首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zinc (Zn) and silver (Ag) are co-implanted into titanium by plasma immersion ion implantation. A Zn containing film with Ag nanoparticles (Ag NPs) possessing a wide size distribution is formed on the surface and the corrosion resistance is improved due to the micro-galvanic couples formed by the implanted Zn and Ag. Not only are the initial adhesion, spreading, proliferation and osteogenic differentiation of rBMSCs observed from the Zn/Ag implanted Ti in vitro, but also bacteria killing is achieved both in vitro and in vivo. Electrochemical polarization and ion release measurements suggest that the excellent osteogenic activity and antibacterial ability of the Zn/Ag co-implanted titanium are related to the synergistic effect resulting from the long-range interactions of the released Zn ions and short-range interactions of the embedded Ag NPs. The Zn/Ag co-implanted titanium offers both excellent osteogenic activity and antibacterial ability and has large potential in orthopedic and dental implants.  相似文献   

2.
Titanium implants possessing simultaneous osseointegration and antibacterial ability are desirable. In this work, three types of Zn/Ag micro-galvanic couples are fabricated on titanium by plasma immersion ion implantation to investigate the osseointegration and antibacterial effects as well as the involved mechanisms. The in vitro findings disclose enhanced proliferation, osteogenic differentiation, and gene expressions of the rat bone mesenchymal stem cells (rBMSCs), as well as good antibacterial ability on all three micro-galvanic couples. Excellent antimicrobial ability is also observed in vivo and the micro-CT and histological results reveal notable osseointegration in vivo despite the presence of bacteria. The Zn/Ag micro-galvanic couple formed on Zn/Ag dual-ion co-implanted titanium shows the best osseointegration as well as good antibacterial properties in vivo obtained from a rabbit tibia model. The difference among the three Zn/Ag micro-galvanic couples can be ascribed to the contact between the Ag NPs and Zn film, which affects the corrosion process. Our results indicate that the biological behavior can be controlled by the corrosion process of the Zn/Ag micro-galvanic couples.  相似文献   

3.
《Acta biomaterialia》2014,10(5):2105-2111
We have developed a novel and simple synthesis route to create nanosized (∼5 nm) silver nanoparticles (Ag NPs) embedded in a biocompatible nanogel (NG) comprising degradable, natural polymers, namely dextran and lysozyme. In this study, we prepared hybrid nanogels with varying lysozyme content, evaluated their potential to reduce Ag NPs in situ (using ultraviolet–visible spectroscopy, cryo-transmission electronic microscopy, thermogravimetric analysis and Fourier transform infrared spectroscopy) and determined their antibacterial properties against Escherichia coli and Staphylococcus aureus. Lysozyme was found to enhance nucleation and stabilization of Ag NPs while limiting their growth. As lysozyme concentration increased, larger nanogels with greater loading of smaller Ag NPs were obtained. The antibacterial properties of hybrid NGs were found to depend upon nanogel type and bacterial conditions. Hybrid nanogels with the largest Ag NPs showed the lowest minimum inhibition concentration. However, the greatest bacterial killing efficiency (up to 100%) occurred within 1 h if the bacteria were exposed to hybrid nanogels with smaller Ag NPs while agitating the medium. These results suggest that nanogel properties as well as antibacterial activity can be tuned by varying the lysozyme content. By targeting drug delivery (e.g. ligand grafted surface), these nanogels can be used to prevent biofilm formation and control infection without the complications (i.e. overexposure) associated with classical antibiotic delivery platforms.  相似文献   

4.
Coronaviruses belong to the family Coronaviridae, which primarily cause infection of the upper respiratory and gastrointestinal tract of hosts. Transmissible gastroenteritis virus (TGEV) is an economically significant coronavirus that can cause severe diarrhea in pigs. Silver nanomaterials (Ag NMs) have attracted great interests in recent years due to their excellent anti-microorganism properties. Herein, four representative Ag NMs including spherical Ag nanoparticles (Ag NPs, NM-300), two kinds of silver nanowires (XFJ011) and silver colloids (XFJ04) were selected to study their inhibitory effect on TGEV-induced host cell infection in vitro. Ag NPs were uniformly distributed, with particle sizes less than 20 nm by characterization of environmental scanning electron microscope and transmission electron microscope. Two types of silver nanowires were 60 nm and 400 nm in diameter, respectively. The average diameter of the silver colloids was approximately 10 nm. TGEV infection induced the occurring of apoptosis in swine testicle (ST) cells, down-regulated the expression of Bcl-2, up-regulated the expression of Bax, altered mitochondrial membrane potential, activated p38 MAPK signal pathway, and increased expression of p53 as evidenced by immunofluorescence assays, real-time PCR, flow cytometry and Western blot. Under non-toxic concentrations, Ag NPs and silver nanowires significantly diminished the infectivity of TGEV in ST cells. Moreover, further results showed that Ag NPs and silver nanowires decreased the number of apoptotic cells induced by TGEV through regulating p38/mitochondria-caspase-3 signaling pathway. Our data indicate that Ag NMs are effective in prevention of TGEV-mediated cell infection as a virucidal agent or as an inhibitor of viral entry and the present findings may provide new insights into antiviral therapy of coronaviruses.  相似文献   

5.
We report a facile polyethyleneimine (PEI)-mediated approach to synthesizing folic acid (FA)-targeted magnetic iron oxide nanoparticles (Fe3O4 NPs) for in vivo magnetic resonance (MR) imaging of tumors. In this study, stable PEI-coated Fe3O4 NPs were prepared by a one-pot hydrothermal route. The aminated Fe3O4 NPs with PEI coating enabled covalent conjugation of fluorescein isothiocyanate (FI) and folate-conjugated polyethylene glycol (PEG) with one end of carboxyl groups (FA-PEG-COOH). Followed by final acetylation, FA-targeted PEGylated Fe3O4 NPs (Fe3O4-PEI-Ac-FI-PEG-FA NPs) were formed. The formed multifunctional Fe3O4 NPs were characterized via different techniques. We show that the PEI-mediated approach along with the PEGylation conjugation enables the generation of water-dispersible and stable multifunctional Fe3O4 NPs, and the particles are quite cytocompatible and hemocompatible in the given concentration range as confirmed by in vitro cytotoxicity assay, cell morphology observation, and hemolysis assay. In addition, flow cytometry and confocal microscopy data show that the multifunctional Fe3O4 NPs are able to target a model cancer cell line (KB cells) overexpressing FA receptors in vitro. Importantly, the FA-targeted Fe3O4 NPs are able to be used as an efficient nanoprobe for MR imaging of cancer cells in vitro and a xenografted tumor model in vivo via an active FA targeting pathway. With the facile PEI-mediated formation strategy and PEGylation conjugation chemistry, the Fe3O4 NPs may be multifunctionalized with other biological ligands for MR imaging of different biological systems.  相似文献   

6.
Li L  Sun J  Li X  Zhang Y  Wang Z  Wang C  Dai J  Wang Q 《Biomaterials》2012,33(6):1714-1721
Silver nanoparticles (Ag NPs) are appealing due to their excellent antibacterial/antivirus properties. At the meantime, the wide applications of Ag NPs as antibacterial/antivirus agents arise the concern of Ag NPs’ toxicity. However, quantitative understanding of the cytotoxicity of Ag NPs is minimum since that the Ag NPs in current studies have wide size distributions, in which the size effect of Ag NPs on cytotoxicity was unable to be accurately evaluated. In this work, unprecedentedly monodispersed Ag NPs with sizes of 25, 35, 45, 60 and 70 nm were obtained, respectively, by using an optimized polyol method with poly(vinyl pyrrolidone) (PVP) as surfactant. It was found that the reaction temperature, reaction time, concentration of the surfactant and reactants are playing important roles in determining the size and size distribution of Ag NPs. With the monodispersed Ag NPs as standard samples, the size- and dose- dependent cytotoxicity of Ag NPs against Human lung fibroblast (HLF) cells was accurately accomplished in terms of cell viability, apoptosis and necrosis, reactive oxygen species, etc. We expect that the monodispersed Ag NPs will act as the standard samples for quantitatively characterizing the toxicity of Ag NPs in vitro and in vivo.  相似文献   

7.
Our previous study had reported that cholesterol-grafted poly(amidoamine) (rPAA-Chol polymer) was able to self-assemble into cationic nanoparticles and act as a potential carrier for siRNA transfection. In this study, the core–shell type lipid/rPAA-Chol hybrid nanoparticles (PEG-LP/siRNA NPs and T7-LP/siRNA NPs) were developed for improving in vivo siRNA delivery by modifying the surface of rPAA-Chol/siRNA nanoplex core with a lipid shell, followed by post-insertion of polyethylene glycol phospholipid (DSPE-PEG) and/or peptide (HAIYPRH, named as T7) modified DSPE-PEG-T7. The integrative hybrid nanostructures of LP/siRNA NPs were evidenced by dynamic light scattering (DLS), confocal laser scanning microscope (CLSM), cryo-transmission electron microscope (Cryo-TEM) and surface plasmon resonance (SPR) assay. It was demonstrated that the T7 peptide modified LP/siRNA NPs (T7-LP/siRNA NPs) exhibited uniform and spherical structures with particle size of 99.39 ± 0.65 nm and surface potential of 42.53 ± 1.03 mV, and showed high cellular uptake efficiency and rapid endosomal/lysosomal escape ability in MCF-7 cells. Importantly, in vitro gene silencing experiment demonstrated that both of pegylated and targeted LP/siEGFR NPs exhibited significantly stronger downregulation of EGFR protein expression level in MCF-7 cells, compared to that of the physical mixture of siRNA lipoplexes and rPAA-Chol/siRNA nanoplexes. In vivo tumor therapy on nude mice bearing MCF-7 tumors further confirmed that the targeted T7-LP/siEGFR NPs exhibited the greatest inhibition on tumor growth via transferrin receptor-mediated targeting delivery, without any activation of immune responses and significant body weight loss following systemic administration. These findings indicated that the core-shell type T7-LP/siRNA nanoparticles would be promising siRNA delivery systems for in vivo tumor-targeted therapy.  相似文献   

8.
In arterial replacement there is a clear clinical need for a functional substitute possessing appropriate haemocompatible properties to be implanted as small diameter artery. Endothelial cell seeding constitutes an appreciated method to improve blood compatibility on the condition that cells firmly adhere to the support. Along this way, an innovative technique based on multilayered polyelectrolyte films (PEM) as cell adhesive substrate was previously validated in vitro and in vivo in a small-animal model. In this study, we extended the work on a larger animal (sheep) to validate furthermore the paradigm of PEM functionalization for vascular substitutes. We tested in vitro: the efficiency of PEM to induce endothelial progenitor differentiation in sheep endothelial cells; the ability of PEM to sustain cell proliferation and allow resistance to shear stress; the fate of PEM-coated de-endothelialized human saphenous veins under flow conditions, a prerequisite step before in vivo experiments. Despite in vitro differences we were encouraged by testing in vivo PEM-coated prosthesis as carotid replacement in sheep, but without success. In order to explain the implantation failure, an in vitro haemocompatibility evaluation was performed that highlighted interspecies differences able to explain, at least in part, the graft failure obtained.  相似文献   

9.
Graphene quantum dots (GQD) generate intrinsic fluorescence, and improves aqueous stability of graphene oxide (GO) while maintaining wide chemical adaptability and high adsorption capacity. Despite GO's remarkable advantages in bio-imaging, bio-sensing and other biomedical applications, its biosafety issues are still unclear. Here we report a detailed and systematic study on the in vitro and in vivo toxicity of GQD. The GQD sample was prepared through a facile oxidation approach and fully characterized by means of AFM, TEM, FTIR, XPS and elemental analysis. In vitro experiments showed that GQD exhibits very low cytotoxicity owing to its ultra-small size and high oxygen content. Then, the in vivo biodistribution experiment of GQD revealed no material accumulation in main organs of mice and fast clearance of GQD through kidney. In order to mimic clinic drug administration, mice were injected with GQD and GO (as comparison) multiple times for in vivo toxicity tests. We found that GQD showed no obvious influence on mice owing to its small size, while GO appeared toxic, even caused death to mice due to GO aggregation inside mice. In brief, GQD possesses no obvious in vitro and in vivo toxicity, even under multi-dosing situation.  相似文献   

10.
Ultra-small nanoparticles (USNPs) at 1–3 nm are a subset of nanoparticles (NPs) that exhibit intermediate physicochemical properties between molecular dispersions and larger NPs. Despite interest in their utilization in applications such as theranostics, limited data about their toxicity exist. Here the effect of TiO2-USNPs on endothelial cells in vitro, and zebrafish embryos in vivo, was studied and compared to larger TiO2-NPs (30 nm) and to single walled carbon nanotubes (SWCNTs). In vitro exposure showed that TiO2-USNPs were neither cytotoxic, nor had oxidative ability, nevertheless were genotoxic. In vivo experiment in early developing zebrafish embryos in water at high concentrations of TiO2-USNPs caused mortality possibly by acidifying the water and caused malformations in the form of pericardial edema when injected. Myo1C involved in glomerular development of zebrafish embryos was upregulated in embryos exposed to TiO2-USNPs. They also exhibited anti-angiogenic effects both in vitro and in vivo plus decreased nitric oxide concentration. The larger TiO2-NPs were genotoxic but not cytotoxic. SWCNTs were cytotoxic in vitro and had the highest oxidative ability. Neither of these NPs had significant effects in vivo. To our knowledge this is the first study evaluating the effects of TiO2-USNPs on vascular toxicity in vitro and in vivo and this strategy could unravel USNPs potential applications.  相似文献   

11.
To our knowledge, this study represents the first demonstration of Arthrographis kalrae biofilm formation in vitro by scanning electron microscopy and the distinct cytotoxic activity between planktonic and biofilm extracts on RAW 264.7 cell line. Higher activity was observed with biofilm. It could impact host immune response, that require furthers study.  相似文献   

12.
To evaluate the effects of mannose density on in vitro and in vivo cellular uptake and RNA interference (RNAi) efficiency of polymeric nanoparticles (NPs) in macrophages, mannose-modified trimethyl chitosan-cysteine (MTC) conjugates with mannose densities of 4%, 13%, and 21% (MTC-4, MTC-13, and MTC-21) were synthesized. Tumor necrosis factor-alpha (TNF-α) siRNA loaded MTC NPs with particle sizes of ∼150 nm exhibited desired structural stability and effectively protected siRNA from enzymatic degradation. Generally, cellular uptake and RNAi efficiency were affected by mannose density. As expected, MTC-21 NPs presented the maximum in vitro uptake and RNAi efficacy in Raw 264.7 cells among all NPs tested. However, MTC-4 NPs exhibited the optimal in vivo uptake by peritoneal exudate cell macrophages (PECs). In the inflammation model of acute hepatic injury, orally delivered MTC-4 and MTC-13 NPs worked better in silencing TNF-α expression and alleviating liver damage than MTC-21 NPs. As for the ulcerative colitis model, MTC-4 NPs outperformed MTC-13 and MTC-21 NPs with respect to TNF-α knockdown and therapeutic efficacy following oral administration. These results highlighted the importance of ligand density in cellular uptake and RNAi efficiency, which could serve as a guideline in the rational design of targeted nanocarriers for anti-inflammation therapy.  相似文献   

13.
Size tunable silver nanoparticles (Ag NPs) are synthesized and incorporated into titanium oxide coatings (TOCs) by manipulating the atomic-scale heating effect of silver plasma immersion ion implantation (Ag PIII). The resulting Ag NPs/TOC composite coatings possess electron storage capability that gives rise to both controlled antibacterial activity and excellent compatibility with mammalian cells. The precipitation behavior of these Ag NPs is qualitatively constrained by the classical nucleation theory. Both photoluminescence (PL) spectra and fluorescence microscopy results demonstrate that larger Ag NPs (5–25 nm) are better at reserving electrons than smaller ones (~4 nm). The antibacterial activities of the as-sprayed and Ag PIII treated TOCs show that Ag NPs with a different size act distinctively to bacteria: large particles induce serious cytosolic content leakage and lysis of both Staphylococcus aureus and Escherichia coli cells while small ones do not. The excellent activity of larger Ag NPs against bacteria is highly related to their stronger electron storage capability, which can induce accumulation of adequate valence-band holes (h+) at the titanium oxide side, arousing oxidation reactions to bacterial cells in the dark. Moreover, the in vitro cell culture assay (using both MG63 and MC3T3 cells) reveals no significant cytotoxicity and even good cytocompatibility on the Ag PIII treated samples. Our results show that, by taking advantage of the boundary property between Ag NP and titanium oxide, the antibacterial activity of Ag NPs can be accurately controlled. This study provides a distinct criterion for the design of nanostructured surfaces such that their osteoblast functions and antibacterial activity are perfectly balanced.  相似文献   

14.
The antifungal activity of the silver nanoparticles (NPs) prepared by the modified Tollens process was evaluated for pathogenic Candida spp. by means of the determination of the minimum inhibitory concentration (MIC), minimum fungicidal concentration (MFC), and the time-dependency of yeasts growth inhibition. Simultaneously the cytotoxicity of the silver NPs to human fibroblasts was determined. The silver NPs exhibited inhibitory effect against the tested yeasts at the concentration as low as 0.21 mg/L of Ag. The inhibitory effect of silver NPs was enhanced through their stabilization and the lowest MIC equal to 0.05 mg/L was determined for silver NPs stabilized by sodium dodecyl sulfate against Candida albicans II. The obtained MICs of the silver NPs and especially of the stabilized silver NPs were comparable and in some cases even better than MICs of the conventional antifungal agents determined by E-test. The silver NPs effectively inhibited the growth of the tested yeasts at the concentrations below their cytotoxic limit against the tested human fibroblasts determined at a concentration equal to 30 mg/L of Ag. In contrast, ionic silver inhibited the growth of the tested yeasts at the concentrations comparable to the cytotoxic level (approx. 1 mg/L) of ionic silver against the tested human fibroblasts.  相似文献   

15.
Biomaterial-associated infections represent a significant clinical problem, and treatment of these microbial infections is becoming troublesome due to the increasing number of antibiotic-resistant strains. Here, we report a naturally functionalized bacterial polyhydroxyalkanoate (PHACOS) with antibacterial properties. We demonstrate that PHACOS selectively and efficiently inhibits the growth of methicillin-resistant Staphylococcus aureus (MRSA) both in vitro and in vivo. This ability has been ascribed to the functionalized side chains containing thioester groups. Significantly less (3.2-fold) biofilm formation of S. aureus was detected on PHACOS compared to biofilms formed on control poly(3-hydroxyoctanoate-co-hydroxyhexanoate) and poly(ethylene terephthalate), but no differences were observed in bacterial adhesion among these polymers. PHACOS elicited minimal cytotoxic and inflammatory effects on murine macrophages and supported normal fibroblast adhesion. In vivo fluorescence imaging demonstrated minimal inflammation and excellent antibacterial activity for PHACOS compared to controls in an in vivo model of implant-associated infection. Additionally, reductions in neutrophils and macrophages in the vicinity of sterile PHACOS compared to sterile PHO implant were observed by immunohistochemistry. Moreover, a similar percentage of inflammatory cells was found in the tissue surrounding sterile PHACOS and S. aureus pre-colonized PHACOS implants, and these levels were significantly lower than S. aureus pre-colonized control polymers. These findings support a contact active surface mode of antibacterial action for PHACOS and establish this functionalized polyhydroxyalkanoate as an infection-resistant biomaterial.  相似文献   

16.
17.
Nanocarriers and nanoparticles remain an intense pharmaceutical and medical imaging technology interest. Their entry into clinical use is hampered by the lack of reliable in vitro models that accurately predict in vivo toxicity. This study evaluates a 3-D kidney organoid proximal tubule culture to assess in vitro toxicity of the hydroxylated generation-5 PAMAM dendrimer (G5-OH) compared to previously published preclinical in vivo rodent nephrotoxicity data. 3-D kidney proximal tubule cultures were created using isolated murine proximal tubule fractions suspended in a biomedical grade hyaluronic acid-based hydrogel. Toxicity in these cultures to neutral G5-OH dendrimer nanoparticles and gold nanoparticles in vitro was assessed using clinical biomarker generation. Neutral PAMAM nanoparticle dendrimers elicit in vivo-relevant kidney biomarkers and cell viability in a 3-D kidney organoid culture that closely reflect toxicity markers reported in vivo in rodent nephrotoxicity models exposed to this same nanoparticle.  相似文献   

18.
Mycobacterium avium ssp. hominissuis, hereafter referred to as M. avium, forms biofilm, a property that, in mice, is associated with lung infection via aerosol. As M. avium might co‐inhabit the respiratory tract with other pathogens, treatment of the co‐pathogen‐associated infections, such as in bronchiectasis, would expose M. avium to therapeutic compounds that may have their origin in other organisms sharing the natural environments. Incubation of M. avium with two compounds produced by environmental organisms, streptomycin and tetracycline, in vitro at subinhibitory concentrations increased biofilm formation in a number of M. avium strains, although exposure to ampicillin, moxifloxacin, rifampin and trimethoprim–sulphamethoxazole had no effect on biofilm formation. No selection of genotypically resistant clones was observed. Although incubation of bacteria in the presence of streptomycin upregulates the expression of biofilm‐associated genes, the response to the antibiotics had no association with the expression of a regulator (LysR) linked to the formation of biofilm in M. avium. Biofilms are composed of planktonic and sessile bacteria. Whereas planktonic M. avium is susceptible to clarithromycin and ethambutol (clinically used antimicrobials), sessile bacteria are at least three‐fold to four‐fold more resistant to antibiotics. The sessile phenotype, however, is reversible, and no selection of resistant clones was observed. Mice infected through the airway with both phenotypes were infected with a similar number of bacteria, demonstrating no phenotype advantage. M. avium biofilm formation is enhanced by commonly used compounds and, in the sessile bacterial phenotype, is resistant to clarithromycin and ethambutol, in a reversible manner.  相似文献   

19.
We have developed a silver-releasing biomaterial with promising potential for wound healing applications. The material is made of ultrashort peptides which can self-assemble in water to form hydrogels. Silver nanoparticles (Ag NPs) were synthesized in situ within the biomaterial, using only UV irradiation and no additional chemical reducing agents. The synthetic strategy allows precise control of the nanoparticle size, with the network of peptide fibers preventing aggregation of Ag NPs. The biomaterial shows increased mechanical strength compared to the hydrogel control. We observed a sustained release of Ag NPs over a period of 14 days. This is a crucial prerequisite for effective anti-bacterial therapy. The ability to inhibit bacterial growth was tested using different bacterial strains, namely gram-negative Escherichia coli and Pseudomonas aeruginosa and gram-positive Staphylococcus aureus. Inhibition of bacterial growth was observed for all strains. The best results were obtained for Pseudomonas aeruginosa which is known for exhibiting multidrug resistance. Biocompatibility studies on HDFa cells, using Ag NP-containing hydrogels, did not show any significant influence on cell viability. We propose this silver-releasing hydrogel as an excellent biomaterial with great potential for applications in wound healing due to its low silver content, sustained silver nanoparticle release and biocompatibility.  相似文献   

20.
Galactose modified trimethyl chitosan-cysteine (GTC) conjugates with various galactose grafting densities were developed for oral delivery of Survivin shRNA-expression pDNA (iSur-pDNA) and vascular endothelial growth factor (VEGF) siRNA (siVEGF) in the synergistic and targeted treatment of hepatoma. iSur-pDNA and siVEGF loaded GTC nanoparticles (NPs) were prepared via electrostatic complexation and showed desirable stability in physiological fluids and improved intestinal permeation compared to naked genes. Galactose grafting density of GTC NPs significantly affected their in vitro and in vivo antitumor activities. GTC NPs with moderate galactose grafting density, termed GTC2 NPs, were superior in facilitating cellular uptake, promoting nuclear distribution, and silencing target genes, leading to notable inhibition of cell growth. In tumor-bearing mice, orally delivered GTC2 NPs could effectively accumulate in the tumor tissues and silence the expression of Survivin and VEGF, evoking increased apoptosis, inhibited angiogenesis, and thus the most efficient tumor regression. Moreover, compared with single gene delivery, co-delivery of iSur-pDNA and siVEGF showed synergistic effects on inhibiting in vitro cell proliferation and in vivo tumor growth. This study could serve as an effective approach for synergistic cancer therapy via oral gene delivery, and highlighted the importance of ligand grafting density in the rational design of targeted nanocarriers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号