首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Development of theranostic agent for imaging-guided photothermal therapy has been of great interest in the field of nanomedicine. However, if fluorescent imaging and photothermal ablation are conducted with the same wavelength of light, the requirements of the agent's quantum yield (QY) for imaging and therapy are controversial. In this work, our synthesized near-infrared dye, IR825, is bound with human serum albumin (HSA), forming a HSA-IR825 complex with greatly enhanced fluorescence under 600 nm excitation by as much as 100 folds compared to that of free IR825, together with a rather high absorbance but low fluorescence QY at 808 nm. Since high QY that is required for fluorescence imaging would result in reduced photothermal conversion efficiency, the unique optical behavior of HSA-IR825 enables imaging and photothermal therapy at separated wavelengths both with optimized performances. We thus use HSA-IR825 for imaging-guided photothermal therapy in an animal tumor model. As revealed by in vivo fluorescence imaging, HSA-IR825 upon intravenous injection shows high tumor uptake likely owing to the enhanced permeability and retention effect, together with low levels of retentions in other organs. While HSA is an abundant protein in human serum, IR825 is able to be excreted by renal excretion as evidenced by high-performance liquid chromatography (HPLC). In vivo tumor treatment experiment is finally carried out with HSA-IR825, achieving 100% of tumor ablation in mice using a rather low dose of IR825. Our work presents a safe, simple, yet imageable photothermal nanoprobe, promising for future clinical translation in cancer treatment.  相似文献   

2.
The imaging of sentinel lymph nodes (SLNs), the first defense against primary tumor metastasis, has been considered as an important strategy for noninvasive tracking tumor metastasis in clinics. In this study, we report the development and application of mesoporous silica-based triple-modal nanoprobes that integrate multiple functional moieties to facilitate near-infrared optical, magnetic resonance (MR) and positron emission tomography (PET) imaging. After embedding near-infrared dye ZW800, the nanoprobe was labeled with T(1) contrast agent Gd(3+) and radionuclide (64)Cu through chelating reactions. High stability and long intracellular retention time of the nanoprobes was confirmed by in vitro characterization, which facilitate long-term in vivo imaging. Longitudinal multimodal imaging was subsequently achieved to visualize tumor draining SLNs up to 3 weeks in a 4T1 tumor metastatic model. Obvious differences in uptake rate, amount of particles, and contrast between metastatic and contra-lateral sentinel lymph nodes were observed. These findings provide very helpful guidance for the design of robust multifunctional nanomaterials in SLNs' mapping and tumor metastasis diagnosis.  相似文献   

3.
The combination of chemotherapy with photothermal therapy, which may lead to improved therapeutic efficacies and reduced side effects of conventional chemotherapy, would require safe drug delivery systems (DDSs) with strong near-infrared (NIR) absorbance, efficient drug loading, and effective tumor homing ability. Herein, we fabricate nano-assemblies containing J-aggregates of a NIR dye, IR825, for drug delivery and combined photothermal & chemotherapy of cancer. It is found that IR825 could be complexed with a low-molecular-weight cationic polymer polyethylenimine (PEI), forming IR825@PEI J-aggregates with greatly enhanced NIR absorbance red-shifted to 915 nm. Those nano-assemblies of J-aggregates are further modified with polyethylene glycol (PEG), obtaining IR825@PEI-PEG nano-complex which exhibits great dispersity in physiological solutions, excellent photostability, and is able to efficiently load chemotherapeutic drug doxorubicin (DOX) via a unique strategy different from drug loading in conventional amphiphilic polymer-based DDSs. In vivo animal experiments uncover that IR825@PEI-PEG/DOX upon intravenous injection into tumor-bearing mice shows rather high tumor uptake as illustrated by photoacoustic imaging. In vivo combined photothermal & chemotherapy is then carried out, demonstrating great synergistic anti-tumor therapeutic effect remarkably superior to those achieved by the respective mono-therapies. Hence, we present a novel type of nanoscale DDSs based on nano-assemblies of small molecules without involving amphiphilic polymers, promising for imaging-guided combination cancer therapy.  相似文献   

4.
Integrating multiple imaging and therapy functionalities into one single nanoscale platform has been proposed to be a promising strategy in cancer theranostics. In this work, WS2 nanosheets with their surface pre-adsorbed with iron oxide (IO) nanoparticles via self-assembly are coated with a mesoporous silica shell, on to which polyethylene glycol (PEG) is attached. The obtained WS2-IO@MS-PEG composite nanoparticles exhibit many interesting inherent physical properties, including high near-infrared (NIR) light and X-ray absorbance, as well as strong superparamagnetism. In the mean time, the mesoporous silica shell in WS2-IO@MS-PEG could be loaded with a chemotherapy drug, doxorubicin (DOX), whose intracellular release afterwards may be triggered by NIR-induced photothermal heating for enhanced cancer cell killing. Upon systemic administration of such drug-loaded nano-theranostics, efficient tumor homing of WS2-IO@MS-PEG/DOX is observed in tumor-bearing mice as revealed by three-modal fluorescence, magnetic resonance (MR), and X-ray computed tomography (CT) imaging. In vivo combined photothermal & chemotherapy is then carried out with WS2-IO@MS-PEG/DOX, achieving a remarkably synergistic therapeutic effect superior to the respective mono-therapies. Our study highlights the promise of developing multifunctional nanoscale theranostics based on two-dimensional transition metal dichalcogenides (TMDCs) such as WS2 for multimodal imaging-guided combination therapy of cancer.  相似文献   

5.
Theranostic agents with both imaging and therapeutic functions have attracted enormous interests in cancer diagnosis and treatment in recent years. In this work, we develop a novel theranostic agent based on Prussian blue nanocubes (PB NCs), a clinically approved agent with strong near-infrared (NIR) absorbance and intrinsic paramagnetic property, for in vivo bimodal imaging-guided photothermal therapy. After being coated with polyethylene glycol (PEG), the obtained PB-PEG NCs are highly stable in various physiological solutions. In vivo T1-weighted magnetic resonance (MR) and photoacoustic tomography (PAT) bimodal imaging uncover that PB-PEG NCs after intravenous (i.v.) injection show high uptake in the tumor. Utilizing the strong and super stable NIR absorbance of PB, in vivo cancer treatment is then conducted upon i.v. injection of PB-PEG NCs followed by NIR laser irradiation of the tumors, achieving excellent therapeutic efficacy in a mouse tumor model. Comprehensive blood tests and careful histological examinations reveal no apparent toxicity of PB-PEG NCs to mice at our tested dose, which is two-fold of the imaging/therapy dose, within two months. Our work highlights the great promise of Prussian blue with well engineered surface coating as a multifunctional nanoprobe for imaging-guided cancer therapy.  相似文献   

6.
Cheng L  Yang K  Li Y  Zeng X  Shao M  Lee ST  Liu Z 《Biomaterials》2012,33(7):2215-2222
Theranostics, the combination of diagnostics and therapies, has become a new concept in the battles with various major diseases such as cancer. Herein, we develop multifunctional nanoparticles (MFNPs) with highly integrated functionalities including upconversion luminescence, superparamagnetism, and strong optical absorption in the near-infrared (NIR) region with high photostability. In vivo dual modal optical/magnetic resonance imaging of mice uncovers that by placing a magnet nearby the tumor, MFNPs tend to migrate toward the tumor after intravenous injection and show high tumor accumulation, which is ∼8 folds higher than that without magnetic targeting. NIR laser irradiation is then applied to the tumors grown on MFNP-injected mice under magnetic tumor-targeting, obtaining an outstanding photothermal therapeutic efficacy with 100% of tumor elimination in a murine breast cancer model. We present here a strategy for multimodal imaging-guided, magnetically targeted physical cancer therapy and highlight the promise of using multifunctional nanostructures for cancer theranostics.  相似文献   

7.
Nano-graphene and its derivatives have attracted great attention in biomedicine, including their applications in cancer theranostics. In this work, we develop 131I labeled, polyethylene glycol (PEG) coated reduced nano-graphene oxide (RGO), obtaining 131I-RGO-PEG for nuclear imaging guided combined radiotherapy and photothermal therapy of cancer. Compared with free 131I, 131IRGO- PEG exhibits enhanced cellular uptake and thus improved radio-therapeutic efficacy against cancer cells. As revealed by gamma imaging, efficient tumor accumulation of 131I-RGO-PEG is observed after its intravenous injection. While RGO exhibits strong near-infrared (NIR) absorbance and could induce effective photothermal heating of tumor under NIR light irradiation, 131I is able to emit high-energy X-ray to induce cancer killing as the result of radio ionization effect. By utilizing the combined photothermal therapy and radiotherapy, both of which are delivered by a single agent 131IRGO- PEG, effective elimination of tumors is achieved in our animal tumor model experiments. Toxicology studies further indicate that 131I-RGO-PEG induces no appreciable toxicity to mice at the treatment dose. Our work demonstrates the great promise of combing nuclear medicine and photothermal therapy as a novel therapeutic strategy to realize synergistic efficacy in cancer treatment.  相似文献   

8.
A novel dual functional theranosis platform is developed based on manganese magnetism-engineered iron oxide (MnMEIO) and gold nanorods (AuNRs) to combine magnetic resonance (MR) imaging and photothermal therapy in one nanocluster. The platform showed improved T2-weighted MR imaging and exhibited a near-infrared (NIR) induced temperature elevation due to the unique characteristics of AuNRs@MnMEIOs nanoclusters. The obtained dual functional spherical-shaped nanoclusters showed low cytotoxicity, and high cellular uptake efficiency. The AuNRs@MnMEIOs nanoclusters also demonstrated a 1.9 and 2.2 folds r2 relaxivity value higher than those of monodispersed MnMEIO and Resovist. In addition, in vivo MR imaging study found that the contrast enhancements were – 70.4 ± 4.3% versus – 7.5 ± 3.0% in Her-2/neu overexpression tumors as compared to the control tumors. More importantly, NIR laser irradiation to the tumor site resulted in outstanding photothermal therapeutic efficacy and without damage to the surrounding tissue. In additional, the prepared dual functional AuNRs@MnMEIOs display high stability and furthermore disperse even in the presence of external magnet, showing that AuNRs@MnMEIOs nanoclusters can be manipulated by an external magnetic field. Therefore, such nanoclusters combined MR imaging and photothermal therapeutic functionality can be developed as a promising nanosystem for effective cancer diagnosis and therapy.  相似文献   

9.
In this work, we develop magnetic iron sulfide (FeS) nanoplates as a theranostic agent for magnetic resonance (MR) imaging-guided photothermal therapy of cancer. FeS nanoplates are synthesized via a simple one-step method and then functionalized with polyethylene glycol (PEG). The obtained PEGylated FeS (FeS-PEG) nanoplates exhibit high NIR absorbance together with strong superparamagnetism. The r2 relaxivity of FeS-PEG nanoplates is determined to be 209.8 mm-1S-1, which appears to be much higher than that of iron oxide nanoparticles and several types of clinical approved T2-contrast agents. After intravenous (i.v.) injection, those nanoplates show high accumulation in the tumor as revealed by MR imaging. Highly effective photothermal ablation of tumors is then achieved in a mouse tumor model upon i.v. injection of FeS-PEG at a moderate dose (20 mg/kg) followed by 808-nm NIR laser irradiation. Importantly, it has been found that PEGylated FeS nanoplates after systemic administration could be gradually excreted from major organs of mice, and show no appreciable toxicity to the treated animals even at a dose (100 mg/kg) 5 times as high as that used for imaging & treatment. Our results demonstrate that PEGylated FeS nanoplates may be a promising class of theranostic nano-agents with a good potential for future clinical translation.  相似文献   

10.
We report a type of photosensitizer (PS)-loaded micelles integrating cyanine dye as potential theranostic micelles for precise anatomical tumor localization via dual photoacoustic (PA)/near-infrared fluorescent (NIRF) imaging modalities, and simultaneously superior cancer therapy via sequential synergistic photothermal therapy (PTT)/photodynamic therapy (PDT). The micelles exhibit enhanced photostability, cell internalization and tumor accumulation. The dual NIRF/PA imaging modalities of the micelles cause the high imaging contrast and spatial resolution of tumors, which provide precise anatomical localization of the tumor and its inner vasculature for guiding PTT/PDT treatments. Moreover, the micelles can generate severe photothermal damage on cancer cells and destabilization of the lysosomes upon PTT photoirradiation, which subsequently facilitate synergistic photodynamic injury via PS under PDT treatment. The sequential treatments of PTT/PDT trigger the enhanced cytoplasmic delivery of PS, which contributes to the synergistic anticancer efficacy of PS. Our strategy provides a dual-modal cancer imaging with high imaging contrast and spatial resolution, and subsequent therapeutic synergy of PTT/PDT for potential multimodal theranostic application.  相似文献   

11.
In this work, we develop a multifunctional nano-platform by coating upconversion nanoparticles (UCNPs) with bovine serum albumin (BSA), obtaining UCNP@BSA nanoparticles with great solubility and stability in physiological environments. Two types of dye molecules, including a photosensitizer, Rose Bengal (RB), and an NIR-absorbing dye, IR825, can be simultaneously loaded into the BSA layer of the UCNP@BSA nanoparticles. In this carefully designed UCNP@BSA-RB&; IR825 system, RB absorbs green light emitted from UCNPs under 980-nm excitation to induce photodynamic cancer cell killing, while IR825 whose absorbance shows no overlap with upconversion excitation and emission wavelengths, offers nanoparticles a strong photothermal perform under 808-nm laser irradiation. Without showing noticeable dark toxicity, the obtained dual-dye loaded nanoparticles are able to kill cancer via combined photothermal and photodynamic therapies, both of which are induced by NIR light with high tissue penetration, by a synergetic manner both in vitro and in vivo. In addition, the intrinsic paramagnetic and optical properties of Gd3+-doped UCNPs can further be utilized for in vivo dual modal imaging. Our study suggests that UCNPs with well-designed surface engineering could serve as a multifunctional nano-platform promising in cancer theranostics.  相似文献   

12.
Extensive efforts have been devoted to the development of near-infrared (NIR) dye-based imaging probes and/or photothermal agents for cancer theranostics in vivo. However, the intrinsic chemical instability and self-aggregation properties of NIR dyes in physiological condition limit their widely applications in the pre-clinic study in living animals. Squaraine dyes are among the most promising NIR fluorophores with high absorption coefficiencies, bright fluorescence and photostability. By introducing dicyanovinyl groups into conventional squaraine (SQ) skeleton. These acceptor-substituted SQ dyes not only show superior NIR fluorescence properties (longer wavelength, higher quantum yield) but also exhibit more chemical robustness. In this work, we demonstrated highly stable and biocompatible supramolecular adducts of SQ and the natural carrier protein, i.e., bovine serum albumin (BSA) (SQ⊂BSA) for tumor targeted imaging and photothermal therapy in vivo. SQ was selectively bound to BSA hydrophobic domain via hydrophobic and hydrogen bonding interactions with up to 80-fold enhanced fluorescence intensity. By covalently conjugating target ligands to BSA, the SQ⊂BSA was capable of targeting tumor sites and allowed for monitoring the time-dependent biodistribution of SQ⊂BSA, which consequently determined the protocol of photothermal therapy in vivo. We envision that this supramolecular strategy for selectively binding functional imaging agents and/or drugs into human serum albumin might potentially utilize in the preclinical and even clinic studies in the future.  相似文献   

13.
Despite the exciting advances in cancer therapy over past decades, tumor metastasis remains the dominate reason for cancer-related mortality. In present work, DNA-wrapped gold nanorods with doxorubicin (DOX)-loading (GNR@DOX) were developed for treatment of metastatic breast cancer via a combination of chemotherapy and photothermal ablation. The GNR@DOX nanoparticles induced significant temperature elevation and DOX release upon irradiation with near infrared (NIR) light as shown in the test tube studies. It was found that GNR@DOX nanoparticles in combination with laser irradiation caused higher cytotoxicity than free DOX in 4T1 breast cancer cells. Animal experiment with an orthotropic 4T1 mammary tumor model demonstrated that GNR@DOX nanoplatform significantly reduced the growth of primary tumors and suppressed their lung metastasis. The Hematoxylin and Eosin (H&E) and immunohistochemistry (IHC) staining assays confirmed that the tumor growth inhibition and metastasis prevention of GNR@DOX nanoparticles were attributed to their abilities to induce cellular apoptosis/necrosis and ablate intratumoral blood vessels. All these results suggested a considerable potential of GNR@DOX nanoplatform for treatment of metastatic breast cancer.  相似文献   

14.
Receptor-targeted imaging is emerging as a promising strategy for diagnosis of human cancer. Herein, we developed an epidermal growth factor-based nanoprobe (EGF-NP) for in vivo optical imaging of epidermal growth factor receptor (EGFR), an important target for cancer imaging. The self-quenched EGF-NP is fabricated by sequentially conjugating a near-infrared (NIR) fluorophore (Cy5.5) and a quencher (BHQ-3) to EGF, a low-molecular weight polypeptide (6.2 kDa), compared to EGFR antibody (150 kDa). The self-quenched EGF-NP presented great specificity to EGFR, and rapidly internalized into the cells, as monitored by time-lapse imaging. Importantly, the self-quenched EGF-NP boosted strong fluorescence signals upon EGFR-targeted uptake into EGFR-expressing cells, followed by lysosomal degradation, as confirmed by lysosomal marker cell imaging. Consistent with cellular results, intravenous injection of EGF-NP into tumor-bearing mice induced strong NIR fluorescence intensity in the target tumor tissue with high specificity against EGFR-expressing cancer cells. Signal accumulation of EGF-NP in tumor was much faster than that of EGFR monoclonal antibody (Cetuximab)-Cy5.5 conjugates due to the rapid clearance from the body and tissue permeability of low-molecular weight EGF. This self-quenched, EGF-based imaging probe can be applied for diagnosis of various cancers.  相似文献   

15.
In this study, LaB6 nanoparticles are used as a novel nanomaterial for near-infrared (NIR) photothermal therapy because they are cheaper than nanostructured gold, are easy to prepare and have an excellent NIR photothermal conversion property. Furthermore, the surface of LaB6 nanoparticles is coated with a carbon-doped silica (C-SiO2) shell to introduce a fluorescent property and improve stability and biocompatibility. The resulting LaB6@C-SiO2 nanoparticles retain the excellent NIR photothermal conversion property and exhibit a bright blue emission under UV irradiation or a green emission under visible irradiation. Using a HeLa cancer cell line, it is demonstrated that LaB6@C-SiO2 nanoparticles have no significant cytotoxicity, but their presence leads to remarkable cell death after NIR irradiation. In addition, from the observation of cellular uptake, the fluorescence labeling function of LaB6@SiO2 (LaB6 core/SiO2 shell) nanoparticles is also confirmed. These results suggest that LaB6@C-SiO2 nanoparticles may potentially serve as an efficient multifunctional nano-platform for simultaneous fluorescent imaging and NIR-triggered photothermal therapy of cancer cells.  相似文献   

16.
Although regional lymph nodes (RLN) dissection remains the only way to cure pancreatic cancer metastasis, it is unavoidably associated with sizable trauma, multiple complications, and low surgical resection rates. Thus, exploring a treatment approach for the ablation of drug-resistant pancreatic cancer is always of great concern. Moreover, reoperative and intraoperative mapping of RLN is also important during treatment, because only a few lymph nodes can be detected by the naked eye. In our study, graphene oxides modified with iron oxide nanoparticles (GO-IONP) as a nanotheranostic agent is firstly developed to diagnose and treat RLN metastasis of pancreatic cancer. The approach was designed based on clinical practice, the GO-IONP agent directly injected into the tumor was transported to RLN via lymphatic vessels. Compared to commercial carbon nanoparticles currently used in the clinic operation, the GO-IONP showed powerful ability of dual-modality mapping of regional lymphatic system by magnetic resonance imaging (MRI), as well as dark color of the agent providing valuable information that was instrumental for surgeon in making the preoperative plan before operation and intraoperatively distinguish RLN from surrounding tissue. Under the guidance of dual-modality mapping, we further demonstrated that metastatic lymph nodes including abdominal nodes could be effectively ablated by near-infrared (NIR) irradiation with an incision operation. The lower systematic toxicity of GO-IONP and satisfying safety of photothermal therapy (PTT) to neighbor tissues have also been clearly illustrated in our animal experiments. Using GO-IONP as a nanotheranostic agent presents an approach for mapping and photothermal ablation of RLN, the later may serve as an alternative to lymph node dissection by invasive surgery.  相似文献   

17.
In this study we report semimetal nanomaterials of antimony (Sb) as highly efficient agent for photoacoustic imaging (PAI) and photothermal therapy (PTT). The Sb nanorod bundles have been synthesized through a facile route by mixing 1-octadecane (ODE) and oleyl amine (OAm) as the solvent. The aqueous dispersion of PEGylated Sb NPs, due to its broad and strong photoabsorption ranging from ultraviolet (UV) to near-infrared (NIR) wavelengths, is applicable as a photothermal agent driven by 808 nm laser with photothermal conversion efficiency up to 41%, noticeably higher than most of the PTT agents reported before. Our in vitro experiments also showed that cancer cell ablation effect of PEGylated Sb NPs was dependent on laser power. By intratumoral administration of PEGylated Sb NPs, 100% tumor ablation can be realized by using NIR laser irradiation with a lower power of 1 W/cm2 for 5 min (or 0.5 W/cm2 for 10 min) and no obvious toxic side effect is identified after photothermal treatment. Moreover, intense PA signal was also observed after intratumoral injection of PEGylated Sb NPs and NIR laser irradiation due to their strong NIR photoabsorption, suggesting PEGylated Sb NPs as a potential NIR PA agent. Based on the findings of this work, further development of using other semimetal nanocrystals as highly efficient NIR agents can be achieved for vivo tumor imaging and PTT.  相似文献   

18.
The chemokine CXCL12/SDF-1 and its receptors CXCR4 and CXCR7 play a major role in tumor invasion, proliferation and metastasis. Since both receptors are overexpressed on distinct tumor cells and on the tumor vasculature, we evaluated their potential as targets for detection of cancers by molecular imaging. We synthesized conjugates of CXCL12 and the near-infrared (NIR) fluorescent dye IRDye®800CW, tested their selectivity, sensitivity and biological activity in vitro and their feasibility to visualize tumors in vivo. Purified CXCL12-conjugates detected in vitro as low as 500 A764 human glioma cells or MCF-7 breast cancer cells that express CXCR7 alone or together with CXCR4. Binding was time- and concentration-dependent, and the label could be competitively displaced by the native peptide. Control conjugates with bovine serum albumin or lactalbumin failed to label the cells. In mice, the conjugate distributed rapidly. After 1–92 h, subcutaneous tumors of human MCF-7 and A764 cells in immunodeficient mice were detected with high sensitivity. Background was observed in particular in liver within the first 24 h, but also skull and hind limbs yielded some background. Overall, fluorescent CXCL12-conjugates are sensitive and selective probes to detect solid and metastatic tumors by targeting tumor cells and tumor vasculature.  相似文献   

19.
Multilayered, core/shell nanoprobes (MQQ-probe) based on magnetic nanoparticles (MNPs) and quantum dots (QDs) have been successfully developed for multimodality tumor imaging. This MQQ-probe contains Fe(3)O(4) MNPs, visible-fluorescent QDs (600?nm emission) and near infrared-fluorescent QDs (780?nm emission) in multiple silica layers. The fabrication of the MQQ-probe involves the synthesis of a primer Fe(3)O(4) MNPs/SiO(2) core by a reverse microemulsion method. The MQQ-probe can be used both as a fluorescent probe and a contrast reagent of magnetic resonance imaging. For breast cancer tumor imaging, anti-HER2 (human epidermal growth factor receptor 2) antibody was conjugated to the surface of the MQQ-probe. The specific binding of the antibody conjugated MQQ-probe to the surface of human breast cancer cells (KPL-4) was confirmed by fluorescence microscopy and fluorescence-activated cell sorting analysis in?vitro. Due to the high tissue permeability of near-infrared (NIR) light, NIR fluorescence imaging of the tumor mice (KPL-4 cells transplanted) was conducted by using the anti-HER2 antibody conjugated MQQ-probe. In?vivo multimodality images of breast tumors were successfully taken by NIR fluorescence and T(2)-weighted magnetic resonance. Antibody conjugated MQQ-probes have great potential to use for multimodality imaging of cancer tumors in?vitro and in?vivo.  相似文献   

20.
PurposeIndocyanine green (ICG) is a promising agent for intraoperative visualization of tumor tissues and sentinel lymph nodes in early-stage gynecological cancer. However, it has some limitations, including a short half-life and poor solubility in aqueous solutions. This study aimed to enhance the efficacy of near-infrared (NIR) fluorescence imaging by overcoming the shortcomings of ICG using a nano-drug delivery system and improve target specificity in cervical cancer.Materials and MethodsICG and poly(lactic-co-glycolic acid) (PLGA) conjugated with polyethylenimine (PEI) were assembled to enhance stability. Hyaluronic acid (HA) was coated on PEI-PLGA-ICG nanoparticles to target CD44-positive cancer cells. The manufactured HA-ICG-PLGA nanoparticles (HINPs) were evaluated in vitro and in vivo on cervical cancer cells (SiHa; CD44+) and human dermal cells (ccd986sk; CD44-), respectively, using NIR imaging to compare intracellular uptake and to quantify the fluorescence intensities of cells and tumors.ResultsHINPs were confirmed to have a mean size of 200 nm and a zeta-potential of 33 mV using dynamic light scattering. The stability of the HINPs was confirmed at pH 5.0–8.0. Cytotoxicity assays, intracellular uptake assays, and cervical cancer xenograft models revealed that, compared to free ICG, the HINPs had significantly higher internalization by cervical cancer cells than normal cells (p<0.001) and significantly higher accumulation in tumors (p<0.001) via CD44 receptor-mediated endocytosis.ConclusionThis study demonstrated the successful application of HINPs as nanocarriers for delivering ICG to CD44-positive cervical cancer, with improved efficacy in NIR fluorescence imaging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号