首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There are several obstacles in the process of successful treatment of malignant tumors, including toxicity to normal cells, inefficiency of drug permeation and accumulation into the deep tissue of solid tumor, and multidrug resistance (MDR). In this work, we prepared docetaxel (DTX)-loaded hybrid micelles with DSPE–PEG and TPGS (TPGS/DTX-M), where TPGS serves as an effective P-gp inhibitor for overcoming MDR, and active targeting hybrid micelles (FA@TPGS/DTX-M) with targeting ligand of folate on the hybrid micelles surface offering active targeting to folate receptor-overexpressed tumor cells. A systematic comparative evaluation of these micelles on cellular internalization, sub-cellular distribution, antiproliferation, mitochondrial membrane potential, cell apoptosis and cell cycle, permeation and inhibition on 3-dimensional multicellular tumor spheroids, as well as antitumor efficacy and safety assay in vivo were well performed between sensitive KB tumors and resistant KBv tumors, and among P-gp substrate or not. We found that the roles of folate and TPGS varied due to the sensitivity of tumors and the loaded molecules in the micelles. Folate and folate receptor-mediated endocytosis played a leading role in internalization, permeation and accumulation for sensitive tumors and non-substrates of P-gp. On the contrary, TPGS played the predominant role which dramatically decreased the efflux of drugs both when the tumor is resistant and for P-gp substrate. These findings are very meaningful for guiding the design of carrier delivery system to treat tumors. The antitumor efficacy in xenograft nude mice model and safety assay showed that the TPGS/DTX-M and FA@TPGS/DTX-M significantly exhibited higher antitumor activity against resistant KBv tumors than the marketed formulation and normal micelles owing to the small size (approximately 20 nm), hydrophilic PEGylation, TPGS inhibition of P-gp function, and folate receptor-modified endocytosis, permeation and accumulation in solid tumor, as well as synergistic effects of DTX-induced cell division inhibition, growth restraint and TPGS-triggered mitochondrial apoptosis in tumor cells. In conclusion, folate-modified TPGS hybrid micelles provide a synergistic strategy for effective delivery of DTX into KBv cells and overcoming MDR.  相似文献   

2.
P-glycoprotein (P-gp) mediated drug efflux has been recognized as a key factor contributing to the multidrug resistance (MDR) in tumor cells. To address this issue, a new pH-sensitive mixed copolymer micelles system composed of hyaluronic acid-g-poly(l-histidine) (HA-PHis) and d-α-tocopheryl polyethylene glycol 2000 (TPGS2k) copolymers was developed to co-deliver doxorubicin (DOX) and TPGS2k into drug-resistant breast cancer MCF-7 cells (MCF-7/ADR). The DOX-loaded HA-PHis/TPGS2k mixed micelles (HPHM/TPGS2k) were characterized to have a unimodal size distribution, high DOX loading content and a pH dependent drug release profile due to the protonation of poly(l-histidine). As compared to HA-PHis micelles (HPHM), the HPHM/TPGS2k showed higher and comparable cytotoxicity against MCF-7/ADR cells and MCF-7 cells, respectively. The enhanced MDR reversal effect was attributed to the higher amount of cellular uptake of HPHM/TPGS2k in MCF-7/ADR cells than HPHM, arising from the inhibition of P-gp mediated drug efflux by TPGS2k. The measurements of P-gp expression level and mitochondrial membrane potential indicate that the blank HPHM/TPGS2k inhibited P-gp activity by reducing mitochondrial membrane potential and depletion of ATP but without inhibition of P-gp expression. In vivo study of micelles in tumor-bearing mice indicate that HPHM/TPGS2k could reach the tumor site more effectively than HPHM. The pH-sensitive mixed micelles system has been demonstrated to be a promising approach for overcoming the MDR.  相似文献   

3.
Wang F  Zhang D  Zhang Q  Chen Y  Zheng D  Hao L  Duan C  Jia L  Liu G  Liu Y 《Biomaterials》2011,32(35):9444-9456
Multidrug resistance (MDR) in tumor cells is a significant obstacle for successful cancer chemotherapy. Overexpression of drug efflux transporters such as P-glycoprotein (P-gp) is a key factor contributing to the development of tumor drug resistance. Verapamil (VRP), a P-gp inhibitor, has been reported to be able to reverse completely the resistance caused by P-gp. For optimal synergy, the drug and inhibitor combination may need to be temporally colocalized in the tumor cells. Herein, we investigated the effectiveness of simultaneous and targeted delivery of anticancer drug, paclitaxel (PTX), along with VRP, using DOMC-FA micelles to overcome tumor drug resistance. The floate-functionalized dual agent loaded micelles resulted in the similar cytotoxicity to PTX-loaded micelles/free VRP combination and co-administration of two single-agent loaded micelles, which was higher than that of PTX-loaded micelles. Enhanced therapeutic efficacy of dual agent micelles could be ascribe to increased accumulation of PTX in drug-resistant tumor cells. We suggest that the synergistic effect of folate receptor-mediated internalization and VRP-mediated overcoming MDR could be beneficial in treatment of MDR solid tumors by targeting delivery of micellar PTX into tumor cells. As a result, the difunctional micelle systems is a very promising approach to overcome tumor drug resistance.  相似文献   

4.
In this study, a novel redox-sensitive micellar system constructed from a hyaluronic acid-based amphiphilic conjugate (HA-ss-(OA-g-bPEI), HSOP) was successfully developed for tumor-targeted co-delivery of paclitaxel (PTX) and AURKA specific siRNA (si-AURKA). HSOP exhibited excellent loading capacities for both PTX and siRNA with adjustable dosing ratios and desirable redox-sensitivity independently verified by morphological changes of micelles alongside in vitro release of both drugs in different reducing environments. Moreover, flow cytometry and confocal microscopy analysis confirmed that HSOP micelles were capable of simultaneously delivering PTX and siRNA into MDA-MB-231 breast cancer cells via HA-receptor mediated endocytosis followed by rapid transport of cargoes into the cytosol. Successful delivery and transport amplified the synergistic effects between the drugs while leading to substantially greater antitumor efficacy when compared with single drug-loaded micelles and non-sensitive co-loaded micelles. In vivo investigation demonstrated that HSOP micelles could effectively accumulate in tumor sites and possessed the greatest antitumor efficacy over non-sensitive co-delivery control and redox-sensitive single-drug controls. These findings indicated that redox-sensitive HSOP co-delivery system holds great promise for combined drug/gene treatment for targeted cancer therapy.  相似文献   

5.
Multidrug resistance (MDR) remains the primary issue in cancer therapy, which is characterized by the overexpressed P-glycoprotein (P-gp)-included efflux pump or the upregulated anti-apoptotic proteins. In this study, a D-alpha-tocopheryl poly (ethylene glycol 1000) succinate (TPGS) and hyaluronic acid (HA) dual-functionalized cationic liposome containing a synthetic cationic lipid, 1,5-dioctadecyl-N-histidyl-l-glutamate (HG2C18) was developed for co-delivery of a small-molecule chemotherapeutic drug, paclitaxel (PTX) with a chemosensitizing agent, lonidamine (LND) to treat the MDR cancer. It was demonstrated that the HG2C18 lipid contributes to the endo-lysosomal escape of the liposome following internalization for efficient intracellular delivery. The TPGS component was confirmed able to elevate the intracellular accumulation of PTX by inhibiting the P-gp efflux, and to facilitate the mitochondrial-targeting of the liposome. The intracellularly released LND suppressed the intracellular ATP production by interfering with the mitochondrial function for enhanced P-gp inhibition, and additionally, sensitized the MDR breast cancer (MCF-7/MDR) cells to PTX for promoted induction of apoptosis through a synergistic effect. Functionalized with the outer HA shell, the liposome preferentially accumulated at the tumor site and showed a superior antitumor efficacy in the xenograft MCF-7/MDR tumor mice models. These findings suggest that this dual-functional liposome for co-delivery of a cytotoxic drug and an MDR modulator provides a promising strategy for reversal of MDR in cancer treatment.  相似文献   

6.
Multidrug resistance (MDR) is one of the major barriers in cancer chemotherapy. P-glycoprotein (P-gp), a cell membrane protein in MDR, also a member of ATP-Binding cassette (ABC) transporter, can increase the efflux of various hydrophobic anticancer drugs. In this study, polycation/iron oxide nanocomposites, were chosen as small interfering RNA (siRNA) carriers to overcome MDR through silencing of the target messenger RNA and subsequently reducing the expression of P-gp. Amphiphilic low molecular weight polyethylenimine was designed with different alkylation groups and alkylation degree to form various nanocarriers with clustered iron oxide nanoparticles inside and carrying siRNA through electrostatic interaction. A few optimized formulations can form stable nanocomplexes with siRNA and protect them from degradation during delivery, and lead to effective silencing effect that comparable to a commercial golden standard transfection agent, Lipofectamine 2000. Human breast cancer MCF-7/ADR cells can be vulnerable to doxorubicin treatment after the strong downregulation of P-gp through siRNA tranfection. Once transfected with these nanocomplexes, the cells displayed significant contrast enhancement against non-transfected cells under a 3T clinical MRI scanner. These nanocomposites also demonstrated their downregulation efficacy of P-gp in a MCF-7/ADR orthotopic tumor model in mice.  相似文献   

7.
Despite progress, combination therapy of different functional drugs to increase the efficiency of anticancer treatment still remains challenges. An amphiphilic methoxy poly(ethylene glycol)-b-poly(l-glutamic acid)-b-poly(l-lysine) triblock copolymer decorated with deoxycholate (mPEsG-b-PLG-b-PLL/DOCA) was synthesized and developed as a nanovehicle for the co-delivery of anticancer drugs: doxorubicin (DOX) and paclitaxel (PTX). The amphiphilic copolymer spontaneously self-assembled into micellar-type nanoparticles in aqueous solutions and the blank nanoparticles possessed excellent stability. Three different domains of the copolymer performed distinct functions: PEG outer corona provided prolonged circulation, middle biodegradable and hydrophilic PLG shell was designed for DOX loading through electrostatic interactions, and hydrophobic deoxycholate modified PLL served as the container for PTX. In vitro cytotoxicity assays against A549 human lung adenocarcinoma cell line demonstrated that the DOX + PTX co-delivered nanoparticles (Co-NPs) exhibited synergistic effect in inducing cancer cell apoptosis. Ex vivo DOX fluorescence imaging revealed that Co-NPs had highly efficient targeting and accumulation at the implanted site of A549 xenograft tumor in vivo. Co-NPs exhibited significantly higher antitumor efficiency in reducing tumor size compared to free drug combination or single drug-loaded nanoparticles, while no obvious side effects were observed during the treatment, indicating this co-delivery system with different functional antitumor drugs provides the clinical potential in cancer therapy.  相似文献   

8.
Increasing the molecular weight of N-(2-hydroxypropyl) methacrylamide (HPMA) copolymers by using micellar structures could result in more pronounced enhanced permeability and retention effect, thus increase the tumor accumulation of drug. However, most micellar formulations are relatively unstable and release their drug non-specifically. To improve on these disadvantages, we developed a micellar drug delivery system based on self-assembly of HPMA copolymers. Amphiphilic conjugates were synthesized by conjugating the hydrophobic drug doxorubicin and hydrophobic β-sitosterol to the hydrophilic HPMA polymer backbone via pH-sensitive hydrazone linkages. This linkage is quite stable at physiological pH but hydrolyzes easily at acidic pH. After conjugates self-assembly into micelles, HPMA copolymer side chains were cross-linked through the hydrazone linkages to ensure micelle stability in the blood. Using this approach, cross-linked micelles were obtained with molecular weight of 1030 KD and diameter of 10–20 nm. These micelles remained stable with undetectable doxorubicin release at pH 7.4 or mouse plasma, whereas collapsed quickly with 80% of the drug released at pH 5 which corresponds to the pH of lyso/endosome compartments of tumor cells. Both cross-linked and non-cross-linked micelles displayed similar in vitro anti-tumor activity as linear copolymer conjugates in Hep G2 and A549 cancer cell lines with internalization mechanism by caveolin, clathrin, and giant macropinocytosis. In vivo studies in an H22 mouse xenograft model of hepatocarcinoma showed the tumor accumulation (1633 μCi/L*h) and anti-tumor rate (71.8%) of cross-linked micelles were significantly higher than non-cross-linked ones (698 μCi/L*h, 64.3%). Neither type of micelle showed significant toxicity in heart, lung, liver, spleen or kidney. These results suggest that cross-linked HPMA copolymer micelles with pH-sensitivity and biodegradability show excellent potential as carriers of anti-cancer drugs.  相似文献   

9.
Cheng D  Cao N  Chen J  Yu X  Shuai X 《Biomaterials》2012,33(4):1170-1179
As the most fatal malignancy in brain, glioma cannot be effectively treated with the conventional chemotherapy and thus techniques which may improve the chemotherapeutic effect are of great importance in clinical glioma treatment. Based on the folate-targeted multifunctional nanocarrier developed in our lab, effective co-delivery of DOX and siRNA into rat C6 glioma cells over-expressing folate receptors was achieved. Although cell apoptosis was initiated even at low DOX doses such as 0.5 μg/mL in the DOX-alone treatment mediated by the folate-targeted nanocarrier, anti-apoptotic response in C6 cells was activated as well, as revealed by molecular biological investigations. Delivery of BCL-2 siRNA using the folate-targeted nanocarrier can effectively suppress the anti-apoptotic response and sensitized C6 cells to DOX treatment both in vitro and in vivo. In particular, animal studies using the in situ rat C6 glioma model showed that the folate-targeted co-delivery of BCL-2 siRNA and DOX caused not only an obvious down-regulation of the anti-apoptotic BCL-2 gene but also a remarkable up-regulation of the pro-apoptotic Bax gene, resulting in the significantly elevated level of caspase-3 activation and remarkable cell apoptosis in tumor tissues. Our results strongly demonstrated the synergistic effect of siRNA and DOX in inducing glioma C6 cell apoptosis, upon which an excellent therapeutic effect was achieved using the folate-targeted co-delivery strategy as indicated by the effective tumor growth inhibition and prolonged rat survival time in the animal test.  相似文献   

10.
A somatostatin analog, vapreotide (VAP), can be used as a ligand for targeting drug delivery based on its high affinity to somatostatin receptors (SSTRs), which is overexpressed in many tumor cells. RNA interference plays an important role on downregulation of vascular endothelial growth factor (VEGF), which is important for tumor growth, progression and metastasis. To improve tumor therapy efficacy, the vapreotide-modified core–shell type nanoparticles co-encapsulating VEGF targeted siRNA (siVEGF) and paclitaxel (PTX), termed as VAP-PLPC/siRNA NPs, were developed in this study. When targeted via somatostatin receptors to tumor cells, the VAP-PLPC/siRNA NPs could simultaneously delivery siVEGF and PTX into cells and achieve a synergistic inhibition of tumor growth. Interestingly, in vitro cell uptake and gene silencing experiments demonstrated that the targeted VAP-PLPC/siRNA NPs exhibited significant higher intracellular siRNA accumulation and VEGF downregulation in human breast cancer MCF-7 cells, compared to those of the non-targeted PEG-PLPC/siRNA NPs. More importantly, in vivo results further demonstrated that the targeted VAP-PLPC/siRNA NPs had significant stronger drug distribution in tumor tissues and tumor growth inhibition efficacy via receptor-mediated targeting delivery, accompany with an obvious inhibition of neovascularization induced by siVEGF silencing. These results suggested that the co-delivery of siRNA and paclitaxel via vapreotide-modified core–shell nanoparticles would be a promising approach for tumor targeted therapy.  相似文献   

11.
In our previous study, a series of triblock copolymers based on MPEG-PCL-g-PEI were successfully synthesized, and the physicochemical properties of their self-assembled micelles were also investigated. Here, a further evaluation of these micelles was carried out, including in vitro drug release behavior, body distribution as well as blood compatibility. The developed MPEG-PCL-g-PEI micelles was labeled with 99Tc for tracing the body distribution of micelles after i.v. injection, and the results showed that the MPEG-PCL-g-PEI micelles mainly concentrated in the tumor tissue. Meanwhile, the anti-tumor activity on both B16F10 subcutaneous tumor model and lung metastasis model was tested and the results indicated that DOX-loaded micelles could significantly inhibit tumor growth as compared with free doxorubicin, which was accompanied by significantly increased apoptosis of tumor cells. By introduction of gene Msurvivin T34A in combination with chemotherapies in the treatment of lung metastasis tumor, it could greatly reduce systemic toxicity as well as improved the anti-tumor efficiency. These results demonstrated that it is possible to use cationic MPEG-PCL-g-PEI micelles for effectively co-delivering functional gene and chemotherapeutic agent, and thus improving anti-tumor effect and systemic toxicity.  相似文献   

12.
In this study, a type of intracellular redox-triggered hollow mesoporous silica nanoreservoirs (HMSNs) with tumor specificity was developed in order to deliver anticancer drug (i.e., doxorubicin (DOX)) to the target tumor cells with high therapeutic efficiency and reduced side effects. Firstly, adamantanamine was grafted onto the orifices of HMSNs using a redox-cleavable disulfide bond as an intermediate linker. Subsequently, a synthetic functional molecule, lactobionic acid-grafted-β-cyclodextrin (β-CD-LA), was immobilized on the surface of HMSNs through specific complexation with the adamantyl group, where β-CD served as an end-capper to keep the loaded drug within HMSNs. β-CD-LA on HMSNs could also act as a targeting agent towards tumor cells (i.e., HepG2 cells), since the lactose group in β-CD-LA is a specific ligand binding with the asialoglycoprotein receptor (ASGP-R) on HepG2 cells. In vitro studies demonstrated that DOX-loaded nanoreservoirs could be selectively endocytosed by HepG2 cells, releasing therapeutic DOX into cytoplasm and efficiently inducing the apoptosis and cell death. In vivo investigations further confirmed that DOX-loaded nanoreservoirs could permeate into the tumor sites and actively interact with tumor cells, which inhibited the tumor growth with the minimized side effect. On the whole, this drug delivery system exhibits a great potential as an efficient carrier for targeted tumor therapy in vitro and in vivo.  相似文献   

13.
Multidrug resistance (MDR) has been a major impediment to the success of cancer chemotherapy. Extensive efforts have been devoted to the development of drug delivery systems using nanotechnology to reverse MDR in cancer. However, the spontaneous release of drug payloads was always a slow process, which leads to the low intracellular drug concentration resulting in consequent drug insensitivity. To circumvent this limitation, we described a liposomal cocktail (LMDHV) constructed by a pH-responsive molecule (i.e., malachite green carbinol base (MG)) and liposome conjugated with Her-2 antibody for codelivery of doxorubicin (DOX) and verapamil (VER) to suppress drug resistance in Her-2 positive breast cancer. MG inserted in the bilayer as pH responders greatly contributed to the destabilization of the vesicle membrane in low pH, followed by the rapid release of the payloads. LMDHV showed 6-fold reversal efficiency in DOX resistant breast cancer owing to the efficient tumor targeting delivery and rapid burst release of drug intracellularly. Compared to tumor inhibition ratio of treated groups by free DOX (32.4 ± 7.4%), our designed kinetically favorable drug release system exhibited significantly (P < 0.01) enhanced tumor inhibition ratio up to 83.9 ± 12.5%, which is attributed to the remarkably increased drug concentration in cells. The spatio-temporal favorable release of drugs resulted in synergistic inhibition of tumor growth in xenografts. We envision that this new type of liposomal cocktail might be potentially utilized to circumvent drug resistance in the future.  相似文献   

14.
The bioactive polymer poly(l-glutamic acid)n-b-poly(d, l-lactic acid)m was synthesized and used to form doxorubicin-loaded hybrid polymeric micelles to treat melanoma. These polymers exhibited pH-responsive changes in conformation, which controlled the diverse functionalities of the micelles. During circulation, poly(l-glutamic acid)n-b-poly(d, l-lactic acid)m protected Tat peptides on the micelles from proteolysis. Under tumor-acidic conditions, polymers with shorter poly(l-glutamic acid) blocks underwent a conformational change to form channels that accelerated the release of doxorubicin. The conformational change also exposed the Tat peptides to tumor cells, thereby promoting cellular internalization of the micelles. Enhanced cellular uptake of the micelles induced significant apoptosis of A375 melanoma cells in tumor-acidic conditions. In vivo studies demonstrated that the micelles with shorter poly(l-glutamic acid) blocks could effectively accumulate in tumor tissues, suppress tumor growth and help maintain the body weight of tumor-bearing mice. However, micelles with longer poly(l-glutamic acid) blocks did not undergo a conformational change under acidic conditions and performed poorly in both in vitro and in vivo evaluations. Our work provides a strategy for applying bioactive polymers to the rational construction of pH-responsive delivery systems for solid tumors and lends insight into possible conformational effects on the bioactivity of drug carriers.  相似文献   

15.
Galactose modified trimethyl chitosan-cysteine (GTC) conjugates with various galactose grafting densities were developed for oral delivery of Survivin shRNA-expression pDNA (iSur-pDNA) and vascular endothelial growth factor (VEGF) siRNA (siVEGF) in the synergistic and targeted treatment of hepatoma. iSur-pDNA and siVEGF loaded GTC nanoparticles (NPs) were prepared via electrostatic complexation and showed desirable stability in physiological fluids and improved intestinal permeation compared to naked genes. Galactose grafting density of GTC NPs significantly affected their in vitro and in vivo antitumor activities. GTC NPs with moderate galactose grafting density, termed GTC2 NPs, were superior in facilitating cellular uptake, promoting nuclear distribution, and silencing target genes, leading to notable inhibition of cell growth. In tumor-bearing mice, orally delivered GTC2 NPs could effectively accumulate in the tumor tissues and silence the expression of Survivin and VEGF, evoking increased apoptosis, inhibited angiogenesis, and thus the most efficient tumor regression. Moreover, compared with single gene delivery, co-delivery of iSur-pDNA and siVEGF showed synergistic effects on inhibiting in vitro cell proliferation and in vivo tumor growth. This study could serve as an effective approach for synergistic cancer therapy via oral gene delivery, and highlighted the importance of ligand grafting density in the rational design of targeted nanocarriers.  相似文献   

16.
Multi-drug resistance (MDR) is a major cause of failure in cancer chemotherapy. Tocopheryl polyethylene glycol 1000 succinate (TPGS) has been extensively investigated for overcoming MDR in cancer therapy because of its ability to inhibit P-glycoprotein (P-gp). In this work, TPGS was for the first time used as a new surface modifier to functionalize NaYbF4:Er upconversion nanoparticles (UNCPs) and endowed the as-prepared products (TPGS-UCNPs) with excellent water-solubility, P-gp inhibition capability and imaging-guided drug delivery property. After the chemotherapeutic drug (doxorubicin, DOX) loading, the as-formed composites (TPGS-UCNPs-DOX) exhibited potent killing ability for DOX-resistant MCF-7 cells. Flow-cytometric assessment and Western blot assay showed that the TPGS-UCNPs could potently decrease the P-gp expression and facilitate the intracellular drug accumulation, thus achieving MDR reversal. Moreover, considering that UCNPs process efficient upconversion emission and Yb element contained in UCNPs has strong X-ray attenuation ability, the as-obtained composite could also serve as a dual-modal probe for upconversion luminescence (UCL) imaging and X-ray computed tomography (CT) imaging, making them promising for imaging-guided cancer therapy.  相似文献   

17.
The combination of chemotherapeutic drug camptothecin (CPT) and siPlk1 could prohibit cancer development with combined effects. To ensure the two drugs could be simultaneously delivered to tumor region with high loading content, and the modulator siPlk1 could be released in advance to down-regulate the Plk1 expression to improve the sensitivity of CPT to cancer cells, dual sensitive and temporally controlled CPT prodrug based cationic liposomes with siPlk1 codelivery system was constructed. The pH-sensitive zwitterionic polymer poly(carboxybetaine) (PCB) was conjugated with CPT through pH and esterase-sensitive ester bond to enhance the stability and loading content of CPT. CPT-based cationic liposomes consisted of CPT-PCB prodrug and cationic lipid DDAB were then constructed for siRNA codelivery for combination therapy. The dual sensitive CPT-PCB/siPlk1 lipoplexes simultaneously delivered the two drugs to tumor cells and enabled a temporally controlled release of two drugs, that the siRNA was quickly released after 4 h incubation due to the protonation of PCB in endosomes/lysosomes, and CPT was released in a sustained manner in response to pH and esterase and highly accumulated in nucleus after 12 h incubation. The CPT-PCB/siPlk1 lipoplexes induced significant cell apoptosis and cytotoxicity in vitro with a synergistic effect. Furthermore, the dual sensitive CPT-PCB lipoplexes enhanced the tumor accumulation of the two payloads and exhibited a synergistic tumor suppression effect in tumor-bearing mice in vivo, which proved to be a promising delivery system for codelivery of CPT and siPlk1 for cancer therapy.  相似文献   

18.
Four arm star-shaped poly(ε-caprolactone)-b-poly((N,N-diethylaminoethyl methacrylate)-r-(N-(3-sulfopropyl)-N-methacryloxyethy-N,N-diethylammoniumbetaine)) (4sPCLDEAS) micelles were loaded with anticancer drug doxorubicin to track their endocytosis in Hela cancer cell line. The effects of mean diameters and surface charges of the drug loaded micelles on the cellular uptake were studied in details. The results demonstrated that the internalization of micelles was both time and energy dependent process. Endocytic pathways including clathrin-mediated endocytosis, caveolae-mediated endocytosis and macropinocytosis were all involved in the internalization; caveolae-mediated endocytosis was the main pathway for the internalization of 4sPCLDEAS micelles. The assays for cell apoptosis and growth inhibition of tumor spheroids identified that these doxorubicin loaded micelles could induce cell apoptosis and inhibit tumor spheroids growth efficiently, which was even equal to free DOX·HCl. This study provided a rational design strategy for fabricating diverse micellar drug delivery systems with high anticancer efficiency.  相似文献   

19.
In cancer therapy nanocargos based on star-shaped polymer exhibit unique features such as better stability, smaller size distribution and higher drug capacity in comparison to linear polymeric micelles. In this study, we developed a multifunctional star-shaped micellar system by combination of active targeting ability and redox-responsive behavior. The star-shaped micelles with good stability were self-assembled from four-arm poly(ε-caprolactone)-poly(ethylene glycol) copolymer. The redox-responsive behaviors of these micelles triggered by glutathione were evaluated from the changes of micellar size, morphology and molecular weight. In vitro drug release profiles exhibited that in a stimulated normal physiological environment, the redox-responsive star-shaped micelles could maintain good stability, whereas in a reducing and acid environment similar with that of tumor cells, the encapsulated agent was promptly released. In vitro cellular uptake and subcellular localization of these micelles were further studied with confocal laser scanning microscopy and flow cytometry against the human cervical cancer cell line HeLa. In vivo and ex vivo DOX fluorescence imaging displayed that these FA-functionalized star-shaped micelles possessed much better specificity to target solid tumor. Both the qualitative and quantitative results of the antitumor effect in 4T1 tumor-bearing BALB/c mice demonstrated that these redox-responsive star-shaped micelles have a high therapeutic efficiency to artificial solid tumor. Therefore, the multifunctional star-shaped micelles are a potential platform for targeted anticancer drug delivery.  相似文献   

20.
As part of HCC tumor cellularity, cancer stem cells (CSCs) are considered a major obstacle to eradicate hepatocellular carcinoma (HCC), which is the third most common cause of cancer-related death worldwide, and the accumulation of chemotherapeutic drug-resistant CSCs invariably accounts for poor prognosis and HCC relapse. In the present study, we explored the efficacy of co-delivery of platinum drug and siRNA targeting Notch1 to treat CSCs-harboring HCC. To overcome the challenging obstacles of platinum drug and siRNA in the systemic administration, we developed a micellar nanoparticle (MNP) to deliver platinum(IV) prodrug and siNotch1, hereafter referred to as Pt(IV)MNP/siNotch1. We demonstrated that Pt(IV)MNP/siNotch1 was able to efficiently deliver two drugs into both non-CSCs and CSCs of SMMC7721, a HCC cell line. We further found that siRNA-mediated inhibition of Notch1 suppression can increase the sensitivity of HCC cells to platinum drugs and decrease the percentage of HCC CSCs, and consequently resulting in enhanced proliferation inhibition and apoptosis induction in HCC cells in vitro. Moreover, our results indicated that the combined drug delivery system can remarkably augment drug enrichment in tumor tissues, substantially suppressing the tumor growth while avoiding the accumulation of CSCs in a synergistic manner in the SMMC7721 xenograft model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号