首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glucagon like peptide-1 (GLP-1) is an incretin hormone that is in the pipeline for type 2 diabetes mellitus (T2DM) therapy. However, oral administration of GLP-1 is hindered by the harsh conditions of the gastrointestinal tract and poor bioavailability. In this study, three nanosystems composed by three different biomaterials (poly(lactide-co-glycolide) polymer (PLGA), Witepsol E85 lipid (solid lipid nanoparticles, SLN) and porous silicon (PSi) were developed and loaded with GLP-1 to study their permeability in vitro. All the nanoparticles presented a size of approximately 200 nm. The nanoparticles' interaction with the mucus and the intestinal cells were enhanced after coating with chitosan (CS). PSi nanosystems presented the best association efficiency (AE) and loading degree (LD), even though a high AE was also observed for PLGA nanoparticles and SLN. Among all the nanosystems, PLGA and PSi were the only nanoparticles able to sustain the release of GLP-1 in biological fluids when coated with CS. This characteristic was also maintained when the nanosystems were in contact with the intestinal Caco-2 and HT29-MTX cell monolayers. The CS-coated PSi nanoparticles showed the highest GLP-1 permeation across the intestinal in vitro models. In conclusion, PLGA + CS and PSi + CS are promising nanocarriers for the oral delivery of GLP-1.  相似文献   

2.
Diatoms are porous silica-based materials obtained from single cell photosynthetic algae. Despite low cost, easy purification process, environmentally safe properties, and rapidly increasing potentials for medical applications, the cytotoxicity of diatoms and the effect on drug permeation of oral formulations have not been studied so far. Herein, we have evaluated the potential of diatom silica microparticles (DSMs) for the delivery of mesalamine and prednisone, which are two commonly prescribed drugs for gastrointestinal (GI) diseases. Transmission electron microscopy analysis of the morphological surface changes of Caco-2/HT-29 monolayers and the cell viability data in colon cancer cells (Caco-2, HT-29 and HCT-116) showed very low toxicity of diatoms at concentrations up to 1000 μg/mL. The mesalamine and prednisone release under simulated GI conditions indicated prolonged release of both drugs from the diatoms. Furthermore, drug permeation across Caco-2/HT-29 co-culture monolayers demonstrated that diatoms are capable to enhance the drug permeability. Overall, this study evaluated DSMs' cytotoxicity in colon cancer cells and the effect of DSMs on drug permeability across Caco-2/HT-29 monolayers. Our results demonstrate that DSMs can be considered as a non-cytotoxic biomaterial with high potential to improve the mesalamine and prednisone bioavailability by sustaining the drug release and enhancing drug permeability.  相似文献   

3.
Porous silicon (PSi) particles have been widely used in modulating the dissolution rate of various types of drugs loaded within its mesopores. This material can be surface treated in order to vary its hydrophobicity and several other properties, such as drug loading degree and release rate. Hydrophobins are a family of self-assembling proteins of fungal origin which have the ability to form layers on hydrophobic materials. This type of protein layer can modify the characteristics and control the binding properties of the surface on which it assembles. In this study, we have developed a procedure to coat thermally hydrocarbonized-PSi microparticles with hydrophobin II (HFBII) in order to modify the particles' hydrophobicity and to improve their biocompatibility, while maintaining intact the advantageous drug releasing properties of the PSi. The HFBII content adsorbed onto the particles was successfully quantified by a protein assay. Drug dissolution and permeation across Caco-2 cell monolayers were also conducted, together with viability studies in AGS, Caco-2 and HT-29 cells. The characterization and coating stability assessment showed that the HFBII-coating desorbs partially from the particles' surface as the pH increases. The HFBII coating also improved the biocompatibility of the particles without compromising the enhanced drug permeation or release.  相似文献   

4.
Jin Y  Song Y  Zhu X  Zhou D  Chen C  Zhang Z  Huang Y 《Biomaterials》2012,33(5):1573-1582
The present study was to demonstrate the effects of goblet cell-targeting nanoparticles on the oral absorption of insulin in vitro, ex vivo and in vivo, and identify the targeting mechanism as well as the influence of mucus. The insulin loaded nanoparticles were prepared using trimethyl chitosan chloride (TMC) modified with a CSKSSDYQC (CSK) targeting peptide. Compared with unmodified nanoparticles, the CSK peptide modification could facilitate the uptake of nanoparticles in villi, enhance the permeation of drugs across the epithelium, meanwhile, induce a significantly higher internalization of drugs via clathrin and caveolae mediated endocytosis on goblet cell-like HT29-MTX cells. In transport studies across Caco-2/HT29-MTX co-cultured cell monolayer (simulating intestinal epithelium), the CSK peptide modification also showed enhanced transport ability, even if the targeting recognition was partially affected by mucus. Moreover, it was found the existence of mucus was propitious to the transport of insulin from both modified and unmodified nanoparticles. In the pharmacological and pharmacokinetic studies in diabetic rats, the orally administrated CSK peptide modified nanoparticles produced a better hypoglycemic effect with a 1.5-fold higher relative bioavailability compared with unmodified ones. In conclusion, CSK peptide modified TMC nanoparticles showed sufficient effectiveness as goblet cell-targeting nanocarriers for oral delivery of insulin.  相似文献   

5.
In the present study thiol functionalized polymethacrylic acid–polyethylene glycol–chitosan (PCP)-based hydrogel microparticles were utilized to develop an oral insulin delivery system. Thiol modification was achieved by grafting cysteine to the activated surface carboxyl groups of PCP hydrogels (Cys-PCP). Swelling and insulin loading/release experiments were conducted on these particles. The ability of these particles to inhibit protease enzymes was evaluated under in vitro experimental conditions. Insulin transport experiments were performed on Caco-2 cell monolayers and excised intestinal tissue with an Ussing chamber set-up. Finally, the efficacy of insulin-loaded particles in reducing the blood glucose level in streptozotocin-induced diabetic rats was investigated. Thiolated hydrogel microparticles showed less swelling and had a lower insulin encapsulation efficiency as compared with unmodified PCP particles. PCP and Cys-PCP microparticles were able to inhibit protease enzymes under in vitro conditions. Thiolation was an effective strategy to improve insulin absorption across Caco-2 cell monolayers, however, the effect was reduced in the experiments using excised rat intestinal tissue. Nevertheless, functionalized microparticles were more effective in eliciting a pharmacological response in diabetic animal, as compared with unmodified PCP microparticles. From these studies thiolation of hydrogel microparticles seems to be a promising approach to improve oral delivery of proteins/peptides.  相似文献   

6.
Interactions of tumour and stromal cells influence tumour cell proliferation and differentiation, stromal cell phenotypic transdifferentiation and secretion of extracellular matrix (ECM) components. In this study, we established a monolayer and a three-dimensional cell-to-cell interaction model between canine mammary stromal cells and human colonic carcinoma cell lines (Caco-2 and HT-29) to investigate mutual paracrine effects of tumour cells and stromal cells on (i) tumour cell differentiation, (ii) production of ECM components and (iii) phenotypic transdifferentiation of stromal cells. We showed that when Caco-2 or HT-29 cells are cultured in collagen gels, they form a few small solid cell clusters with no lumina, but when cocultured with stromal cells, the tumour cells formed glandular structures with central lumina. This fibroblast-induced organization and differentiation of Caco-2 cells (not HT-29 cells) appeared to be mediated by transforming growth factor-beta (TGF-beta). Culturing of stromal cells, Caco-2 cells or HT-29 cells alone in both monolayers and gels resulted in weak tenascin-C expression in stromal cells and HT-29 cells and no expression in the Caco-2 cells. Coculturing of stromal cells with tumour cells resulted in increased tenascin-C expression in the stromal cells and HT-29 cells and induced expression of tenascin-C in the Caco-2 cells. This induction and increased expression of tenascin-C appeared to be mediated by TGF-beta. Culturing of stromal cells, Caco-2 cells or HT-29 cells alone on monolayers and in gels resulted in a weak expression of chondroitin sulfate (CS), chondroitin-6-sulfate (C-6-S) and versican in stromal cells and no expression in Caco-2 and HT-29 cells. Coculturing of stromal cells with tumour cells on monolayers and in gels resulted in increased CS, C-6-S and versican expression in stromal cells. This tumour cell-induced expression of CS, C-6-S and versican appeared to be mediated by TGF-beta and platelet-derived growth factor (PDGF). Coculturing of Caco-2 and HT-29 and stromal cells promoted the transdifferentiation of stromal cells into myofibroblasts, and this appeared to be mediated by TGF-beta. These results suggest that TGF-beta and PDGF are part of a paracrine system involved in stromal-epithelial cell interaction important in stromal cell differentiation and ECM component production.  相似文献   

7.
Hsu LW  Lee PL  Chen CT  Mi FL  Juang JH  Hwang SM  Ho YC  Sung HW 《Biomaterials》2012,33(26):6254-6263
Chitosan (CS) and its derivatives have been investigated as paracellular permeation enhancers for facilitating the oral bioavailability of hydrophilic macromolecules. As is well known, CS can transiently open the tight junctions (TJs) between epithelial cells, thus enhancing the paracellular permeability. However, the signaling mechanism that is related to the effect of CS on TJs remains unclear. Therefore, this study elucidates the potential transduction cascade of TJ opening in Caco-2 cell monolayers subsequent to CS exposure. Experimental results indicate that activation of integrin receptors on cell membranes significantly contributes to CS-mediated TJ disruption, initiating the cascade of TJ opening. Additionally, treatment of Caco-2 cell monolayers with CS leads to the clustering of integrins along the cell border, phosphorylation of FAK and Src tyrosine kinases, and results in the regulation of TJ permeability via the redistribution of TJ protein CLDN4 from the cell membrane to the cytosol. Elucidating the signaling mechanism of CS-induced TJ opening in intestinal cells significantly contributes to efforts to use CS and its derivatives as paracellular permeation enhancers.  相似文献   

8.
P(MAA-g-EG) microparticles have been extensively investigated as carriers for oral delivery of proteins such as insulin. In this study, we investigated the effect of the molecular weight of the PEG tethered chains in the copolymer network and of the microparticle size on the transepithelial electrical resistance (TEER) and insulin epithelial permeability, using monolayers of human intestinal epithelial Caco-2 cells. Two molecular weights of the PEG chains, 400 and 1000, were investigated, as well as three different dry microparticle sizes: 25-90, 90-150 and 150-212 microm. Their effect on the cell monolayer integrity was studied by monitoring TEER as a fraction of time and determining insulin permeability. The presence of insulin-loaded P(MAA-g-EG) microparticles decreases the TEERs value by 50% with respect to the control. This disruption of the cell monolayer was recovered in 3 h after the removal of the polymer microparticles. Within the range of PEG molecular weights studied, there was no significant change of the TEER values. However, decreased microparticle sizes and short PEG chains systems led to higher permeability values. Insulin-loaded P(MAA-g-EG) microparticles enhanced the transport of insulin through the Caco-2 cell monolayers.  相似文献   

9.
Poly[methacrylic acid-grafted-poly(ethylene glycol)] [P(MAA-g-EG)] is a complexation hydrogel molecularly designed for oral peptide delivery. In this work, the cytotoxicity and insulin-transport enhancing effect of P(MAA-g-EG) microparticles on intestinal epithelial cells were evaluated using Caco-2 cell monolayers. A series of P(MAA-g-EG) microparticles with different polymer compositions were prepared by a photo-initiated free radical solution polymerization and subsequent pulverization. The hydrogel microparticles were preswollen in either Ca2+-containing (CM+) or Ca2+-free medium (CM-; pH 7.4) and applied to the apical side of the Caco-2 monolayers. No significant cytotoxic effects, as determined by a calorimetric assay with P(MAA-g-EG) microparticles preswollen in the CM+, were observed at doses ranging from 3 to 31 mg/cm2 of cell monolayer. Transepithelial electrical resistance (TEER) measurements showed that the P(MAA-g-EG) microparticles induced a Ca2+ concentration-dependent lowering in TEER values. The reduction effect in CM- media was greater than that in CM+ media (17 +/- 2% reduction in CM+ and 45 +/- 3% reduction in CM-, respectively). Insulin transport in the presence of the preswollen P(MAA-g-EG) microparticles was also strongly depended on the Ca2+ concentration in the medium. The respective estimated permeability for insulin alone and the insulin with hydrogels in CM+ were 0.77 and 1.16 x 10(-8) cm/s, whereas those in CM- were 1.18 and 24.78 x 10(-8) cm/s. The results demonstrate that the P(MAA-g-EG) hydrogel microparticles could be used as a cytocompatible carrier possessing the transport-enhancing effect of insulin on the intestinal epithelial cells.  相似文献   

10.
P(MAA-g-EG) microparticles have been extensively investigated as carriers for oral delivery of proteins such as insulin. In this study, we investigated the effect of the molecular weight of the PEG tethered chains in the copolymer network and of the microparticle size on the transepithelial electrical resistance (TEER) and insulin epithelial permeability, using monolayers of human intestinal epithelial Caco-2 cells. Two molecular weights of the PEG chains, 400 and 1000, were investigated, as well as three different dry microparticle sizes: 25-90, 90-150 and 150-212 μm. Their effect on the cell monolayer integrity was studied by monitoring TEER as a fraction of time and determining insulin permeability. The presence of insulin-loaded P(MAA-g-EG) microparticles decreases the TEERs value by 50% with respect to the control. This disruption of the cell monolayer was recovered in 3 h after the removal of the polymer microparticles. Within the range of PEG molecular weights studied, there was no significant change of the TEER values. However, decreased microparticle sizes and short PEG chains systems led to higher permeability values. Insulin-loaded P(MAA-g-EG) microparticles enhanced the transport of insulin through the Caco-2 cell monolayers.  相似文献   

11.
12.
Whole diffusely adhering Escherichia coli (DAEC) C1845 cells bearing the F1845 adhesive factor bind diffusely to differentiated human colon carcinoma cell lines HT-29 and Caco-2. By using antibodies directed against the purified fimbrial adhesin F1845 factor, the expression of the DAEC F1845-specific brush border receptors in the polarized human intestinal HT-29 and Caco-2 epithelial cells was studied by indirect immunofluorescence. A low level of DAEC F1845 receptors in undifferentiated intestinal cells was detected; they were localized in a cluster of cells. DAEC F1845 receptors were expressed at a high level in differentiated HT-29 and Caco-2 cells. DAEC F1845 receptors were expressed at a strikingly high level in the apical domains of the cells and developed during enterocytic differentiation in culture, in parallel with the apical expression of the intestinal brush border hydrolase, sucrase-isomaltase.  相似文献   

13.
 Intestinal calcium absorption has been shown to include two processes, a saturable transcellular movement and a non-saturable paracellular pathway. The potential utility of cell monolayers for studying transepithelial intestinal calcium transport has already been demonstrated; however, simultaneous evaluation of the contribution of the saturable transcellular and of the non-saturable paracellular processes to the total transepithelial transport has not yet been attempted. The aim of this study was to investigate the contribution both of transcellular and paracellular transport processes to the total transepithelial calcium transport in two cell culture monolayers. Caco-2 cells and a clone derived from HT-29 cells (HT29-Cl.19A), two cell lines derived from colon adenocarcinomas which are known to be able to exhibit typical enterocytic differentiation, were used. Cell monolayers were grown on a permeable support and used after 15 days of culture when these cells express enterocytic differentiation and high transepithelial resistance. Isotopic transport rate measurements were performed in the absence of a chemical gradient. The paracellular route was evaluated using [3H]mannitol. Calcium and [3H]mannitol transport rates across cell monolayers were not significantly different. Augmentation of calcium uptake by 200 mM sorbitol did not significantly increase calcium or mannitol transepithelial transport; however, calcium accumulation in the cells was increased by about 200%. Modulation of the monolayer permeability by addition of 10 nM vasoactive intestinal polypeptide (VIP) or 0.5 mM carbachol treatment, which respectively increased and decreased the transepithelial resistance, consequently modified calcium and mannitol transport in a parallel manner. Our results show that Caco-2 and HT29-Cl.19A cell monolayers are good models for studying the calcium paracellular transport pathway. Received: 25 September 1996 / Received after revision: 14 March 1997 / Accepted: 26 March 1997  相似文献   

14.
Chitosan nanoparticles (NC) have excellent capacity for protein entrapment, favorable epithelial permeability, and are regarded as promising nanocarriers for oral protein delivery. Herein, we designed and evaluated a class of core shell corona nanolipoparticles (CSC) to further improve the absorption through enhanced intestinal mucus penetration. CSC contains chitosan nanoparticles as a core component and pluronic F127-lipid vesicles as a shell with hydrophilic chain and polyethylene oxide PEO as a corona. These particles were developed by hydration of a dry pluronic F127-lipid film with NC suspensions followed by extrusion. Insulin nested inside CSC was well protected from enzymatic degradation. Compared with NC, CSC exhibited significantly higher efficiency of mucosal penetration and, consequently, higher cellular internalization of insulin in mucus secreting E12 cells. The cellular level of insulin after CSC treatment was 36-fold higher compared to treatment with free insulin, and 10-fold higher compared to NC. CSC significantly facilitated the permeation of insulin across the ileum epithelia, as demonstrated in an ex vivo study and an in vivo absorption study. CSC pharmacological studies in diabetic rats showed that the hypoglycemic effects of orally administrated CSC were 2.5-fold higher compared to NC. In conclusion, CSC is a promising oral protein delivery system to enhance the stability, intestinal mucosal permeability, and oral absorption of insulin.  相似文献   

15.
Unconjugated bile acids such as cholic acid cause diarrhoea, mucosal irritation and toxicity. We sought to define the mechanism of cholate permeation across intestinal mucosal cells to understand how cellular exposure and accumulation are deleterious to mucosal function. Human intestinal Caco-2 and T84 cell monolayers were prepared by high-density seeding and cultured for >14 days on permeable culture supports. Cholate transport and cellular accumulation were determined using [3H]cholic acid. Epithelial barrier function was assessed by measuring transepithelial electrical resistance (Rt) and [14C]mannitol fluxes. Exposure of Caco-2 epithelia to serosal cholate caused a dose- and time-dependent disruption of barrier function. Apical exposure was without disruptive effect. Similar responses were observed for T84 epithelia. Cholate was preferentially accumulated across the basolateral surfaces in both Caco-2 and T84 cells, but was subject to active transepithelial secretion in Caco-2 monolayers only. Net secretion was substantially reduced by ATP depletion, showed saturation kinetics, and was subject to competitive inhibition by other bile acids. Cholate secretion was also sensitive to inhibition by the leukotriene antagonist MK-571 but not by digoxin, suggesting that MRP2, not MDR1, was responsible. RT-PCR and Western blotting confirmed MRP2 expression in Caco-2 epithelia but indicated its apparent absence from T84 cells.  相似文献   

16.
Absorption evaluation plays an increasingly important role at the early stage of drug discovery due to its potential to scan the ADME (absorption, distribution, metabolism and excretion) properties of new drug candidates. Therefore, a new three-dimensional (3D) in vitro model replicating the intestinal functioning is herein proposed aiming to dissect the stromal-epithelial interactions and evaluate the permeation of a model drug, insulin. Inspired on the intestinal mucosal architecture, the present model comprises intestinal myofibroblasts (CCD18-Co cells) embedded in Matrigel, onto which epithelial enterocytes (Caco-2 cells) and mucus-producing cells (HT29-MTX cells) were seeded. CCD18-Co myofibroblasts showed to have a central role in the remodeling of the surrounding matrix confirmed by the production of fibronectin. Subsequently, this matrix revealed to be essential to the maintenance of the model architecture by supporting the overlying epithelial cells. In terms of functionality, this model allowed the efficient prediction of insulin permeability in which the presence of mucus, the less tight character between Caco-2 and HT29-MTX epithelial cells and the 3D assembly were critical factors. Concluding, this model constitutes a robust tool in the drug development field with potential to bridge the traditional 2D cell culture models and in vivo animal models.  相似文献   

17.
Enterotoxigenic Escherichia coli are the most common cause of travelers' and infant diarrhea in less-developed countries. In the present work, among several metabolically labeled human diarrheagenic E. coli strains, enterotoxigenic strains expressing colonization factor antigen II were shown to bind to HT-29 intestinal cell monolayers when these cells were grown in conditions promoting their enterocytic differentiation. Indirect immunofluorescence with fimbrial antisera revealed that pathogen attachment was associated with the production of a specific bacterial adhesin, the E. coli surface antigen CS3. Scanning and transmission electron micrographs showed an apical pattern of colonization, characteristic of enterotoxigenic E. coli infections. The above data were consistent with all observations previously made with human enterocytes obtained from intestinal biopsies. The lectin-carbohydrate nature of this cell-cell recognition mechanism was also established. Bacterial binding to differentiated HT-29 cells was inhibited by a mixture of newborn meconium glycopeptides. By coating the cell layers with the plant agglutinin from Evonymus europaea, pathogen attachment was also prevented. Binding of 125I-labeled CS3 adhesin and E. europaea agglutinin to brush border membrane proteins separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and transferred to nitrocellulose revealed three bands of about 30, 20, and 13 kilodaltons, which acted as receptors for both bacterial and plant lectins. These data suggest that the sugar units to which the bacterial colonization factor CS3 binds are synthesized as carbohydrate chains of three brush border membrane glycoproteins in HT-29 cells by a differentiation-specific pathway.  相似文献   

18.
We report here the in vitro cytotoxicity of mesoporous silicon (PSi) microparticles on the Caco-2 cells as a function of particle size fractions (1.2–75 μm), particle concentration (0.2–4 mg ml?1) and incubation times (3, 11 and 24 h). The particle size (smaller PSi particles showed higher cytotoxicity) and the surface chemistry treatment of the PSi microparticles were considered to be the key factors regarding the toxicity aspects. These effects were significant after the 11 and 24 h exposure times, and were explained by cell–particle interactions involving mitochondrial disruption resulting from ATP depletion and reactive oxygen species production induced by the PSi surface. These events further induced an increase in cell apoptosis and consequent cell damage and cell death in a dose-dependent manner and as a function of the PSi particle size. These effects were, however, less pronounced with thermally oxidized PSi particles. Under the experimental conditions tested and at particle sizes >25 μm, the non-toxic threshold concentration for thermally hydrocarbonized and carbonized PSi particles was <2 mg ml?1, and for thermally oxidized PSi microparticles was <4 mg ml?1.  相似文献   

19.
Sonaje K  Lin KJ  Tseng MT  Wey SP  Su FY  Chuang EY  Hsu CW  Chen CT  Sung HW 《Biomaterials》2011,32(33):8712-8721
Recently, we reported a pH-responsive nanoparticle (NP) system shelled with chitosan (CS), which could effectively increase the oral absorption of insulin and produce a hypoglycemic effect, presumably due to the CS-mediated tight junction (TJ) opening. It has been often questioned whether CS can also enhance the absorption of endotoxins present in the small intestine. To address this concern, we studied the effect of CS NPs on the absorption of lipopolysaccharide (LPS), the most commonly found toxin in the gastrointestinal tract. To follow their biodistribution by the single-photon emission computed tomography/computed tomography, LPS and insulin were labeled with (99m)Tc-pertechnetate ((99m)Tc-LPS) and (123)iodine ((123)I-insulin), respectively. The (99m)Tc-LPS was ingested 1 h prior to the administration of the (123)I-insulin-loaded NPs to mimic the physiological conditions. The confocal and TEM micrographs show that the orally administered CS NPs were able to adhere and infiltrate through the mucus layer, approach the epithelial cells and mediate to open their TJs. The radioactivity associated with LPS was mainly restricted to the gastrointestinal tract, whereas (123)I-insulin started to appear in the urinary bladder at 3 h post administration. This observation indicates that the insulin-loaded in CS NPs can traverse across the intestinal epithelium and enter the systemic circulation, whereas LPS was unable to do so, probably because of the charge repulsion between the anionic LPS in the form of micelles and the negatively charged mucus layer. Our in vivo toxicity study further confirms that the enhancement of paracellular permeation by CS NPs did not promote the absorption of LPS. These results suggest that CS NPs can be used as a safe carrier for oral delivery of protein drugs.  相似文献   

20.
The main aim of this study was to investigate the effect of Grape seed extract (GSE) on Campylobacter induced-cytokine production by human intestinal cell lines. With this purpose, Caco-2 and HT-29 cells were challenged with culture supernatants from several strains of C. jejuni and levels of secreted IL-6, IL-8, and MCP-1 were measured. Cytokine production was higher in HT-29 than in Caco-2 cells, showing different levels of secretion depending of the epithelial cells origin. Also, infective isolates coming from campylobacteriosis patients rendered higher levels of pro-inflammatory cytokines. Co-treatment and pre-treatment of HT-29 cells with GSE and C. jejuni significantly reduced cytokines production in a dose-dependent manner. These results make this natural product a putative nutritional tool for use in the treatment of campylobacteriosis, which could contribute to improve disease prevention or reduce disease severity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号