首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An amphiphilic anionic copolymer, methoxy poly(ethylene glycol)-b-poly(l-glutamic acid-co-l-phenylalanine) (mPEG-b-P(Glu-co-Phe)), with three functionalized domains, was synthesized and used as a nanovehicle for cationic anticancer drug doxorubicin hydrochloride (DOX·HCl) delivery via electrostatic interactions for cancer treatment. The three domains displayed distinct functions: PEG block chain for prolonged circulation; poly(phenylalanine) domain for stabilizing the nanoparticle construct through hydrophobic/aromatic interactions; and the poly(glutamic acid) domain for providing electrostatic interactions with the cationic drug to be loaded. The copolymer could self-assemble into micellar-type nanoparticles, and DOX was successfully loaded into the interior of nanoparticles by simple mixing of DOX·HCl and the copolymer in the aqueous phase. DOX-loaded mPEG-b-P(Glu-co-Phe) nanoparticles (DOX-NP) had a superior drug-loading content (DLC) (21.7%), a high loading efficiency (almost 98%) and a pH-triggered release of DOX. The size of DOX-NP was ~140 nm, as determined by dynamic light scattering measurements and transmission electron microscopy. In vitro assays showed that DOX-NP exhibited higher cell proliferation inhibition and higher cell uptake in A549 cell lines compared with free DOX·HCl. Maximum tolerated dose (MTD) studies showed that DOX-NP demonstrated an excellent safety profile with a significantly higher MTD (15 mg DOX kg?1) than that of free DOX·HCl (5 mg DOX kg?1). The in vivo studies on the subcutaneous non-small cell lung cancer (A549) xenograft nude mice model confirmed that DOX-NP showed significant antitumor activity and reduced side effects, and then enhanced tumor accumulation as a result of the prolonged circulation in blood and the enhanced permeation and retention effect, compared with free DOX, indicating its great potential for cancer therapy.  相似文献   

2.
Folate (FA) modified amphiphilic linoleic acid (LA) and poly (β-malic acid) (PMLA) double grafted chitosan (LMC) nanoparticles (NPs) with optimum grafting degrees of hydrophobic LA and hydrophilic PMLA were developed for the co-delivery of paclitaxel (PTX) and survivin shRNA-expressing plasmid (iSur-pDNA). The resultant NPs exhibited particle size of 161 nm and zeta potential of 43 mV. FA modification and the increasing grafting degrees of LA and PMLA were correlated with the suppressed protein adsorption, the inhibited release of PTX, and the accelerated dissociation of pDNA. PTX loading, cellular uptake, nuclear accumulation of pDNA, in vitro gene silencing efficiency, and cell growth inhibition were promoted by FA modification and higher grafting degree of LA, but impeded by increasing grafting degree of PMLA. In tumor-bearing mice, co-delivery of PTX and iSur-pDNA exhibited enhanced antitumor efficacy and prolonged survival period as compared with single delivery of PTX or iSur-pDNA. These results indicated that amphiphilic LMC NPs could serve as a promising platform for the co-delivery of antitumor drugs and genes, and highlighted the importance of adjusting the hydrophobic and hydrophilic grafting degrees.  相似文献   

3.
《Acta biomaterialia》2014,10(3):1392-1402
A novel methoxy poly(ethylene glycol)-b-poly(l-glutamic acid)-b-poly(l-phenylalanine) (mPEG-b-P(Glu)-b-P(Phe)) triblock copolymer was prepared and explored as a micelle carrier for the co-delivery of paclitaxel (PTX) and cisplatin (cis-diamminedichlo-platinum, CDDP). PTX and CDDP were loaded inside the hydrophobic P(Phe) inner core and chelated to the middle P(Glu) shell, respectively, while mPEG provided the outer corona for prolonged circulation. An in vitro release profile of the PTX + CDDP-loaded micelles showed that the CDDP chelation cross-link prevented an initial burst release of PTX. The PTX + CDDP-loaded micelles exhibited a high synergism effect in the inhibition of A549 human lung cancer cell line proliferation over 72 h incubation. For the in vivo treatment of xenograft human lung tumor, the PTX + CDDP-loaded micelles displayed an obvious tumor inhibiting effect with a 83.1% tumor suppression rate (TSR%), which was significantly higher than that of a free drug combination or micelles with a single drug. In addition, more importantly, the enhanced anti-tumor efficacy of the PTX + CDDP-loaded micelles came with reduced side-effects. No obvious body weight loss occurred during the treatment of A549 tumor-bearing mice with the PTX + CDDP-loaded micelles. Thus, the polypeptide-based combination of PTX and CDDP may provide useful guidance for effective and safe cancer chemotherapy.  相似文献   

4.
In this study, a novel redox-sensitive micellar system constructed from a hyaluronic acid-based amphiphilic conjugate (HA-ss-(OA-g-bPEI), HSOP) was successfully developed for tumor-targeted co-delivery of paclitaxel (PTX) and AURKA specific siRNA (si-AURKA). HSOP exhibited excellent loading capacities for both PTX and siRNA with adjustable dosing ratios and desirable redox-sensitivity independently verified by morphological changes of micelles alongside in vitro release of both drugs in different reducing environments. Moreover, flow cytometry and confocal microscopy analysis confirmed that HSOP micelles were capable of simultaneously delivering PTX and siRNA into MDA-MB-231 breast cancer cells via HA-receptor mediated endocytosis followed by rapid transport of cargoes into the cytosol. Successful delivery and transport amplified the synergistic effects between the drugs while leading to substantially greater antitumor efficacy when compared with single drug-loaded micelles and non-sensitive co-loaded micelles. In vivo investigation demonstrated that HSOP micelles could effectively accumulate in tumor sites and possessed the greatest antitumor efficacy over non-sensitive co-delivery control and redox-sensitive single-drug controls. These findings indicated that redox-sensitive HSOP co-delivery system holds great promise for combined drug/gene treatment for targeted cancer therapy.  相似文献   

5.
Thermosensitive hydrogels based on poly(γ-ethyl-l-glutamate)-poly(ethylene glycol)-poly(γ-ethyl-l-glutamate) triblock copolymers (PELG-PEG-PELG) were prepared for localized and sustained delivery of anticancer drugs. The polypeptide-based hydrogels showed much lower critical gelation concentration than the traditional polyester-based hydrogels. In vivo biocompatibility studies revealed that the in situ formed gels in the subcutaneous layer last for ∼21 days, and H&E staining study suggested acceptable biocompatibility of our materials in vivo. Then the hydrogels were tried as injectable implants to encapsulate antitumor drug, paclitaxel (PTX), to assess the in situ anti-tumoral activity using liver cancer xenograft model. The results demonstrated that the PTX-incorporated hydrogels could efficiently suppress the tumor growth, and did not result in obvious damage to normal organs. Therefore, the polypeptide-based thermosensitive hydrogels designed in the present study have great potential to serve as an effective platform for localized anti-cancer drug delivery.  相似文献   

6.
Combination cancer therapy has emerged as crucial approach for achieving superior anti-cancer efficacy. In this study, we developed a strategy by localized co-delivery of PLK1shRNA/polylysine-modified polyethylenimine (PEI-Lys) complexes and doxorubicin (DOX) using biodegradable, thermosensitive PLGA-PEG-PLGA hydrogels for treatment of osteosarcoma. When incubated with osteosarcoma Saos-2 and MG-63 cells, the hydrogel containing PLK1shRNA/PEI-Lys and DOX displayed significant synergistic effects in promoting the apoptosis of osteosarcoma cells in vitro. After subcutaneous injection of the hydrogel containing PLK1shRNA/PEI-Lys and DOX beside the tumors of nude mice bearing osteosarcoma Saos-2 xenografts, the hydrogels exhibited superior antitumor efficacy in vivo compared to the hydrogels loaded with PLK1shRNA/PEI-Lys or DOX alone. It is noteworthy that the combination treatment in vivo led to almost complete suppression of tumor growth up to 16 days, significantly enhanced PLK1 silencing, higher apoptosis of tumor masses, as well as increased cell cycle regulation. Additionally, ex vivo histological analysis of major organs of the mice indicated that the localized treatments showed no obvious damage to the organs, suggesting lower systemic toxicity of the treatments. Therefore, the strategy of localized, sustained co-delivery of PLK1shRNA and DOX by using the biodegradable, injectable hydrogel may have potential for efficient clinical treatment of osteosarcoma.  相似文献   

7.
Wang H  Zhao Y  Wu Y  Hu YL  Nan K  Nie G  Chen H 《Biomaterials》2011,32(32):8281-8290
The use of single chemotherapeutic drug has shown some limitations in anti-tumor treatment, such as development of drug resistance, high toxicity and limited regime of clinical uses. The combination of two or more therapeutic drugs is feasible means to overcome the limitations. Co-delivery strategy has been proposed to minimize the amount of each drug and to achieve the synergistic effect for cancer therapies. Attempts have been made to deliver chemotherapeutic drugs simultaneously using drug carriers, such as micelles, liposomes, and inorganic nanoparticles (NPs). Here we reported core-shell NPs that were doubly emulsified from an amphiphilic copolymer methoxy poly(ethylene glycol)-poly(lactide-co-glycolide) (mPEG-PLGA). These NPs offered advantages over other nanocarriers, as they were easy to fabricate by improved double emulsion method, biocompatible, and showed high loading efficacy. More importantly, these NPs could co-deliver hydrophilic doxorubicin (DOX) and hydrophobic paclitaxel (TAX). The drug-loaded NPs possessed a better polydispersity, indicating that they are more readily subject to controlled size distribution. Studies on drug release and cellular uptake of the co-delivery system demonstrated that both drugs were effectively taken up by the cells and released simultaneously. Furthermore, the co-delivery nanocarrier suppressed tumor cells growth more efficiently than the delivery of either DOX or TAX at the same concentrations, indicating a synergistic effect. Moreover, the NPs loading drugs with a DOX/TAX concentration ratio of 2:1 showed the highest anti-tumor activity to three different types of tumor cells. This nanocarrier might have important potential in clinical implications for co-delivery of multiple anti-tumor drugs with different properties.  相似文献   

8.
Gold (Au) nanoparticles (NPs) stabilized with a monolayer of folate-conjugated poly(l-aspartate-doxorubicin)-b-poly(ethylene glycol) copolymer (Au-P(LA-DOX)-b-PEG-OH/FA) was synthesized as a tumor-targeted drug delivery carrier. The Au-P(LA-DOX)-b-PEG-OH/FA NPs consist of an Au core, a hydrophobic poly(l-aspartate-doxorubicin) (P(LA-DOX)) inner shell, and a hydrophilic poly(ethylene glycol) and folate-conjugated poly(ethylene glycol) outer shell (PEG-OH/FA). The anticancer drug, doxorubicin (DOX), was covalently conjugated onto the hydrophobic inner shell by acid-cleavable hydrazone linkage. The DOX loading level was determined to be 17 wt%. The Au-P(LA-DOX)-b-PEG-OH/FA NPs formed stable unimolecular micelles in aqueous solution. The size of the Au-P(LA-DOX)-b-PEG-OH/FA micelles were determined as 24–52 and 10–25 nm by dynamic light scattering (DLS) and transmission electron microscopy (TEM), respectively. The conjugated DOX was released from the Au-P(LA-DOX)-b-PEG-OH/FA micelles much more rapidly at pH 5.3 and 6.6 than at pH 7.4, which is a desirable characteristic for tumor-targeted drug delivery. Cellular uptake of the Au-P(LA-DOX)-b-PEG-OH/FA micelles facilitated by the folate-receptor-mediated endocytosis process was higher than that of the micelles without folate. This was consistent with the higher cytotoxicity observed with the Au-P(LA-DOX)-b-PEG-OH/FA micelles against the 4T1 mouse mammary carcinoma cell line. These results suggest that Au-P(LA-DOX)-b-PEG-OH/FA NPs could be used as a carrier with pH-triggered drug releasing properties for tumor-targeted drug delivery.  相似文献   

9.
The combined treatment of chemotherapeutant and microRNA (miR) has been proven to be a viable strategy for enhancing chemosensitivity due to its synergistic effect for tumor therapy. However, the co-delivery of drugs and genes remains a major challenge as they lack efficient co-delivery carriers. In this study, three amphiphilic star-branched copolymers comprising polylactic acid (PLA) and polydimethylaminoethyl methacrylate (PDMAEMA) with AB3, (AB3)2,and (AB3)3 molecular architectures were synthesized respectively by a combination of ring-opening polymerization, atom transfer radical polymerization, and click chemistry via an “arm-first” approach. The star copolymers possessed a low critical micelle concentration (CMC) and formed nano-sized micelles with positive surface charges in water as well as exhibiting a much lower cytotoxicity than PEI 25 kDa. Nevertheless, their gene transfection efficiency and tumor inhibition ability showed a remarkable dependence on their molecular architecture. The (AB3)3 architecture micelle copolymer exhibited the highest transfection efficiency, about 2.5 times higher than PEI. In addition, after co-delivering DOX and miR-21 inhibitor (miR-21i) into LN229 glioma cells, the micelles could mediate escaping miR-21i from lysosome degradation and the release of DOX to the nucleus, which significantly decreased the miR-21 expression. Moreover, co-delivery of DOX and miR-21i surprisingly exhibited an anti-proliferative efficiency compared with DOX or the miR-21i treatment alone. These results demonstrated that amphiphilic star-branched copolymers are highly promising for their combinatorial delivery of genes and hydrophobic therapeutants.  相似文献   

10.
Biodegradable micelles with sheddable poly(ethylene glycol) shells were developed based on disulfide-linked poly(ethylene glycol)-b-poly(?-caprolactone) (PEG-SS-PCL) diblock copolymer and applied for rapid intracellular release of doxorubicin (DOX). PEG-SS-PCL was prepared with controlled block lengths via exchange reaction between PEG orthopyridyl disulfide and mercapto PCL. The micelles formed from PEG-SS-PCL, though sufficiently stable in water, were prone to fast aggregation in the presence of 10 mm dithiothreitol (DTT), due to shedding of the PEG shells through reductive cleavage of the intermediate disulfide bonds. Interestingly, the in vitro release studies revealed that these shell-sheddable micelles released DOX quantitatively within 12 h under a reductive environment analogous to that of the intracellular compartments such as cytosol and the cell nucleus. In contrast, minimal drug release (<20%) was observed within 24 h for the reduction insensitive PEG–PCL micelles under the same conditions as well as for PEG-SS-PCL micelles under the non-reductive conditions. Remarkably, cell experiments showed that these shell-sheddable micelles accomplished much faster release of DOX inside cells and higher anticancer efficacy as compared to the reduction insensitive control. These shell-sheddable biodegradable micelles are highly promising for the efficient intracellular delivery of various lipophilic anticancer drugs to achieve improved cancer therapy.  相似文献   

11.
A series of biodegradable amphiphilic block copolymers with controlled composition and relatively low polydispersity index were synthesized from monomethoxy polyethylene glycol (mPEG-OH, 5 kDa) via organocatalytic ring opening polymerization of aliphatic cyclic carbonate monomers - trimethylene carbonate (TMC) or cholesteryl 2-(5-methyl-2-oxo-1,3-dioxane-5-carboxyloyloxy)ethyl carbamate (MTC-Chol) or a copolymer of both the monomers (TMC and MTC-Chol): mPEG113-b-PTMC67, mPEG113-b-P(MTC-Chol11) and mPEG113-b-P(MTC-Cholx-co-TMCy)x+y. These well-defined polymers were employed to study the role of molecular weight and composition of the hydrophobic block of the polymers in loading paclitaxel (PTX), an extremely hydrophobic anticancer drug with rigid structure and strong tendency of self-association to form long fibers. The PTX-loaded micelles were fabricated by simple self-assembly without sonication or homogenization procedures. The results demonstrated that the presence of both MTC-Chol and TMC in the hydrophobic block significantly increased PTX loading levels, and the micelles formed from the polymer with the optimized composition (i.e. mPEG113-b-P(MTC-Chol11-co-TMC30)) were in nanosize (36 nm) with narrow size distribution (PDI: 0.07) and high PTX loading capacity (15 wt.%). In vitro treatment of human liver hepatocellular carcinoma HepG2 cells with blank micelles showed that these polymeric carriers were non-cytotoxic with cell viability greater than 90% at ∼2400 mg/L. Importantly, PTX-loaded micelles were able to kill cancer cells much more effectively compared to free PTX. In addition, these nanocarriers also possessed exceptional kinetic stability. The results from non-invasive near-infrared fluorescence (NIRF) imaging studies showed that these micelles allowed effective passive targeting, and were preferably accumulated in tumor tissue with limited distribution to healthy organs.  相似文献   

12.
Cho HJ  Yoon IS  Yoon HY  Koo H  Jin YJ  Ko SH  Shim JS  Kim K  Kwon IC  Kim DD 《Biomaterials》2012,33(4):1190-1200
Polyethylene glycol (PEG)-conjugated hyaluronic acid-ceramide (HACE) was synthesized for the preparation of doxorubicin (DOX)-loaded HACE-PEG-based nanoparticles, 160 nm in mean diameter with a negative surface charge. Greater uptake of DOX from these HACE-PEG-based nanoparticles was observed in the CD44 receptor highly expressed SCC7 cell line, compared to results from the CD44-negative cell line, NIH3T3. A strong fluorescent signal was detected in the tumor region upon intravenous injection of cyanine 5.5-labeled nanoparticles into the SCC7 tumor xenograft mice; the extended circulation time of the HACE-PEG-based nanoparticle was also observed. Pharmacokinetic study in rats showed a 73.0% reduction of the in vivo clearance of DOX compared to the control group. The antitumor efficacy of the DOX-loaded HACE-PEG-based nanoparticles was also verified in a tumor xenograft mouse model. DOX was efficiently delivered to the tumor site by active targeting via HA and CD44 receptor interaction and by passive targeting due to its small mean diameter (<200 nm). Moreover, PEGylation resulted in prolonged nanoparticle circulation and reduced DOX clearance rate in an in vivo model. These results therefore indicate that PEGylated HACE nanoparticles represent a promising anticancer drug delivery system for cancer diagnosis and therapy.  相似文献   

13.
In cancer therapy nanocargos based on star-shaped polymer exhibit unique features such as better stability, smaller size distribution and higher drug capacity in comparison to linear polymeric micelles. In this study, we developed a multifunctional star-shaped micellar system by combination of active targeting ability and redox-responsive behavior. The star-shaped micelles with good stability were self-assembled from four-arm poly(ε-caprolactone)-poly(ethylene glycol) copolymer. The redox-responsive behaviors of these micelles triggered by glutathione were evaluated from the changes of micellar size, morphology and molecular weight. In vitro drug release profiles exhibited that in a stimulated normal physiological environment, the redox-responsive star-shaped micelles could maintain good stability, whereas in a reducing and acid environment similar with that of tumor cells, the encapsulated agent was promptly released. In vitro cellular uptake and subcellular localization of these micelles were further studied with confocal laser scanning microscopy and flow cytometry against the human cervical cancer cell line HeLa. In vivo and ex vivo DOX fluorescence imaging displayed that these FA-functionalized star-shaped micelles possessed much better specificity to target solid tumor. Both the qualitative and quantitative results of the antitumor effect in 4T1 tumor-bearing BALB/c mice demonstrated that these redox-responsive star-shaped micelles have a high therapeutic efficiency to artificial solid tumor. Therefore, the multifunctional star-shaped micelles are a potential platform for targeted anticancer drug delivery.  相似文献   

14.
Folate-conjugated unimolecular micelles based on amphiphilic hyperbranched block copolymer, Boltorn® H40-poly(l-aspartate-doxorubicin)-b-poly(ethylene glycol)/FA-conjugated poly(ethylene glycol) (H40-P(LA-DOX)-b-PEG-OH/FA), were synthesized as a carrier for tumor-targeted drug delivery. The anticancer drug DOX was covalently conjugated onto the hydrophobic segments of the amphiphilic block copolymer arms by pH-sensitive hydrazone linkage. The size of the unimolecular micelles was determined as 17–36 and 10–20 nm by dynamic light scattering (DLS) and transmission electron microscopy (TEM), respectively. The release profiles of the DOX from the H40-P(LA-DOX)-b-PEG-OH/FA micelles showed a strong dependence on the environmental pH values. The DOX release rate increased in the acidic medium due to the acid-cleavable hydrazone linkage between the DOX and micelles. Cellular uptake of the H40-P(LA-DOX)-b-PEG-OH/FA micelles was found to be higher than that of the H40-P(LA-DOX)-b-PEG-OH micelles because of the folate-receptor-mediated endocytosis, thereby providing higher cytotoxicity against the 4T1 mouse mammary carcinoma cell line. Degradation studies showed that the H40-P(LA-DOX)-b-PEG-OH/FA copolymer hydrolytically degraded into polymer fragments within six weeks. These results suggest that H40-P(LA-DOX)-b-PEG-OH/FA micelles could be a promising nanocarrier with excellent in vivo stability for targeting the drugs to cancer cells and releasing the drug molecules inside the cells by sensing the acidic environment of the endosomal compartments.  相似文献   

15.
We have recently reported micellar nanoparticles self-assembled from a biodegradable and amphiphilic copolymer poly{(N-methyldietheneamine sebacate)-co-[(cholesteryl oxocarbonylamido ethyl) methyl bis(ethylene) ammonium bromide] sebacate}, P(MDS-co-CES), which were able to deliver small molecular drugs and biomacromolecules such as genes and functional proteins individually or simultaneously into various types of cells. In this study, these cationic micellar nanoparticles were employed as carriers to co-deliver paclitaxel and Herceptin for achieving targeted delivery of paclitaxel to human epidermal growth factor receptor-2 (HER2/neu)-overexpressing human breast cancer cells, and enhanced cytotoxicity through synergistic activities. Paclitaxel-loaded nanoparticles have an average size less than 120 nm and a zeta potential of about 60 mV. Herceptin was complexed onto the surface of the nanoparticles. The drug-loaded nanoparticle/Herceptin complexes remained stable under physiologically-simulating conditions with sizes at around 200 nm. The nanoparticles delivered Herceptin much more efficiently than BioPorter, a commercially available lipid-based protein carrier, and displayed a much higher anti-cancer effectiveness. Twice-repeated daily treatment with Herceptin showed significantly higher cytotoxicity especially in HER2-overexpressing breast cancer cells when compared to single treatment. Anti-cancer effects of this co-delivery system was investigated in human breast cancer cell lines with varying degrees of HER2 expression level, namely, MCF7, T47D and BT474. The co-delivery of Herceptin increased the cytotoxicity of paclitaxel and this enhancement showed a dependency on their HER2 expression levels. Targeting ability of this co-delivery system was demonstrated through confocal images, which showed significantly higher cellular uptake in HER2-overexpressing BT474 cells as compared to HER2-negative HEK293 cells. This co-delivery system may have important clinical implications against HER2-overexpressing breast cancers.  相似文献   

16.
This study systematically compares the effects of amphiphilic diblock copolymer (di-BCP) on stabilizing hydrophobic drug nanoparticles formed by flash nanoprecipitation (FNP), and provides a guideline on choosing suitable di-BCPs. Four widely used di-BCPs, i.e., polystyrene-block-poly(ethylene glycol) (PS-b-PEG), polycaprolactone-block-poly(ethylene glycol) (PCL-b-PEG), polylactide-block-poly(ethylene glycol) (PLA-b-PEG), and poly(lactic-co-glycolic acid) (PLGA-b-PEG), and β-carotene as a model drug were used. The study showed that PLGA-b-PEG was the most suitable one, whose hydrophobic block was biodegradable and noncrystallizable as well as had relatively high glass transition temperature (Tg) and a right solubility parameter (δ). The molecular weight of PLGA block over the range from 5k to 15k showed an insignificant effect on controlling the particle size. Amorphous drug particles with a high drug loading of over 83 wt% can be achieved. Much remarkable evidence supported the nanoparticles with kinetically frozen and non-equilibrium packing structures of polymer chains rather than either the micelles or micellar nanoparticles with two well segregated polymer blocks. The thermodynamic effects of the drug and BCP on the particle stability, size and structures were discussed by using solubility parameters.  相似文献   

17.
A cancer-recognizable MRI contrast agents (CR-CAs) has been developed using pH-responsive polymeric micelles. The CR-CAs with pH sensitivity were self-assembled based on well-defined amphiphilic block copolymers, consisting of methoxy poly(ethylene glycol)-b-poly(l-histidine) (PEG-p(l-His)) and methoxy poly(ethylene glycol)-b-poly(l-lactic acid)-diethylenetriaminopentaacetic acid dianhydride-gadolinium chelate (PEG-p(l-LA)-DTPA-Gd). The CR-CAs have a spherical shape with a uniform size of ∼40 nm at physiological pH (pH 7.4). However, in acidic tumoral environment (pH 6.5), the CR-CAs were destabilized due to the protonation of the imidazole groups of p(l-His) blocks, causing them to break apart into positively charged water-soluble polymers. As a result, the CR-CAs exhibit highly effective T1 MR contrast enhancement in the tumor region, which enabled the detection of small tumors of ∼3 mm3in vivo at 1.5 T within a few minutes.  相似文献   

18.
Kim JI  Kim da Y  Kwon DY  Kang HJ  Kim JH  Min BH  Kim MS 《Biomaterials》2012,33(10):2823-2834
?-Caprolactone (CL) and 3-benzyloxymethyl-6-methyl-1,4-dioxane-2,5-dion (fLA), with a benzyloxymethyl group at the 3-position of the lactide, were randomly copolymerized. The methoxy polyethylene glycol (MPEG)-b-[poly(?-caprolactone)-ran-poly(3-benzyloxymethyl lactide) (PCL-ran-PfLA)] diblock copolymers were designed such that the PfLA content (0-15 mol%) in the PCL segment was varied. The MPEG-b-(PCL-ran-PfLA) diblock copolymers were derivatized by introducing a pendant benzyl group (MCxLy-OBn), hydroxyl group (MCxLy-OH), or carboxylic acid group (MCxLy-COOH) at the PfLA segment. The derivatized MPEG-b-(PCL-ran-PfLA) diblock copolymer solutions exhibited sol-to-gel phase transitions upon a temperature increase. The sol-to-gel phase transition depended on both the type of functional pendant group on the PfLA and the PfLA content in the PCL segment. MCxLy-COOH diblock copolymer solutions formed gels immediately after injection into Fischer rats. The gels gradually degraded over a period of 0-6 weeks after the initial injection, and the rate of degradation increased for higher concentrations of PfLA. Immunohistochemical characterization showed that the in vivo MPEG-b-(PCL-ran-PfLA) diblock copolymer gels provoked only a modest inflammatory response. These results show that the MPEG-b-(PCL-ran-PfLA) diblock copolymer gel described here may serve as a minimally invasive therapeutic, in situ-forming gel system with an adjustable temperature-responsive and in vivo biodegradable window.  相似文献   

19.
Great efforts have been made to develop drug carriers with the aim of providing predictable therapeutic response. Moreover, combination therapies have become promising strategies for clinical cancer treatment with synergistic effects. The present study purposed to develop a new stimuli-responsive paramagnetic nanocarrier for the intracellular co-delivery of doxorubicin (DOX) and methotrexate (MTX) to the MCF7 cell line. A novel thermo/pH-sensitive amphiphilic paramagnetic nanocomposite comprised of hydrophobic and biodegradable PCL segments and a hydrophilic biocompatible P(NIPAAm-co-HEMA-co-MAA-co-TMSPMA) block was designed and synthesized by combining the ring opening and free radical polymerization methods. The structure and physic-chemical characterization of synthesized nanoparticles and intermediates were studied and revealed using FTIR, HNMR, CNMR, SEM, EDX, TGA, and VSM techniques. DOX and MTX on a nanocarrier achieved 95.04 and 97.29% encapsulation efficiency, respectively. The dual drug release profile revealed tumor niche-assisted release behavior (more drug release was observed at a temperature of 41 °C and pH ≤ 5.4). The antitumor ability of the DOX/MTX-loaded nanocomposite was significantly higher than that of free drugs, confirmed by MTT assay, DAPI staining, cell cycle, and real-time PCR analysis on MCF7 cell lines. Furthermore, the cytotoxicity assay of a nanocarrier to the MCF7 cell line revealed its suitability as an anticancer drug nanocarrier. The results indicated that this engineered dual anticancer drug delivery system ensures increased antitumor activity as well as decreased toxicity in comparison with the free drugs.  相似文献   

20.
A comprehensive strategy for the preparation of mulberry-like dual-drug complicated nanocarriers (MLDC NCs) with high drug loading and adjustable dual-drug ratio was developed. First, apogossypolone (ApoG2) amphiphilic starch micelles (AASt MCs) were prepared by self-assembly process, and doxorubicin (DOX) hyaluronic acid nanoparticles (DHA NPs) were prepared by DOX absorption with excess HA by electrostatic absorption. MLDC NCs were obtained by adsorption of 8–9 DHA NPs around one AASt MC via electrostatic interaction. UV–visible and fluorescence spectrophotometers were used to measure the entrapment efficiency and loading efficiency of the two drugs. Transmission electron microscope and dynamic light scattering method were used to observe the size distribution and morphology of the particles. The tumor-targeting feature caused by HA-receptor mediation was confirmed by in vitro cell uptake and in vivo near-infrared fluorescence imaging. MLDC NCs were found to possess a mulberry-like shape with a dynamic size of 83.1 ± 6.6 nm. The final encapsulation efficiencies of ApoG2 and DOX in MLDC NCs were 94 ± 1.7% and 87 ± 5.8% with respect to drug-loading capacities of 13.3 ± 1.2% and 13.1 ± 3.7%, respectively. Almost no ApoG2 release was found within 80 h and less than 30% of DOX was released into the outer phase even after 72 h. In vivo fluorescence imaging revealed that MLDC NCs had highly efficient targeting and accumulation at the tumor in vivo and was maintained for 96 h after being injected intravenously in mice. Low LD50 for the two drugs in MLDC NCs was found after acute toxicity test. One-fifth normal dosage of the two drugs in MLDC NCs exhibited significantly higher anti-tumor efficiency in reducing tumor size compared with free drugs combination or single drug-loaded nanoparticles individually, indicating that the mulberry-like dual-drug nanoplatform has a great potential in tumor therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号