首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
P-glycoprotein (P-gp) mediated drug efflux has been recognized as a key factor contributing to the multidrug resistance (MDR) in tumor cells. To address this issue, a new pH-sensitive mixed copolymer micelles system composed of hyaluronic acid-g-poly(l-histidine) (HA-PHis) and d-α-tocopheryl polyethylene glycol 2000 (TPGS2k) copolymers was developed to co-deliver doxorubicin (DOX) and TPGS2k into drug-resistant breast cancer MCF-7 cells (MCF-7/ADR). The DOX-loaded HA-PHis/TPGS2k mixed micelles (HPHM/TPGS2k) were characterized to have a unimodal size distribution, high DOX loading content and a pH dependent drug release profile due to the protonation of poly(l-histidine). As compared to HA-PHis micelles (HPHM), the HPHM/TPGS2k showed higher and comparable cytotoxicity against MCF-7/ADR cells and MCF-7 cells, respectively. The enhanced MDR reversal effect was attributed to the higher amount of cellular uptake of HPHM/TPGS2k in MCF-7/ADR cells than HPHM, arising from the inhibition of P-gp mediated drug efflux by TPGS2k. The measurements of P-gp expression level and mitochondrial membrane potential indicate that the blank HPHM/TPGS2k inhibited P-gp activity by reducing mitochondrial membrane potential and depletion of ATP but without inhibition of P-gp expression. In vivo study of micelles in tumor-bearing mice indicate that HPHM/TPGS2k could reach the tumor site more effectively than HPHM. The pH-sensitive mixed micelles system has been demonstrated to be a promising approach for overcoming the MDR.  相似文献   

2.
A novel therapeutic strategy combining mTOR inhibitor rapamycin (RAPA) and doxorubicin (DOX)-loaded cyclic octapeptide liposomes for targeting integrin α3 was expected to combat the triple-negative breast cancer (TNBC). RAPA was loaded into PEG–PCL polymer micelles (M-RAPA) to realize solubilization. Flow cytometry analysis and laser confocal microscopy were used to evaluate the in vitro cellular uptake. The in vivo tumor targeting and bio-distribution were investigated by living fluorescence imaging. As the results, LXY modification significantly enhanced the cellular uptake of liposomal DOX in integrin α3 overexpressed TNBC cells (MDA-MB-231) in vitro and accordingly improved the tumor accumulation of liposomes in vivo. When used alone or in combination with LXY-LS-DOX, M-RAPA could greatly inhibit the expression of HIF-1α protein, which is always highly expressed in malignant cancers and involved in tumor angiogenesis, proliferation, therapeutic resistance and poor prognosis. Meanwhile, the improved efficacy of combined targeted therapy with LXY-LS-DOX and M-RAPA was demonstrated by the in vitro cytotoxicity against model TNBC cells and in vivo anti-tumor activity against mouse bearing TNBC model. These results suggested that the targeted combinational therapy based on LXY-LS-DOX and M-RAPA systems may provide a rational strategy to improve therapeutic outcomes of TNBC.  相似文献   

3.
Our main aim in the present investigation was to explore the in vitro and in vivo cancer targeting potential of the doxorubicin (DOX) laden d-α-tocopheryl polyethylene glycol 1000 succinate (vitamin E TPGS) tethered surface engineered MWCNTs nanoformulation (DOX/TPGS-MWCNTs) and compare it with pristine MWCNTs and free doxorubicin solution. The developed MWCNTs nanoformulations were extensively characterized by Fourier-transform infrared, Raman spectroscopy, x-ray diffraction, electron microscopy, and in vitro and in vivo studies using MCF-7 cancer cell line. The entrapment efficiency was determined to be 97.2 ± 2.50% (DOX/TPGS-MWCNTs) and 92.5 ± 2.62% (DOX/MWCNTs) ascribed to π-π stacking interactions. The developed formulations depicted the sustained release pattern at the lysosomal pH (pH 5.3). The DOX/TPGS-MWCNTs showed enhanced cytotoxicity, cellular uptake and were most preferentially taken up by the cancerous cells via endocytosis mechanism. The DOX/TPGS-MWCNTs nanoconjugate depicted the significantly longer survival span (44 days, p < 0.001) than DOX/MWCNTs (23 days), free DOX (18 days) and control group (12 days). The obtained results also support the extended residence time and sustained release profile of the drug loaded surface engineered nanotubes formulations in body as compared to DOX solution. Overall we can conclude that the developed MWCNTs nanoconjugate have higher cancer targeting potential on tumor bearing Balb/c mice.  相似文献   

4.
A series of endosomolytic mixed micelles was synthesized from two diblock polymers, poly[ethylene glycol-b-(dimethylaminoethyl methacrylate-co-propylacrylic acid-co-butyl methacrylate)] (PEG-b-pDPB) and poly[dimethylaminoethyl methacrylate-b-(dimethylaminoethyl methacrylate-co-propylacrylic acid-co-butyl methacrylate)] (pD-b-pDPB), and used to determine the impact of both surface PEG density and PEG molecular weight on overcoming both intracellular and systemic siRNA delivery barriers. As expected, the percent PEG composition and PEG molecular weight in the corona had an inverse relationship with mixed micelle zeta potential and rate of cellular internalization. Although mixed micelles were internalized more slowly, they generally produced similar gene silencing bioactivity (∼80% or greater) in MDA-MB-231 breast cancer cells as the micelles containing no PEG (100D/no PEG). The mechanistic explanation for the potent bioactivity of the promising 50 mol% PEG-b-DPB/50 mol% pD-b-pDPB (50D) mixed micelle formulation, despite its relatively low rate of cellular internalization, was further investigated as a function of PEG molecular weight (5 k, 10 k, or 20 k PEG). Results indicated that, although larger molecular weight PEG decreased cellular internalization, it improved cytoplasmic bioavailability due to increased intracellular unpackaging (quantitatively measured via FRET) and endosomal release. When delivered intravenously in vivo, 50D mixed micelles with a larger molecular weight PEG in the corona also demonstrated significantly improved blood circulation half-life (17.8 min for 20 k PEG micelles vs. 4.6 min for 5 kDa PEG micelles) and a 4-fold decrease in lung accumulation. These studies provide new mechanistic insights into the functional effects of mixed micelle-based approaches to nanocarrier surface PEGylation. Furthermore, the ideal mixed micelle formulation identified (50D/20 k PEG) demonstrated desirable intracellular and systemic pharmacokinetics and thus has strong potential for in vivo therapeutic use.  相似文献   

5.
In this study, oligopeptide amphiphile containing three blocks of amino acids, Ac-(AF)6-H5-K15-NH2 (FA32), were synthesized and evaluated as carriers for co-delivery of drug and gene. Doxorubicin (DOX), luciferase reporter gene, and p53 gene were used as a model drug and genes. The peptide amphiphile self-assembled into cationic core–shell nanostructures (i.e. micelles), with a CMC value of around 0.042 mg/mL, estimated by fluorescent spectroscopy technique. FA32 nanostructures had an average size of 102 ± 19 nm, and a zeta potential of 22.8 ± 0.2 mV. These nanostructures had a high capacity for DOX encapsulation, with a DOX loading level of up to 22%. In addition, DOX release from the micelles was sustained without obvious initial burst. DOX-loaded micelles were effectively taken up by HepG2 cells, with an IC50 of 1.8 mg/L for DOX-loaded FA32, which was higher than that of free DOX (0.25 mg/L). In addition, FA32 micelles condensed DNA efficiently to form small complexes with net positive charge on the surface. In vitro gene transfection studies showed that FA32 induced comparable gene expression level to polyethylenimine. Co-delivery of drug and gene using FA32 micelles was demonstrated via confocal imaging, luciferase expression in the presence of DOX, and synergy in cytotoxic effect between p53 gene and DOX. It was shown that through simultaneous delivery of both p53 gene and DOX using FA32 micelles, an increase in p53 mRNA expression level as well as end point cytotoxicity towards HepG2 cells was achieved. FA32 micelles, therefore, have a great potential in delivering hydrophobic anticancer drug and gene simultaneously for improved cancer therapy.  相似文献   

6.
The endolysosome is a major barrier for the effective intracellular delivery by conventional nanocarriers. Herein, we demonstrate that endolysosome environment-responsive photodynamic nanocarriers (EPNs) are capable of encapsulation of the hydrophobic drug paclitaxel (PTX) and photosensitizer (PS)-mediated ELB disruption for effective cancer therapy. EPNs were self-assembled from PS (chlorin e6, Ce6) or Black Hole Quencher-3 (BHQ3) conjugated covalently to polypeptide-based amphiphilic copolymers [monomethoxy polyethylene glycol-block-poly(β-benzyl-l-aspartic acid), mPEG-pBLA]. EPNs have a spherical shape and a unimodal size distribution below 100 nm. Photoquenching of the EPNs was dependent on the molar ratio of mPEG-pBLA-BHQ3/mPEG-pBLA-Ce6. However, in the presence of the endolysosomal enzyme (e.g., esterase), the benzyl ester bond is cleaved which leads to the structural collapse of EPNs, thus triggering drug release and restoring photoactivity. Live cell imaging studies demonstrated that PS-mediated lipid peroxidation significantly increased the ability of model drug (i.e., Nile red) to overcome the ELB. In comparison with PTX treatment alone, the combined treatment of PTX encapsulated EPNs with laser irradiation synergistically induced the death of HeLa and drug-resistant HCT-8 cells in vitro, and suppressed CT-26 tumor growth in vivo. These results suggest that this approach is a promising platform for cancer treatment. Furthermore, this EPN system offers significant potential for effective cytosolic delivery of chemical and biological therapeutics.  相似文献   

7.
We prepared pH-sensitive drug–dendrimer conjugate-hybridized gold nanorod as a promising platform for combined cancer photothermal-chemotherapy under in vitro and in vivo conditions. Poly(ethylene glycol)-attached PAMAM G4 dendrimers (PEG–PAMAM) were first covalently linked on the surface of mercaptohexadecanoic acid-functionalized gold nanorod (MHA-AuNR), with subsequent conjugation of anti-cancer drug doxorubicin (DOX) to dendrimer layer using an acid-labile-hydrazone linkage to afford PEG–DOX–PAMAM–AuNR particles. The particles with a high PEG–PAMAM dendrimer coverage density (0.28 per nm2 AuNR) showed uniform sizes and excellent colloidal stability. In vitro drug release studies demonstrated that DOX released from PEG–DOX–PAMAM–AuNR was negligible under normal physiological pH, but it was enhanced significantly at a weak acidic pH value. The efficient intracellular acid-triggered DOX release inside of lysosomes was confirmed using confocal laser scanning microscopy analysis. Furthermore, the combined photothermal-chemo treatment of cancer cells using PEG–DOX–PAMAM–AuNR for synergistic hyperthermia ablation and chemotherapy was demonstrated both in vitro and in vivo to exhibit higher therapeutic efficacy than either single treatment alone, underscoring the great potential of PEG–DOX–PAMAM–AuNR particles for cancer therapy.  相似文献   

8.
The combination therapy has exhibited important potential for the treatment of cancers, especially for drug-resistant cancers. In this report, bi-functional nanoprobes based on doxorubicin (DOX)-loaded NaYF4:Yb/Tm–TiO2 inorganic photosensitizers (FA-NPs-DOX) were synthesized for in vivo near infrared (NIR)-triggered inorganic photodynamic therapy (PDT) and enhanced chemotherapy to overcome the multidrug resistance (MDR) in breast cancers. Using the up-conversion luminescence (UCL) performance of NaYF4:Yb/Tm converting near-infrared (NIR) into ultraviolent (UV) lights, reactive oxygen species (ROS) were triggered from TiO2 inorganic photosensitizers for PDT under the irradiation of a 980 nm laser, by which the deep-penetration and low photo-damage could be reached. Moreover, nanocarrier delivery and folic acid (FA) targeting promoted the cellular uptake, and accelerated the release of DOX in drug-sensitive MCF-7 and resistant MCF-7/ADR cells. The toxicity assessment in vitro and in vivo revealed the good biocompatibility of the as-prepared FA-NPs-DOX nanocomposites. By the combination of enhanced chemotherapy and NIR-triggered inorganic PDT, the viability of MCF-7/ADR cells could decrease by 53.5%, and the inhibition rate of MCF-7/ADR tumors could increase up to 90.33%, compared with free DOX. Therefore, the MDR of breast cancers could be obviously overcome by enhanced chemotherapy and NIR-triggered inorganic PDT of FA-NPs-DOX nanocomposites under the excitation of a 980 nm laser.  相似文献   

9.
High drug loading content is the critical factor to polymeric micelles for efficient chemotherapy. Small molecules of cinnamic acid, 7-carboxymethoxy coumarin and chrysin with different π-conjugated moieties were immobilized on the terminal hydroxyl groups of PCL segments in mPEG-PCL micelles to improve drug loading content via the evocation of π-π stacking interaction between doxorubicin (DOX) and polymeric micelles. The modification of π-conjugated moieties enhanced the capability of crystallization of mPEG-PCL block copolymers. The drug loading content increased dramatically from 12.9% to 25.5% after modification. All the three modified mPEG-PCL micelles were nontoxic to cells. Chrysin modified polymeric micelles exhibited the most efficient anticancer activity. The in vivo anticancer activity of 10 mg/kg DOX dose of chrysin modified micelle formulation for twice injections was comparable to that of 5 mg/kg dose of free DOX·HCl for four injections under the circumstance of same total DOX amount. The systemic toxicity of DOX loaded chrysin modified micelles was significantly reduced. This research provided a facile strategy to achieve polymeric micelles with high drug loading content and efficient anticancer activity both in vitro and in vivo.  相似文献   

10.
We developed a system of Cetuximab-conjugated micelles of vitamin E TPGS for targeted delivery of docetaxel as a model anticancer drug for treatment of the triple negative breast cancer (TNBC), which shows no expression of either one of the hormone progesterone receptor (PR), estrogen receptor (ER) and epidermal growth factor receptor 2 (HER2) and is thus more difficult to be treated than the positive breast cancer. Such micelles are of desired particle size, drug loading, drug encapsulation efficiency and drug release profile. Their surface morphology, surface charge and surface chemistry were also characterized. The fibroblast cells (NIH3T3), HER2 overexpressed breast cancer cells (SK-BR-3), ER and PR overexpressed breast cancer cells (MCF7), and TNBC cells of high, moderate and low EGFR expression (MDA MB 468, MDA MB 231 and HCC38) were employed to access in vitro cellular uptake of the coumarin 6 loaded TPGS micelles and cytotoxicity of docetaxel formulated in the micelles. The high IC50 value, which is the drug concentration needed to kill 50% of the cells in a designated period such as 24 h, obtained from Taxotere® showed that the TNBC cells are indeed more resistant to the free drug than the positive breast cancer cells. However, the therapeutic effects of docetaxel could be greatly enhanced by the formulation of Cetuximab conjugated TPGS micelles, which demonstrated 205.6 and 223.8 fold higher efficiency than Taxotere® for the MDA MB 468 and MDA MB 231 cell lines respectively.  相似文献   

11.
Bioreducible heparin (HEP)-based nanogels were prepared by derivatizing HEP with vinyl group followed by copolymerizing with cystamine bisacrylamide in aqueous medium in the absence of surfactant. The hydrodynamic diameter of the HEP nanogels could be tuned in the range from 80 to 200 nm. Doxorubicin (DOX) was loaded into the HEP nanogels, and high drug loading content (30%) and efficiency (90%) were achieved. In vitro drug release test revealed that this drug delivery system exhibited strongly redox-sensitive drug release behavior that would greatly favor the in vivo drug delivery performance of the nanogels. After injected into tumor-bearing mice through tail vein, the DOX-loaded HEP nanogels showed remarkable accumulation in tumors as demonstrated by in vivo near infared fluorescence imaging and ex vivo DOX concentration measurements. The doxorubicin accumulation at tumor site goes beyond 9% injected dose per gram of tumor through such delivery system, making that DOX-loaded HEP nanogels have significantly superior in vivo antitumor activity.  相似文献   

12.
Mitochondrion-orientated transportation of smart liposomes has been developed as a promising strategy to deliver anticancer drugs directly to tumor sites, and these have a tremendous potential for killing cancer cells, especially those with multidrug resistance (MDR). Herein we report a novel dual-functional liposome system possessing both extracellular pH response and mitochondrial targeting properties to enhance drug accumulation in mitochondria and trigger apoptosis of drug-resistant cancer cells. Briefly, peptide D[KLAKLAK]2 (KLA) was modified with 2, 3-dimethylmaleic anhydride (DMA) and combined with 1, 2-distearoyl-sn-glycero-3-phosphoethanolamine (DSPE) to yield a DSPE-KLA-DMA (DKD) lipid. This dual-functional DKD was then mixed with other commercially available lipids to fabricate liposomes. In vitro anticancer efficacy of this liposome system was evaluated in human lung cancer A549 cells and drug-resistant lung cancer A549/Taxol cells. At tumor extracellular pH (∼6.8), liposomes could reverse their surface charge (negative to positive), facilitating liposome internalization. After cellular uptake, KLA peptide directed delivery-enabled selective accumulation of these liposomes into mitochondria and favored release of their cargo paclitaxel (PTX) into desired sites. Specifically, enhanced apoptosis of MDR cancer cells through mitochondrial signaling pathways was evidenced by release of cytochrome c and increased activity of caspase-9 and -3. These dual-functional liposomes had the greatest efficacy for treating A549 cells and A549/Taxol cells in vitro, and in treating drug-resistant lung cancer A549/Taxol cells xenografted onto nude mice (tumor growth inhibition 86.7%). In conclusion, dual-functional liposomes provide a novel and versatile approach for overcoming MDR in cancer treatment.  相似文献   

13.
Metastatic relapse, development of drug resistance in cancer cells and adverse side effects of chemotherapeutic agents are the major obstacles for effective chemotherapy against triple-negative breast cancer. To address these problems, miR-34a, a potent endogenous tumor suppressive molecule in breast cancer, was co-encapsulated with doxorubicin (DOX) into hyaluronic acid (HA)-chitosan (CS) nanoparticles (NPs) and simultaneously delivered into breast cancer cells for improved therapeutic effects of drug. DOX-miR-34a co-loaded HA-CS NPs were successfully prepared through ionotropic gelation method in water. In vitro and in vivo experiments showed that miR-34a and DOX can be efficiently encapsulated into HA-CS NPs and delivered into tumor cells or tumor tissues and enhance anti-tumor effects of DOX by suppressing the expression of non-pump resistance and anti-apoptosis proto-oncogene Bcl-2. In addition, intracellular restoration of miR-34a inhibited breast cancer cell migration via targeting Notch-1 signaling. The obtained data suggest that co-delivery of DOX and miR-34a could achieve synergistic effects on tumor suppression and nanosystem-based co-delivery of tumor suppressive miRNAs and chemotherapeutic agents may be a promising combined therapeutic strategy for enhanced anti-tumor therapy.  相似文献   

14.
Modifying positive surface charge and reducing bulk size of nanoparticles has been proven beneficial to cancer cellular delivery, but meanwhile results in fast clearance and unspecific distribution in body after intravenous injection. How to balance these problems is still a challenge to construct an ideal nano-scaled drug delivery system in cancer treatment. Herein, we developed a multistage drug delivery system to enhance anticancer efficacy of curcumin (CUR), which could intelligently alter its size and surface charge after long-circulation and extravasation from leaky blood vessels at tumor sites. This micellar system was constructed by amphiphilic and pH-sensitive methoxy poly(ethylene glycol)-poly(lactide)-poly(β-amino ester) (MPEG-PLA-PAE) copolymers. As compared with MPEG-PLA micelles, MPEG-PLA-PAE micelles displayed several advantageous characteristics for drug delivery and treatment. We found that CUR-loaded MPEG-PLA-PAE micelles remained stable in murine plasma at 37 °C even with high drug loading. More interestingly, when the media pH decreased from 7.4 to 5.5, the micelles shrank from 171.0 nm to 22.6 nm and their surface charge increased to 24.8 mV meanwhile, which resulted in the significantly improved cell uptake of CUR by human breast cancer MCF-7 cells. Using indocyanine green (ICG) as a fluorescence probe, it was observed that MPEG-PLA-PAE micelles experienced longer circulation than MPEG-PLA micelles followed by accumulation at tumors with stronger fluorescence intensity. Consequently, MPEG-PLA-PAE micelles achieved enhanced cancer growth inhibition of 65.6% in vivo. All these findings demonstrated the potential of size/charge–changing MPEG-PLA-PAE micelles as a promising drug delivery system for tumor-targeted therapy.  相似文献   

15.
In cancer therapy nanocargos based on star-shaped polymer exhibit unique features such as better stability, smaller size distribution and higher drug capacity in comparison to linear polymeric micelles. In this study, we developed a multifunctional star-shaped micellar system by combination of active targeting ability and redox-responsive behavior. The star-shaped micelles with good stability were self-assembled from four-arm poly(ε-caprolactone)-poly(ethylene glycol) copolymer. The redox-responsive behaviors of these micelles triggered by glutathione were evaluated from the changes of micellar size, morphology and molecular weight. In vitro drug release profiles exhibited that in a stimulated normal physiological environment, the redox-responsive star-shaped micelles could maintain good stability, whereas in a reducing and acid environment similar with that of tumor cells, the encapsulated agent was promptly released. In vitro cellular uptake and subcellular localization of these micelles were further studied with confocal laser scanning microscopy and flow cytometry against the human cervical cancer cell line HeLa. In vivo and ex vivo DOX fluorescence imaging displayed that these FA-functionalized star-shaped micelles possessed much better specificity to target solid tumor. Both the qualitative and quantitative results of the antitumor effect in 4T1 tumor-bearing BALB/c mice demonstrated that these redox-responsive star-shaped micelles have a high therapeutic efficiency to artificial solid tumor. Therefore, the multifunctional star-shaped micelles are a potential platform for targeted anticancer drug delivery.  相似文献   

16.
Antibody-mediated therapies including antibody-drug conjugates (ADCs) have shown much potential in cancer treatment by tumor-targeted delivery of cytotoxic drugs. However, there is a limitation of payloads that can be delivered by ADCs. Integration of antibodies to drug-loaded nanocarriers broadens the applicability of antibodies to a wide range of therapeutics. Herein, we developed antibody fragment-installed polymeric micelles via maleimide-thiol conjugation for selectively delivering platinum drugs to pancreatic tumors. By tailoring the surface density of maleimide on the micelles, one tissue factor (TF)-targeting Fab' was conjugated to each carrier. Fab'-installed platinum-loaded micelles exhibited more than 15-fold increased cellular binding within 1 h and rapid cellular internalization compared to non-targeted micelles, leading to superior in vitro cytotoxicity. In vivo, Fab'-installed micelles significantly suppressed the growth of pancreatic tumor xenografts for more than 40 days, outperforming non-targeted micelles and free drugs. These results indicate the potential of Fab'-installed polymeric micelles for efficient drug delivery to solid tumors.  相似文献   

17.
A novel design of Bi2S3 nanoparticles with a coating of mesoporous silica (BMSN) is obtained by a surfactant induced condensation method. It was found that BMSNs exhibited a high doxorubicin (DOX) loading efficiency of 45 wt% and pH-responsive controlled drug release owing to the electrostatic interaction between silanol surface and DOX molecules. The cell viability results demonstrated the encapsulation of DOX into BMSNs could lead to significantly enhanced therapeutic effect against multidrug-resistance cancer cells compared to that of free DOX drug. Furthermore, the comparable study of tumor growth by different treatments demonstrated that the introduction of BMSNs in the X-ray therapy could lead to higher therapeutic effect, with just 2.10-fold increase in tumor volume through 24 days, in comparison to 4.40-fold increase for X-ray beams treatment alone. Meanwhile, the in vitro interstitial radiotherapy experiments demonstrated that the cell inhibiting effect of P-32 interstitial radiotherapy combined with BMSNs (50 μg/mL) was 1.55-fold higher than that of P-32 alone. Significantly, it is notable that the simultaneous chemo- and interstitial radiotherapy based on BMSNs could tremendously increase the therapeutic effect compared to those treatment alone. More importantly, the in vivo P-32 radiotherapy in conjunction with BMSNs was proved to present a significantly eradication of the tumor volumes by an average of 21% reduction to its initial values, in comparison to 2.01-fold increase in case of P-32 treatment alone. Thus, it is expected that the BMSNs could be applied as a highly efficient multifunctional nanosystem to realize the enhanced chemo- and radiotherapy in the further clinical applications.  相似文献   

18.
A new type of drug-delivery system (DDS) was constructed, in which the anti-cancer drug doxorubicin (DOX) was conjugated to the ultra-small sized (sub-10 nm) BaGdF5:Yb3+/Tm3+ based upconversion nanoparticles (UCNPs). This multifunctional DDS simultaneously possesses drug delivery and optical/magnetic/X-ray computed tomography imaging capabilities. The DOX can be selectively released by cleavage of hydrazone bonds in acidic environment, which shows a pH-triggered drug release behavior. The MTT assay shows these DOX-conjugated UCNPs exhibit obvious cytotoxic effect on HeLa cells. Moreover, to improve the upconversion luminescence intensity, core–shell structured UCNPs were constructed. The in vitro upconversion luminescence images of these UCNPs uptaken by HeLa cells show bright emission with high contrast. In addition, these UCNPs were further explored for T1-weighted magnetic resonance (MR) and X-ray computed tomography (CT) imaging in vitro. Long-term in vivo toxicity studies indicated that mice intravenously injected with 10 mg/kg of UCNPs survived for 40 days without any apparent adverse effects to their health. The results indicate that this multifunctional drug-delivery system with optimized size, excellent optical/MR/CT trimodal imaging capabilities, and pH-triggered drug release property is expected to be a promising platform for simultaneous cancer therapy and bioimaging.  相似文献   

19.
Liver targeted micelles were successfully constructed via self-assembly of glycyrrhetinic acid (GA)-modified poly(ethylene glycol)–b-poly(γ-benzyl l-glutamate) (GA–PEG–PBLG) block co-polymers, which were fabricated via ring opening polymerization of γ-benzyl l-glutamate N-carboxyanhydride monomer initiated by GA-modified PEG. The in vivo biodistribution and the in vitro cellular uptake of these micelles were investigated. The results showed that the relative uptake of doxorubicin (DOX)-loaded micelles (DOX/GA–PEG–PBLG) in liver was much higher than in other tissues, and the resulting DOX concentration in liver was about 2.2-fold higher than that from the micelles without modification by GA. Moreover, the cellular uptake study demonstrated that the introduction of GA to the micelles could significantly increase the affinity for human hepatic carcinoma 7703 cells, which induced a 3.7-fold higher endocytosis than unmodified ones. The cytotoxicity of DOX/GA–PEG–PBLG micelles (IC50 47 ng ml?1) was much higher than that of free DOX (IC50 90 ng ml?1). These results indicate that GA-modified micelles have great potential in liver targeting therapy.  相似文献   

20.
Yang C  Attia AB  Tan JP  Ke X  Gao S  Hedrick JL  Yang YY 《Biomaterials》2012,33(10):2971-2979
A new series of acid- and urea-functionalized polycarbonate block copolymers were synthesized via organocatalytic living ring-opening polymerization using methoxy poly(ethylene glycol) (PEG) as a macroinitiator to form micelles as drug delivery carriers. The micelles were characterized for critical micelle concentration, particle size and size distribution, kinetic stability and loading capacity for a model anticancer drug, doxorubicin (DOX) having an amine group. The acid/urea groups were placed in block forms (i.e. acid as the middle block or the end block) or randomly distributed in the polycarbonate block to investigate molecular structure effect. The micelles formed from the polymers in both random and block forms provided high drug loading capacity due to strong ionic interaction between the acid in the polymer and the amine in DOX. However, the polymers with acid and urea groups placed in the block forms formed micelles with wider size distribution (two size populations), and their DOX-loaded micelles were less stable. The number of acid/urea groups in the random form was further varied from 5 to 8, 13 and 19 to study its effects on self-assembly behaviors and DOX loading. An increased number of acid/urea groups yielded DOX-loaded micelles with smaller size and enhanced kinetic stability because of improved inter-molecular polycarbonate-polycarbonate (urea-urea and urea-acid) hydrogen-bonding and polycarbonate-DOX (acid-amine) ionic interactions. However, when the number of acid/urea groups was 13 or higher, micelles aggregated in a serum-containing medium, and freeze-dried DOX-loaded micelles were unable to re-disperse in an aqueous solution. Among all the polymers synthesized in this study, 1b with 8 acid/urea groups in the random form had the optimum properties. In vitro release studies showed that DOX release from 1b micelles was sustained over 7 h without significant initial burst release. MTT assays demonstrated that the polymer was not toxic towards HepG2 and HEK293 cells. Importantly, DOX-loaded micelles were potent against HepG2 cells with IC50 of 0.26 mg/L, comparable to that of free DOX (IC50: 0.20 mg/L). In addition, DOX-loaded 1b micelles yielded lower DOX content in the heart tissue of the tested mice as compared to free DOX formulation after i.v. injection. These findings signify that 1b micelles may be a promising carrier for delivery of anticancer drugs that contain amine groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号