensatory thickening and changes in shape and texture of trabecular elements. The mechanisms involved in the occurrence of microfractures and the fate of disconnected elements were also identified. An increased proportion of arrested mineralizing fronts is found in older individuals and in frank osteoporotics. Resorption may occur through osteoid and arrested mineralizing fronts, as well as through resting, fully mineralized surfaces.  相似文献   

6.
The trabecular bone morphology of adult extant primates has been shown to reflect mechanical loading related to locomotion. However, ontogenetic studies of humans and other mammals suggest an adaptive lag between trabecular bone response and current mechanical loading patterns that could result in adult trabecular bone morphology reflecting juvenile behaviours. This study investigates ontogenetic changes in the trabecular bone structure of the third metacarpal of mountain gorillas (Gorilla beringei beringei; n = 26) and western lowland gorillas (Gorilla gorilla gorilla; n = 26) and its relationship to expected changes in locomotor loading patterns. Results show that trabecular bone reflects predicted mechanical loading throughout ontogeny. Bone volume fraction, trabecular thickness and trabecular number are low at birth and increase with age, although degree of anisotropy remains relatively stable throughout ontogeny. A high concentration of bone volume fraction can be observed in the distopalmar region of the third metacarpal epiphysis in early ontogeny, consistent with the high frequency of climbing, suspensory and other grasping behaviours in young gorillas. High trabecular bone concentration increases dorsally in the epiphysis during the juvenile period as terrestrial knuckle‐walking becomes the primary form of locomotion. However, fusion of the epiphysis does not take place until 10–11 years of age, and overall trabecular structure does not fully reflect the adult pattern until 12 years of age, indicating a lag between adult‐like behaviours and adult‐like trabecular morphology. We found minimal differences in trabecular ontogeny between mountain and western lowland gorillas, despite presumed variation in the frequencies of arboreal locomotor behaviours. Altogether, ontogenetic changes in Gorilla metacarpal trabecular structure reflect overall genus‐level changes in locomotor behaviours throughout development, but with some ontogenetic lag that should be considered when drawing functional conclusions from bone structure in extant or fossil adolescent specimens.  相似文献   

7.
8.
The F508del mutation in the cystic fibrosis transmembrane conductance regulator (Cftr) gene is believed to be an independent risk factor for cystic fibrosis-related bone disease. In this study, we evaluated the bone mineral density as well as the histomorphometric parameters of bone formation and bone mass in both F508del-Cftr homozygous mice (F508del Cftr(tm1Eur)) and Cftr(+/+) littermate controls at 6 (prepubertal), 10 (pubertal), and 14 (young adult) weeks of age in both sexes. The bone architecture of F508del Cftr(tm1Eur) and wild-type (WT) littermate mice was evaluated by bone densitometry, microcomputed tomography, and analysis of the dynamic parameters of bone formation. Serum levels of both insulin-like growth factor 1 and osteocalcin also were determined. Reduced bone mineral density, lower femoral bone mass, and altered trabecular bone architecture were observed in F508del Cftr(tm1Eur) mice compared with controls at 6, 10, and 14 weeks of age. A decrease in the bone formation rate in F508del Cftr(tm1Eur) mice was shown compared with control mice, independently of age and sex. In addition, we found lower insulin-like growth factor 1 levels in F508del Cftr(tm1Eur) mice compared with age-matched controls, whereas osteocalcin levels were normal. Severe osteopenia and altered bone architecture were found in young and mature adult F508del Cftr(tm1Eur) mice. Our findings show that the F508del mutation in CFTR impacts trabecular bone mass by reducing bone formation.  相似文献   

9.
Early micromovement and migration of a prosthesis of a hip or knee predicts late clinical loosening of the prosthesis. Such migration is likely to be associated with mechanical compression of the fibrous membrane interpositioned between bone and prosthesis during movement. Compression of the fibrous membrane by loading may lead to locally high fluid pressures reaching the underlying bone tissue. It has been established that high fluid pressures can lead to bone resorption. This resorption may eventually lead to clinical loosening of the prosthesis. We developed an experimental model to study the effects of compression of a soft tissue layer located between a titanium implant and cortical bone. In twelve rabbits, this device was implanted in the proximal tibia and allowed to osseointegrate. Next, a layer of soft tissue was allowed to form between titanium and bone. Subsequently, in six rabbits a cyclic load of 60 times in 2 min per day during 2 weeks was applied, leading to compression of the interpositioned soft tissue layer only. In the other six rabbits no load was applied. In all six loaded specimens, osteocyte death and bone resorption was observed underneath the area where compression of the fibrous membrane was exerted to a depth exceeding the amplitude of the loading device. Furthermore, formation of fibrocartilage was observed in the loaded areas. Formation of fibrocartilage, osteocyte death or bone resorption did not occur in the controls. Our results indicate that compression of a fibrous membrane surrounding bone can lead to resorption of the underlying bone primarily because of osteocyte death and subsequent resorption of dead bone tissue. This may explain the observation that early migration of a hip or knee prosthesis is predictive of clinical loosening of the prosthesis.  相似文献   

10.
To study the anti-resorptive effects of zoledronate and pamidronate on growing long bones we have performed a histomorphometric analysis of the three regions of the proximal tibial cancellous bone of bone formed before, during, and after drug treatment. Male rats (190–220 g) were treated subcutaneously for 10 days with zoledronate (0.028–2.8 μg/kg) or pamidronate (3.7–370 μg/kg) and sacrificed 5 days later. To delineate the three regions of cancellous bone, and for dynamic bone histomorphometry, calcein and demeclocycline were injected at various times. Both bisphosphonates caused a dose-dependent suppression of cancellous bone turnover and resorption to produce an increase in cancellous bone, but zoledronate was 100 times more potent than pamidronate. The increase in the bone amount and connectivity was more pronounced in the bone formed during treatment where transient bone resorption and normal bone formation led to a positive bone balance. In the bone formed before treatment, inhibition of bone resorption associated with reduced bone formation produced a net gain in amount of bone. Although both bone regions showed a positive bone balance, more bone accumulated in the bone formed during treatment probably because its trabecular bone surface was three times greater. In the primary spongiosa formed after treatment, a moderate increase in the bone amount and connectivity was observed only at the highest dose of both bisphosphonates. The bone formed before, during, and after treatment with bisphosphonates responds differently due to differences in bone architecture, rates of modeling and remodeling, and period of drug exposure. Anat. Rec. 249:458–468, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

11.
The effects of 1,25-dihydroxycholecalciferol (1,25-(OH)2D3), parathyroid hormone (PTH), and L-thyroxine (T4) on trabecular bone remodeling were evaluated by histomorphometric methods in adult female beagle dogs. Intravenous 1,25-(OH)2D3 (1.25 micrograms/day in equally divided doses) was administered intermittently for 6 days and withdrawn 14 days for three complete cycles. PTH was administered intravenously (2.5 U/kg/day) in divided doses 6 hours apart for 60 days. Thyroxine was given orally (1.0 mg/kg/day) in divided doses for a similar interval. Static and dynamic changes were evaluated using tetracycline and DCAF (2,4 BIS) N, N', Di (carboxymethyl) (amino methyl fluorescein) in vivo double labeling of bone from the iliac crest taken before treatment and after 60 days. The intermittent administration of 1,25-(OH)2D3 stimulated the bone resorption rate and depressed the formation rate. 1,25-(OH)2D3 increased trabecular resorption surfaces; osteoid surface, volume, and thickness; mineralization lag time; and osteoblast number but decreased the bone volume. Multiple small daily doses of PTH resulted in an overall negative balance in trabecular bone. This was associated with an increased trabecular surface-to-volume ratio, bone resorption and formation rates, active forming surfaces, osteoid volume and surface, life span of bone forming and resorbing sites, and the number of osteoclast nuclei. Thyroxine appeared to increase bone mass by enhancing the switch-over from the resorptive to the formative phase of remodeling. Coupling between osteoid apposition and mineralization was increased by recruiting more forming sites and prolonging their life span. Thyroxine increased bone resorption and formation rates, trabecular bone volume and balance, number of osteoclast nuclei, and life span of bone forming sites. The osteoid seam thickness and mineralization lag time were decreased. The present study demonstrated that 1,25-(OH)2D3, PTH, and thyroxine at the dose and schedule used, markedly altered stimulators of remodeling in trabecular bone of adult dogs.  相似文献   

12.
The most reliable explanation for decreasing bone mass in elderly women is an imbalance of osteoclastic resorption and osteoblastic formation resulting from a relative increase in osteoclastic resorption. However, it is not clear whether an increase in osteoclastic bone resorption with age is due to increased osteoclast formation or to osteoclastic bone resorption activity. In this study, using a human bone marrow culture system, we attempt to clarify the increase in osteoclast formation with age. The mononuclear cell-rich fraction from bone marrow, obtained from the proximal region of the femur from female elderly patients with fracture, were cultured for 14 days in the presence of 1,25 dihydroxyvitamin D(3). Tartrate-resistant acid phosphatase-positive multinucleated cells were counted as osteoclasts. In our investigation, human osteoclast formation in the bone marrow culture increased with age in elderly women (age 64-96 years). The osteoclast formation was positively correlated with macrophage-colony stimulation factor and prostaglandin E(2) production in bone marrow culture. Also, osteoclast formation ex vivo was negatively correlated with bone mineral density of the lumbar spine (L2-L4). The above results indicate that the osteoclastogenic potential of bone marrow cells increases with aging in elderly women with fracture, and suggest that a decrease in bone mass of elderly women may be due to an increase in osteoclast population associated with aging.  相似文献   

13.
It is known that type 1 diabetes (T1D) reduces bone mass and increases the risk for fragility fractures, an effect that has been largely ascribed to decreased bone formation. However, the potential role of decreased angiogenesis as a factor in osteogenesis reduction has not been extensively studied. Furthermore, there is controversy surrounding the effect of T1D on bone resorption. This study characterized bone microstructure, bone strength, and bone turnover of streptozotocin (STZ)-induced diabetic mice (T1D mice) and explored the role of angiogenesis in the pathogenesis of T1D-induced osteoporosis. Results demonstrate that T1D deteriorated trabecular microarchitecture and led to reduced bone strength. Furthermore, T1D mice showed reduced osteoblast number/bone surface (N.Ob/BS), mineral apposition rate, mineral surface/BS, and bone formation rate/BS, suggesting attenuated bone formation. Decreased angiogenesis was shown by a reduced number of blood vessels in the femur and decreased expression of platelet endothelial cell adhesion molecule (CD31), nerve growth factor, hypoxia-inducible factor-1α, and vascular endothelial growth factor was observed. On the other hand, reduced bone resorption, an effect that could lead to impaired osteogenesis, was demonstrated by lower osteoclast number/BS and decreased tartrate-resistant acid phosphatase and cathepsin K mRNA levels. Reduced number of osteoblasts and decreased expression of receptor activator for nuclear factor-κB ligand could be responsible for compromised bone resorption in T1D mice. In conclusion, T1D mice display reduced bone formation and bone resorption, suggesting decreased bone turnover. Furthermore, this study points to impairments in angiogenesis as a pivotal cause of decreased bone formation.  相似文献   

14.
Despite interest in investigating age-related hip fractures, the determinants of decreased bone strength in advanced age are not clear enough. Hitherto it has been obscure how the aging process affects the femoral neck nanostructure and composition, particularly in the lateral subregion of the femoral neck, which is considered as a fracture-initiating site. The femoral bone samples used in this study were obtained at autopsy in 10 women without skeletal disease (five younger: aged 20-40 years, and five elderly: aged 73-94 years). Atomic force microscopy (AFM) was applied to explore the mineral grain size in situ in young vs. old trabecular bone samples from the lateral femoral neck. The chemical compositions of the samples were determined using inductively coupled plasma optical emission spectroscopy and direct current argon arc plasma optical emission spectrometry. Our AFM study revealed differences in trabecular bone nanostructure between young and elderly women. The mineral grain size in the trabeculae of the old women was larger than that in the young (median: 95 vs. 59nm), with a particular bimodal distribution: 45% were small grains (similar to the young) and the rest were larger. Since chemical analyses showed that levels of calcium and phosphorus were unchanged with age, our study suggests that during aging the existing bone mineral is reorganized and forms larger aggregates. Given the mechanical disadvantage of large-grained structures (decreased material strength), the observed nanostructural differences contribute to our understanding of the increased fragility of the lateral femoral neck in aged females. Moreover, increasing data on mineral grains in natural bone is essential for advancing calcium-phosphate ceramics for bone tissue replacement.  相似文献   

15.
Parietal bones from mice 1-20 weeks of age were histochemically stained for detection of acid-phosphatase activity and then observed by the light microscope to evaluate the distribution and shape of osteoclasts on the inner surface of their bones. After microscopic examination, the same bones were macerated by NaOCl to both remove organic materials and expose the mineralized surface. The inner surface was then examined by scanning electron microscopy and the observations were compared with the light micrographs of the areas where osteoclasts were located. The bone resorption areas were identified as well-demarcated rough areas, and corresponded to the areas where osteoclasts were distributed. In young mice, osteoclasts observed in the bone resorption areas, which were composed of accumulations of irregular concavities, were mainly polygonal or round in shape. In adult mice, elongated osteoclasts with longer or shorter cytoplasmic processes were predominant; the bone concavities were also elongated and gathered in a flame-like pattern. The findings suggest that osteoclasts change shape according to their resorptive activities and that the activities differ between growing bones and those where growth has ceased, probably in relation to the modeling and remodeling of the bone.  相似文献   

16.
Summary To study the relationship between the mechanical properties of collagen and the bone turnover, 2-week-old Balb/C mice were fed on a diet containing 0.25% Beta aminopropionitrile (B-APN), a potent inhibitor of collagen crosslink formation, for 3 weeks. Mandibular incisor socket was selected for the analysis of bone formation and resorption parameters. Plastic embedded sections stained with toludine blue and cut at 4 µm were used to analyze the average area of bone lamellae, bone-forming surface, and the number of osteoblasts/mm of forming surface. Similar sections were used to localize acid phosphatase on resorbing surfaces and within the osteoclasts, while bone alkaline phosphatase was determined by a colorimetric method. Morphometric analyses showed that the area of newly formed bone lamellae, total forming surface, number of osteoblasts and the Alk. Pase activity were significantly lower in B-APN-fed mice as compared to the controls. There was a concomitant smaller, but significant, reduction in total resorption surface, active resorption surface and the number of osteoclasts. These results suggest that the regulation of bone formation and resorption at this site, which is independent of systemic regulation, is influenced by the mechanical properties of the collagenous matrix, which in turn may have a significant effect on the existing pool of bone-forming cells, but may not influence the recruitment of new cells.  相似文献   

17.
骨骼是一个动态变化的器官,骨细胞的形态、结构和功能随力学刺激大小、方向、形式的不同而发生变化。适当的力学刺激是维持骨形成和骨吸收动态平衡的关键。随着年龄的增加,骨组织衰老会引起包括骨组织微环境、骨细胞形态、骨细胞内信号通路等在内的一系列变化,使骨骼力学响应能力减弱,进而引起骨质疏松等多种疾病。因此,研究衰老如何影响骨细胞的力学响应具有重要意义。重点讨论机体衰老对骨细胞力学响应的影响。  相似文献   

18.
Efficiency of colony formation of stromal precursor cells in cultured bone marrow transplants from old (24 month) CBA mice implanted to young (2-month-old) mice almost 3-fold surpassed that in cultured transplants implanted to old recipients. The content of nucleated cells in bone marrow transplants from senescence accelerated mice SAMP increased more than 2-fold, if SAMR mice with normal aging rate were used as the recipients instead of SAMP mice. Bone marrow taken from old and young CBA mice endured the same number of transplantations if the recipient mice were of the same age (5 month). It was concluded that stromal tissue considerably changes with age and is under strict control of the body.  相似文献   

19.
康力龙、泼尼松对大鼠骨组织形态学的影响   总被引:6,自引:1,他引:5  
目的 探讨康力龙和泼尼松对大鼠骨组织形态学的影响。方法  3月龄雄性SD大鼠 2 4只 ,体重 2 31 7± 33 3g随机分为三组。分别用蒸馏水、泼尼松 4 5mg·kg-1·d-1(每周二次 )和泼尼松 4 5mg·kg-1·d-1加康力龙 0 5mg·kg-1·d-1灌胃(每周 6次 ) ,持续 90天。用图像分析仪测算胫骨近端骨小梁的骨形态计量学指标 ,并在扫描电镜下观察大鼠腰椎的组织结构改变。结果 与对照组比较 ,泼尼松组大鼠胫骨的骨吸收增加 (破骨细胞数 + 92 % ) ,骨小梁间隙 (Tb .Sp)增宽 187% ,骨形成率(BFR/TV)减少 89% ,骨小梁面积 (%Tb .Ar)减少 (- 5 8% )。腰椎的骨小梁变少 ,变细 ,断裂 ,连接不紧密 ,表面常见骨吸收形成的陷窝。与泼尼松组比较 ,康力龙组骨形成增加 (BFR/TV + 75 2 % ) ,骨吸收减少 (破骨细胞数 - 41% ) ,骨量增加 (%Tb .Ar +87% ,Tb .Sp - 5 8% )。腰椎的骨小梁粗大 ,排列整齐 ,连接紧密。结论 长期使用泼尼松可导致骨质疏松 ,康力龙对此有防止作用。  相似文献   

20.
The experimental increase in mechanical usage or overloading of the left hindlimb was produced by immobilization of the contralateral hindlimb. The right hindlimb was placed in a flexed position against the body and was immobilized using an elastic bandage. Some control animals were sacrificed initially at time zero and increased mechanical usage and age-matched control animals were sacrificed after 2, 10, 18, and 26 weeks of treatment. All animals received double bone fluorochrome labeling prior to sacrifice. Cortical bone histomorphometry and cross-sectional moments of inertia were determined. Marrow cavity enlargement and total cross-sectional area expansion represented the age-related cortical bone changes. Increased mechanical usage enhanced periosteal bone modeling in the formation mode and dampened endocortical bone remodeling and bone modeling in the resorption mode (resorption drift) to create a slight positive bone balance. These observations are in general agreement with Frost's postulate for mechanical effects on bone modeling and remodeling (Frost, H.M. 1987b. Bone "mass" and the "mechanostat." A proposal. Anat. Rec. 219: 1-9). The maximum moment of inertia did not change significantly in either control or overloaded tibial shafts. The minimum and polar moment of inertias in overloaded bones increases over those of controls at 18 and 26 weeks of the experiment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号