首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Despite progress, combination therapy of different functional drugs to increase the efficiency of anticancer treatment still remains challenges. An amphiphilic methoxy poly(ethylene glycol)-b-poly(l-glutamic acid)-b-poly(l-lysine) triblock copolymer decorated with deoxycholate (mPEsG-b-PLG-b-PLL/DOCA) was synthesized and developed as a nanovehicle for the co-delivery of anticancer drugs: doxorubicin (DOX) and paclitaxel (PTX). The amphiphilic copolymer spontaneously self-assembled into micellar-type nanoparticles in aqueous solutions and the blank nanoparticles possessed excellent stability. Three different domains of the copolymer performed distinct functions: PEG outer corona provided prolonged circulation, middle biodegradable and hydrophilic PLG shell was designed for DOX loading through electrostatic interactions, and hydrophobic deoxycholate modified PLL served as the container for PTX. In vitro cytotoxicity assays against A549 human lung adenocarcinoma cell line demonstrated that the DOX + PTX co-delivered nanoparticles (Co-NPs) exhibited synergistic effect in inducing cancer cell apoptosis. Ex vivo DOX fluorescence imaging revealed that Co-NPs had highly efficient targeting and accumulation at the implanted site of A549 xenograft tumor in vivo. Co-NPs exhibited significantly higher antitumor efficiency in reducing tumor size compared to free drug combination or single drug-loaded nanoparticles, while no obvious side effects were observed during the treatment, indicating this co-delivery system with different functional antitumor drugs provides the clinical potential in cancer therapy.  相似文献   

2.
Cheng D  Cao N  Chen J  Yu X  Shuai X 《Biomaterials》2012,33(4):1170-1179
As the most fatal malignancy in brain, glioma cannot be effectively treated with the conventional chemotherapy and thus techniques which may improve the chemotherapeutic effect are of great importance in clinical glioma treatment. Based on the folate-targeted multifunctional nanocarrier developed in our lab, effective co-delivery of DOX and siRNA into rat C6 glioma cells over-expressing folate receptors was achieved. Although cell apoptosis was initiated even at low DOX doses such as 0.5 μg/mL in the DOX-alone treatment mediated by the folate-targeted nanocarrier, anti-apoptotic response in C6 cells was activated as well, as revealed by molecular biological investigations. Delivery of BCL-2 siRNA using the folate-targeted nanocarrier can effectively suppress the anti-apoptotic response and sensitized C6 cells to DOX treatment both in vitro and in vivo. In particular, animal studies using the in situ rat C6 glioma model showed that the folate-targeted co-delivery of BCL-2 siRNA and DOX caused not only an obvious down-regulation of the anti-apoptotic BCL-2 gene but also a remarkable up-regulation of the pro-apoptotic Bax gene, resulting in the significantly elevated level of caspase-3 activation and remarkable cell apoptosis in tumor tissues. Our results strongly demonstrated the synergistic effect of siRNA and DOX in inducing glioma C6 cell apoptosis, upon which an excellent therapeutic effect was achieved using the folate-targeted co-delivery strategy as indicated by the effective tumor growth inhibition and prolonged rat survival time in the animal test.  相似文献   

3.
Combination of gene therapy and chemotherapy is a promising approach for glioma therapy. In this study, a co-delivery system of plasmid encoding human tumor necrosis factor-related apoptosis-inducing ligand (pORF-hTRAIL, Trail) and doxorubicin (DOX) has been simply constructed in two steps. Firstly, DOX was intercalated into Trail to form a stable complex. Secondly, DOX-Trail complex was condensed by Dendrigraft poly-l-lysine (DGL) to form a nanoscaled co-delivery system. Choline transporters are both expressed on blood–brain barrier (BBB) and glioma, Herein, a choline derivate with high choline transporter affinity was chosen as BBB and glioma dual targeting ligand. Choline-derivate modified co-delivery system showed higher cellular uptake efficiency and cytotoxicity than unmodified co-delivery system in U87 MG cells. In comparison with single medication or unmodified delivery system, Choline-derivate modified co-delivery system induced more apoptosis both in vitro and in vivo. The therapeutic efficacy on U87 MG bearing xenografts further confirmed the predominance of this dual targeting and co-delivery system.  相似文献   

4.
Non-viral gene delivery holds great promise for promoting tissue regeneration, and offers a potentially safer alternative than viral vectors. Great progress has been made to develop biodegradable polymeric vectors for non-viral gene delivery in 2D culture, which generally involves isolating and modifying cells in vitro, followed by subsequent transplantation in vivo. Scaffold-mediated gene delivery may eliminate the need for the multiple-step process in vitro, and allows sustained release of nucleic acids in situ. Hydrogels are widely used tissue engineering scaffolds given their tissue-like water content, injectability and tunable biochemical and biophysical properties. However, previous attempts on developing hydrogel-mediated non-viral gene delivery have generally resulted in low levels of transgene expression inside 3D hydrogels, and increasing hydrogel stiffness further decreased such transfection efficiency. Here we report the development of biodegradable polymeric vectors that led to efficient gene delivery inside poly(ethylene glycol) (PEG)-based hydrogels with tunable matrix stiffness. Photocrosslinkable gelatin was maintained constant in the hydrogel network to allow cell adhesion. We identified a lead biodegradable polymeric vector, E6, which resulted in increased polyplex stability, DNA protection and achieved sustained high levels of transgene expression inside 3D PEG-DMA hydrogels for at least 12 days. Furthermore, we demonstrated that E6-based polyplexes allowed efficient gene delivery inside hydrogels with tunable stiffness ranging from 2 to 175 kPa, with the peak transfection efficiency observed in hydrogels with intermediate stiffness (28 kPa). The reported hydrogel-mediated gene delivery platform using biodegradable polyplexes may serve as a local depot for sustained transgene expression in situ to enhance tissue engineering across broad tissue types.  相似文献   

5.
Composite hyaluronic acid (HA) hydrogels containing gelatin are used in regenerative medicine as tissue-mimicking scaffolds for improving stem cell survival. Once implanted, it is assumed that these biomaterials disintegrate over time, but at present there is no non-invasive imaging technique available with which such degradation can be directly monitored in vivo. We show here the potential of chemical exchange saturation transfer magnetic resonance imaging (CEST MRI) as a label-free non-invasive imaging technique to monitor dynamic changes in scaffold composition in vivo. The CEST properties of the three individual hydrogel components (HA, GelinS, and polyethylene glycol diacrylate) were first measured in vitro. The complete hydrogel was then injected into the brain of immunodeficient rag2−/− mice and CEST MR images were obtained at day 1 and 7 post-transplantation. In vitro, GelinS gave the strongest CEST signal at 3.6 ppm offset from the water peak, originating from the amide protons present in gelatin. In vivo, a significant decrease in CEST signal was observed at 1 week post-implantation. These results were consistent with the biodegradation of the GelinS component, as validated by fluorescent microscopy of implanted hydrogels containing Alexa Fluor 488-labeled GelinS. Our label-free imaging approach should be useful for further development of hydrogel formulations with improved composition and stability.  相似文献   

6.
The co-delivery of drug and gene has become the primary strategy in cancer and other disease therapy. To co-deliver hydrophobic drug and functional gene efficiently into tumor cells, a star-shaped copolymer (PP-PLLD-Arg) with a photochemical internalization effect consisting of a porphyrin (PP) core and arginine-functionalized poly(l-lysine) dendron (PLLD-Arg) arms has been designed, and used to co-deliver docetaxel (DOC) and MMP-9 shRNA plasmid for nasopharyngeal cancer therapy. It was found that PP-PLLD-Arg/MMP-9 nanocomplex showed the photo-enhanced gene transfection efficiency in vitro, and could mediate a significant reduce of MMP-9 protein expression in HNE-1 cells. For co-delivery analysis, the obtained PP-PLLD-Arg/DOC/MMP-9 complexes could induce a more significant apoptosis than DOC or MMP-9 used only, and decreased invasive capacity of HNE-1 cells. Moreover, the star-shaped copolymer exhibited better blood compatibility and lower cytotoxicity compared to PEI-25k in the hemolysis and MTT assays, and also showed a good biocompatibility in vivo. Therefore, PP-PLLD-Arg with suited irradiation is a promising non-toxic and photo-inducible effective drug and gene delivery strategy, which should be encouraged in tumor therapy.  相似文献   

7.
Poly(organophosphazene)–doxorubicin (DOX) conjugate bearing hydrophobic l-isoleucine ethyl ester (IleOEt) and hydrophilic α-amino-ω-methoxy-poly(ethylene glycol) with molecular weight of 550 Da (AMPEG 550) along with carboxylic acid as a functional group was synthesized to create a drug delivery system, which is based on locally injectable, biodegradable, and thermosensitive hydrogels. In addition to the evaluation of the in vitro and in vivo antitumor activities, the physicochemical properties, hydrolytic degradation, and DOX release profile of the poly(organophosphazene)–DOX conjugate were determined. The aqueous solution of the polymer–DOX conjugate showed a sol–gel transition behavior depending on temperature changes. Based on the in vivo antitumor activities of the locally injected poly(organophosphazene)–DOX conjugate into the tumor-induced nude mice, the conjugate hydrogel after the local injection at the tumor site was shown to inhibit tumor growth more effectively with less toxicity and much longer than doxorubicin and saline as controls, indicating that tumor active DOX from the conjugate hydrogel is released slowly over a longer period of time and effectively accumulated locally in the tumor sites. These results suggest that the poly(organophosphazene)–doxorubicin conjugates hold great potential for use in preclinical and clinical studies as single and/or combination therapies.  相似文献   

8.
Metastatic relapse, development of drug resistance in cancer cells and adverse side effects of chemotherapeutic agents are the major obstacles for effective chemotherapy against triple-negative breast cancer. To address these problems, miR-34a, a potent endogenous tumor suppressive molecule in breast cancer, was co-encapsulated with doxorubicin (DOX) into hyaluronic acid (HA)-chitosan (CS) nanoparticles (NPs) and simultaneously delivered into breast cancer cells for improved therapeutic effects of drug. DOX-miR-34a co-loaded HA-CS NPs were successfully prepared through ionotropic gelation method in water. In vitro and in vivo experiments showed that miR-34a and DOX can be efficiently encapsulated into HA-CS NPs and delivered into tumor cells or tumor tissues and enhance anti-tumor effects of DOX by suppressing the expression of non-pump resistance and anti-apoptosis proto-oncogene Bcl-2. In addition, intracellular restoration of miR-34a inhibited breast cancer cell migration via targeting Notch-1 signaling. The obtained data suggest that co-delivery of DOX and miR-34a could achieve synergistic effects on tumor suppression and nanosystem-based co-delivery of tumor suppressive miRNAs and chemotherapeutic agents may be a promising combined therapeutic strategy for enhanced anti-tumor therapy.  相似文献   

9.
Thermosensitive hydrogels based on poly(γ-ethyl-l-glutamate)-poly(ethylene glycol)-poly(γ-ethyl-l-glutamate) triblock copolymers (PELG-PEG-PELG) were prepared for localized and sustained delivery of anticancer drugs. The polypeptide-based hydrogels showed much lower critical gelation concentration than the traditional polyester-based hydrogels. In vivo biocompatibility studies revealed that the in situ formed gels in the subcutaneous layer last for ∼21 days, and H&E staining study suggested acceptable biocompatibility of our materials in vivo. Then the hydrogels were tried as injectable implants to encapsulate antitumor drug, paclitaxel (PTX), to assess the in situ anti-tumoral activity using liver cancer xenograft model. The results demonstrated that the PTX-incorporated hydrogels could efficiently suppress the tumor growth, and did not result in obvious damage to normal organs. Therefore, the polypeptide-based thermosensitive hydrogels designed in the present study have great potential to serve as an effective platform for localized anti-cancer drug delivery.  相似文献   

10.
Injectable, biodegradable, dual-gelling macromer solutions were used to encapsulate mesenchymal stem cells (MSCs) within stable hydrogels when elevated to physiologic temperature. Pendant phosphate groups were incorporated in the N-isopropyl acrylamide-based macromers to improve biointegration and facilitate hydrogel degradation. The MSCs were shown to survive the encapsulation process, and live cells were detected within the hydrogels for up to 28 days in vitro. Cell-laden hydrogels were shown to undergo significant mineralization in osteogenic medium. Cell-laden and acellular hydrogels were implanted into a critical-size rat cranial defect for 4 and 12 weeks. Both cell-laden and acellular hydrogels were shown to degrade in vivo and help to facilitate bone growth into the defect. Improved bone bridging of the defect was seen with the incorporation of cells, as well as with higher phosphate content of the macromer. Furthermore, direct bone-to-hydrogel contact was observed in the majority of implants, which is not commonly seen in this model. The ability of these macromers to deliver stem cells while forming in situ and subsequently degrade while facilitating bone ingrowth into the defect makes this class of macromers a promising material for craniofacial bone tissue engineering.  相似文献   

11.
12.
Hydrogels prepared from gelatin and lysine diisocyanate ethyl ester provide tailorable elastic properties and degradation behavior. Their interaction with human aortic endothelial cells (HAEC) as well as human macrophages (M?) and granulocytes (G?) were explored. The experiments revealed a good biocompatibility, appropriate cell adhesion, and cell infiltration. Direct contact to hydrogels, but not contact to hydrolytic or enzymatic hydrogel degradation products, resulted in enhanced cyclooxygenase-2 (COX-2) expression in all cell types, indicating a weak inflammatory activation in vitro. Only M? altered their cytokine secretion profile after direct hydrogel contact, indicating a comparably pronounced inflammatory activation. On the other hand, in HAEC the expression of tight junction proteins, as well as cytokine and matrix metalloproteinase secretion were not influenced by the hydrogels, suggesting a maintained endothelial cell function. This was in line with the finding that in HAEC increased thrombomodulin synthesis but no thrombomodulin membrane shedding occurred. First in vivo data obtained after subcutaneous implantation of the materials in immunocompetent mice revealed good integration of implants in the surrounding tissue, no progredient fibrous capsule formation, and no inflammatory tissue reaction in vivo. Overall, the study demonstrates the potential of gelatin-based hydrogels for temporal replacement and functional regeneration of damaged soft tissue.  相似文献   

13.
Bioreducible heparin (HEP)-based nanogels were prepared by derivatizing HEP with vinyl group followed by copolymerizing with cystamine bisacrylamide in aqueous medium in the absence of surfactant. The hydrodynamic diameter of the HEP nanogels could be tuned in the range from 80 to 200 nm. Doxorubicin (DOX) was loaded into the HEP nanogels, and high drug loading content (30%) and efficiency (90%) were achieved. In vitro drug release test revealed that this drug delivery system exhibited strongly redox-sensitive drug release behavior that would greatly favor the in vivo drug delivery performance of the nanogels. After injected into tumor-bearing mice through tail vein, the DOX-loaded HEP nanogels showed remarkable accumulation in tumors as demonstrated by in vivo near infared fluorescence imaging and ex vivo DOX concentration measurements. The doxorubicin accumulation at tumor site goes beyond 9% injected dose per gram of tumor through such delivery system, making that DOX-loaded HEP nanogels have significantly superior in vivo antitumor activity.  相似文献   

14.
Kim M  Jung B  Park JH 《Biomaterials》2012,33(2):668-678
Biodegradable polymeric microneedles were developed as a method for achieving sustained transdermal drug release. These microneedles have potential as a patient-friendly substitute for conventional sustained release methods. However, they have limitations related to the difficulty of achieving separation of the needles into the skin. We demonstrated that microneedle separation into the skin was mediated by hydrogel swelling in response to contact with body fluid after the needles were inserted into the skin. The hydrogel microparticles were synthesized by an emulsification method using poly-N-isopropylacrylamide (PNIPAAm). The microneedles were fabricated by micromolding poly-lactic-co-glycolic acid (PLGA) after filling the cavities of the mold with the hydrogel microparticles. The failure of microneedle tips caused by hydrogel swelling was studied in regard to contact with water, insertion of microneedles into porcine cadaver skin in vitro, stress-strain behavior, and insertion into the back skin of a hairless mouse in vivo. The drug delivery property of the hydrogel particles was investigated qualitatively by inserting polymer microneedles into porcine cadaver skin in vitro, and the sustained release property of PLGA microneedles containing hydrogel microparticles was studied quantitatively using the Franz cell model. The hydrogel particles absorbed water quickly, resulting in the cracking of the microneedles due to the difference in volume expansion between the needle matrix polymer and the hydrogel particles. The swollen particles caused the microneedles to totally breakdown, leaving the microneedle tips in the porcine cadaver skin in vitro and in the hairless mouse skin in vivo. Model drugs encapsulated in biodegradable polymer microneedles and hydrogel microparticles were successfully delivered by releasing microneedles into the skin.  相似文献   

15.
We report on the use of magnetic resonance imaging (MRI)-based non-invasive monitoring to document the role of protein adjuvants in hydrogel implant integration in vivo. Polyethylene glycol (PEG) hydrogels were formed with different protein constituents, including albumin, fibrinogen and gelatin. The hydrogels were designed to exhibit similar material properties, including modulus, swelling and hydrolytic degradation kinetics. The in vivo resorption properties of these PEG-based hydrogels, which contained a tethered gadolinium contrast agent, were characterized by MRI and histology, and compared to their in vitro characteristics. MRI data revealed that PEG–Albumin implants remained completely intact throughout the experiments, PEG–Fibrinogen implants lost about 10% of their volume and PEG–Gelatin implants underwent prominent swelling and returned to their initial volume by day 25. Fully synthetic PEG–diacrylate (PEG–DA) control hydrogels lost about half of their volume after 25 days in vivo. Transverse MRI cross-sections of the implants revealed distinct mechanisms of the hydrogel's biodegradation: PEG–Fibrinogen and PEG–Albumin underwent surface erosion, whereas PEG–Gelatin and PEG–DA hydrogels mainly underwent bulk degradation. Histological findings substantiated the MRI data and demonstrated significant cellular response towards PEG–DA and PEG–Gelatin scaffolds with relatively low reaction towards PEG–Fibrinogen and PEG–Albumin hydrogels. These findings demonstrate that PEG–protein hydrogels can degrade via a different mechanism than PEG hydrogels, and that this difference can be linked to a reduced foreign body response.  相似文献   

16.
Our main aim in the present investigation was to explore the in vitro and in vivo cancer targeting potential of the doxorubicin (DOX) laden d-α-tocopheryl polyethylene glycol 1000 succinate (vitamin E TPGS) tethered surface engineered MWCNTs nanoformulation (DOX/TPGS-MWCNTs) and compare it with pristine MWCNTs and free doxorubicin solution. The developed MWCNTs nanoformulations were extensively characterized by Fourier-transform infrared, Raman spectroscopy, x-ray diffraction, electron microscopy, and in vitro and in vivo studies using MCF-7 cancer cell line. The entrapment efficiency was determined to be 97.2 ± 2.50% (DOX/TPGS-MWCNTs) and 92.5 ± 2.62% (DOX/MWCNTs) ascribed to π-π stacking interactions. The developed formulations depicted the sustained release pattern at the lysosomal pH (pH 5.3). The DOX/TPGS-MWCNTs showed enhanced cytotoxicity, cellular uptake and were most preferentially taken up by the cancerous cells via endocytosis mechanism. The DOX/TPGS-MWCNTs nanoconjugate depicted the significantly longer survival span (44 days, p < 0.001) than DOX/MWCNTs (23 days), free DOX (18 days) and control group (12 days). The obtained results also support the extended residence time and sustained release profile of the drug loaded surface engineered nanotubes formulations in body as compared to DOX solution. Overall we can conclude that the developed MWCNTs nanoconjugate have higher cancer targeting potential on tumor bearing Balb/c mice.  相似文献   

17.
Polymeric nanoparticles have shown great promise as attractive vehicles for drug delivery. In this study, we designed, prepared and characterized biodegradable amphiphilic triblock HPMA copolymer–doxorubicin (copolymer–DOX) conjugate based nanoparticle as enzyme-sensitive drug delivery vehicle. The enzyme-sensitive peptide GFLGKGLFG was introduced to the main chain of the copolymer with hydrophilic and hydrophobic blocks. The triblock HPMA polymer–DOX conjugate with high molecules (Mw 90 kDa) can be degraded to product with low molecule weight (Mw 44 kDa) below the renal threshold. The copolymer–DOX conjugate can self-assemble into compact nanoparticle, which was characterized by scanning electron microscope (SEM) and atomic force microscope (AFM) studies. This polymeric nanoparticle substantially enhanced antitumor efficacy compared to the free DOX, exhibiting much higher effects on inhibiting proliferation and inducing apoptosis on the 4T1 murine breast cancer model confirmed by the evidences from mice weight shifts, tumor growth curves, tumor growth inhibition (TGI), immunohistochemical analysis and histological assessment. The in vivo toxicity evaluation demonstrated that the polymeric nanoparticle reduced DOX-induced toxicities and presented no significant side effects to normal organs of both tumor bearing and healthy mice as measured by body weight shift, blood routine test and histological analysis. Therefore, the triblock HPMA copolymer–DOX conjugate based nanoparticle is promising as a potential drug delivery vehicle for breast cancer therapy.  相似文献   

18.
Hematopoietic stem cells (HSCs) are a rare stem cell population found primarily in the bone marrow and responsible for the production of the body's full complement of blood and immune cells. Used clinically to treat a range of hematopoietic disorders, there is a significant need to identify approaches to selectively expand their numbers ex vivo. Here we describe a methacrylamide-functionalized gelatin (GelMA) hydrogel for in vitro culture of primary murine HSCs. Stem cell factor (SCF) is a critical biomolecular component of native HSC niches in vivo and is used in large dosages in cell culture media for HSC expansion in vitro. We report a photochemistry based approach to covalently immobilize SCF within GelMA hydrogels via acrylate-functionalized polyethylene glycol (PEG) tethers. PEG-functionalized SCF retains the native bioactivity of SCF but can be stably incorporated and retained within the GelMA hydrogel over 7 days. Freshly-isolated murine HSCs cultured in GelMA hydrogels containing covalently-immobilized SCF showed reduced proliferation and improved selectivity for maintaining primitive HSCs. Comparatively, soluble SCF within the GelMA hydrogel network induced increased proliferation of differentiating hematopoietic cells. We used a microfluidic templating approach to create GelMA hydrogels containing gradients of immobilized SCF that locally direct HSC response. Together, we report a biomaterial platform to examine the effect of the local presentation of soluble vs. matrix-immobilized biomolecular signals on HSC expansion and lineage specification. This approach may be a critical component of a biomaterial-based artificial bone marrow to provide the correct sequence of niche signals to grow HSCs in the laboratory.  相似文献   

19.
Galactose modified trimethyl chitosan-cysteine (GTC) conjugates with various galactose grafting densities were developed for oral delivery of Survivin shRNA-expression pDNA (iSur-pDNA) and vascular endothelial growth factor (VEGF) siRNA (siVEGF) in the synergistic and targeted treatment of hepatoma. iSur-pDNA and siVEGF loaded GTC nanoparticles (NPs) were prepared via electrostatic complexation and showed desirable stability in physiological fluids and improved intestinal permeation compared to naked genes. Galactose grafting density of GTC NPs significantly affected their in vitro and in vivo antitumor activities. GTC NPs with moderate galactose grafting density, termed GTC2 NPs, were superior in facilitating cellular uptake, promoting nuclear distribution, and silencing target genes, leading to notable inhibition of cell growth. In tumor-bearing mice, orally delivered GTC2 NPs could effectively accumulate in the tumor tissues and silence the expression of Survivin and VEGF, evoking increased apoptosis, inhibited angiogenesis, and thus the most efficient tumor regression. Moreover, compared with single gene delivery, co-delivery of iSur-pDNA and siVEGF showed synergistic effects on inhibiting in vitro cell proliferation and in vivo tumor growth. This study could serve as an effective approach for synergistic cancer therapy via oral gene delivery, and highlighted the importance of ligand grafting density in the rational design of targeted nanocarriers.  相似文献   

20.
We developed an injectable hydrogel system to evaluate the effect of hydrogel stiffness on chondrocyte cellular functions in a three-dimensional (3D) environment and its subsequent influence on ectopic cartilage formation and early-stage osteochondral defect repair in a rabbit model. The hydrogels, composed of gelatin-hydroxyphenylpropionic acid (Gtn-HPA) conjugate, were formed using oxidative coupling of HPA moieties catalyzed by hydrogen peroxide (H2O2) and horseradish peroxidase (HRP). The storage modulus (G′) of the hydrogels, which was tunable by changing the H2O2 and Gtn-HPA concentrations, ranged from 570 Pa to 2750 Pa. It was found that the cellular functions of chondrocytes encapsulated in hydrogels, including cell proliferation, biosynthesis of collagen and sulfated glycosaminoglycans (sGAG), as well as gene expression of type I (Col-I) and type II collagen (Col-II), were strongly affected by the stiffness of the hydrogels. Of note, chondrocytes cultured within the Gtn-HPA hydrogel of medium stiffness (G′ = 1000 Pa) produced highest level of sGAG production, as well as highest ratio of Col-II to Col-I gene expression among the Gtn-HPA hydrogels of different stiffness. Consistent with the results from in vitro and in vivo ectopic cartilage formation, osteochondral defect repair in a rabbit model showed stiffness-dependent tissue repair, with defects implanted with chondrocytes in hydrogels of medium stiffness having markedly more hyaline cartilage formation, smoother surface and better integration with adjacent cartilage, compared to defects treated with hydrogels of low or high stiffness. These results suggest that the tunable stiffness of Gtn-HPA hydrogels modulates chondrocyte cellular functions, and has a dramatic impact on cartilage tissue histogenesis and repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号