首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.

Background  

Helicobacter pylori (H. pylori) infection is associated with chronic gastritis, peptic ulceration and gastric carcinoma. Protease-activated receptor-2 (PAR-2), which is activated by trypsin, induced the activation of mitogen-activated protein kinases (MAPK), cell proliferation and apoptosis in several cells. Previously, we found that H. pylori induces the expression of PAR-2, which mediates the expression of adhesion molecules integrins in gastric epithelial cells. In the present study, the role of PAR-2 on H. pylori-induced cell death was investigated by determining cell viability, DNA fragmentation, and the activation of MAPK in gastric epithelial AGS cells.  相似文献   

4.
5.

Background

Reactive oxygen species (ROS) and reactive nitrogen species (RNS) have been reported to impact gastric inflammation and carcinogenesis. However, the precise mechanism by which Helicobacter pylori induces gastric carcinogenesis is presently unclear.

Aim

This review focuses on H. pylori-induced ROS/RNS production in the host stomach, and its relationship with gastric carcinogenesis.

Results

Activated neutrophils are the main source of ROS/RNS production in the H. pylori-infected stomach, but H. pylori itself also produces ROS. In addition, extensive recent studies have revealed that H. pylori-induced ROS production in gastric epithelial cells might affect gastric epithelial cell signal transduction, resulting in gastric carcinogenesis. Excessive ROS/RNS production in the stomach can damage DNA in gastric epithelial cells, implying its involvement in gastric carcinogenesis.

Conclusion

Understanding the molecular mechanism behind H. pylori-induced ROS, and its involvement in gastric carcinogenesis, is important for developing new strategies for gastric cancer chemoprevention.  相似文献   

6.
Two key virulence factors of Helicobacter pylori are the secreted virulent proteins of vacuolating toxin A (VacA) and cytotoxin associated protein A (CagA) which lead to damages of gastric epithelial cells. We previously identified that the cyanidin 3-O-glucoside (C3G) inhibits the secretion of both VacA and CagA. In the current report, we show that C3G inhibits VacA secretion in a dose-dependent manner by inhibiting secretion system subunit protein A (SecA) synthesis. As SecA is involved in translocation of bacterial proteins, we predicted that inhibition of the SecA pathway by C3G should decrease H. pylori-induced cell death. To test this hypothesis, the human gastric cell line KATO III cells were co-cultured with H. pylori 60190 (VacA+/CagA+) and C3G. We found that C3G treatment caused a decrease in activation of the pro-apoptotic proteins caspase-3/-8 in H. pylori-infected cells leading to a decrease in cell death. Our data suggest that consumption of foods containing anthocyanin may be beneficial in reducing cell damage due to H. pylori infection.  相似文献   

7.
Helicobacter pylori infection is associated with gastritis and gastric cancer. An H. pylori virulence factor, the cag pathogenicity island (PAI), is related to host cell cytokine induction and gastric inflammation. Since elucidation of the mechanisms of inflammation is important for therapy, the associations between cytokines and inflammatory diseases have been investigated vigorously. Levels of interleukin-32 (IL-32), a recently described inflammatory cytokine, are increased in various inflammatory diseases, such as rheumatoid arthritis and Crohn''s disease, and in malignancies, including gastric cancer. In this report, we examined IL-32 expression in human gastric disease. We also investigated the function of IL-32 in activation of the inflammatory cytokines in gastritis. IL-32 expression paralleled human gastric tissue pathology, with low IL-32 expression in H. pylori-uninfected gastric mucosa and higher expression levels in gastritis and gastric cancer tissues. H. pylori infection increased IL-32 expression in human gastric epithelial cell lines. H. pylori-induced IL-32 expression was dependent on the bacterial cagPAI genes and on activation of nuclear factor κB (NF-κB). IL-32 expression induced by H. pylori was not detected in the supernatant of AGS cells but was found in the cytosol. Expression of the H. pylori-induced cytokines CXCL1, CXCL2, and IL-8 was decreased in IL-32-knockdown AGS cell lines compared to a control AGS cell line. We also found that NF-κB activation was decreased in H. pylori-infected IL-32-knockdown cells. These results suggest that IL-32 has important functions in the regulation of cytokine expression in H. pylori-infected gastric mucosa.  相似文献   

8.

Objective

Apoptosis plays an important role in the regulation of gastric epithelial cell number and gastrointestinal disorders induced by Helicobacter pylori (Hp). Heat shock proteins (HSPs) are involved in cell integrity, cell growth and in gastric mucosa colonized by Hp. COX-2 was implicated in Hp-induced carcinogenesis but the effects of this germ and CagA cytotoxin on HSP70, COX-2, Bax and Bcl-2 in gastric cancer epithelial cells have been little studied.

Material and methods

We determined the expression for HSP70, Bax and Bcl-2 in human gastric epithelial MKN7 cells incubated with live strain Hp (cagA?+?vacA+) with or without co-incubation with exogenous CagA and NS-398, the selective COX-2 inhibitor. After 3–48?h of incubation, the expression of HSP70, COX-2, Bax and Bcl-2 mRNA and proteins were determined by RT-PCR and immunoprecipitation.

Results

Hp inhibited expression for HSP70 and this was significantly potentiated by exogenous CagA. Co-incubation of epithelial cells with Hp, without or with CagA increased Bax expression and simultaneously decreased expression for Bcl-2. The increase in COX-2 mRNA and Bax expression were significantly inhibited by NS-398. We conclude that Hp promotes apoptosis in adenocarcinoma gastric epithelial cells in vitro and this is associated with activation of COX-2 and inhibition of HSP70.  相似文献   

9.
The anti-cancer effects of Alisma canaliculatum extracts (ACE) were identified in AGS gastric cancer cells. Our results showed that ACE inhibited the growth of AGS cells, increased the proportion of sub-G1 phase cells, and depolarized the membrane potential of mitochondria. ACE-induced gastric cancer cell death was associated with Bcl-2, survivin and Bax level changes, and it activated caspase-3 and -9. In addition, it was involved in the activation of MAPKs and increased the reactive oxygen species (ROS). These results suggest that ACE induces apoptosis in AGS gastric cancer cells, and therefore, ACE may have the potential to treat gastric cancer.  相似文献   

10.
Helicobacter pylori infection is associated with an inflammatory response in the gastric mucosa, leading to chronic gastritis, peptic ulcers, gastric carcinoma and gastric mucosa-associated lymphoid tissue (MALT) lymphomas. Recent studies have shown that apoptosis of gastric epithelial cells is increased during H. pylori infection. Apoptosis induced by microbial infections are factors implicated in the pathogenesis of H. pylori infection. The enhanced gastric epithelial cell apoptosis in H. pylori infection has been suggested to play an important role in the pathogenesis of chronic gastritis and gastric pathology. In addition to directly triggering apoptosis, H. pylori induces sensitivity to tumor-necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis in gastric epithelial cells via modulation of TRAIL apoptosis signaling. Moreover, H. pylori infection induces infiltration of T lymphocytes and triggers inflammation to augment apoptosis. In H. pylori infection, there was significantly increased CCR6+CD3+ T-cell infiltration in the gastric mucosa, and the CCR6 ligand, CCL20 chemokine, was selectively expressed in inflamed gastric tissues. These results implicate that the interaction between CCL20 and CCR6 may play a role in recruiting T cells to the sites of inflammation in the gastric mucosa during Helicobacter infection. Through these mechanisms, chemokine-mediated T lymphocyte trafficking into inflamed epithelium is initiated and the mucosal injury in Helicobacter infection is induced. This article will review the recent novel findings on the interactions of H. pylori with diverse host epithelial signaling pathways and events involved in the initiation of gastric pathology, including gastric inflammation, mucosal damage and development of MALT lymphomas.  相似文献   

11.
Objective:  To investigate the in vitro effects of H. pylori-conditioned medium (HCM) from gastric epithelial AGS cell cultures on microglia and neuronal cells. Material:  H. pylori, human gastric epithelial AGS cells, microglia-like BV-2 cells and human neuroblastoma SH-SY5Y cells. Treatment:  Treated AGS cells with H. pylori at ratios from 1:100 to 1:900 for 24 h. Cultured BV-2 cells and SH-SY5Y cells were treated with HCM from AGS cell cultures. Methods:  Cell viability was measured by a quantitative colorimetric assay with MTT. Nitric oxide (NO) was determined by using Griess reagent. IL-8 was measured by an enzyme-linked immunosorbent assay. Protein expressions were revealed by western blot analysis. Results:  H. pylori increased IL-8, NO, COX-2 and gp91phox in AGS cell cultures. When BV-2 cells were cocultured with AGS cells, HCM increased COX-2, gp91phox, iNOS and NO of BV-2 cells. HCM also enhanced the degradation of IκBα in BV-2 cells. HCM up-regulated expression of nNOS, COX-2, and gp91phox of SH-SY5Y cells co-cultured with BV-2 cells. Particularly, the decrease of cell viability of SH-SY5Y induced by HCM was dependent on the presence of BV-2 cells. Conclusions:  H. pylori-induced infection induces microglia-mediated inflammation and neurotoxicity. The present results suggest that microglia play a critical role in HCM-induced toxicity of neuronal SH-SY5Y cells. Received 15 April 2008; returned for revision 10 May 2008; received from final revision 14 September 2008; accepted by M. Katori 18 September 2008  相似文献   

12.
Helicobacter pylori infection is associated with altered gastric epithelial cell turnover. To evaluate the role of oxidative stress in cell death, gastric epithelial cells were exposed to various strains of H. pylori, inflammatory cytokines, and hydrogen peroxide in the absence or presence of antioxidant agents. Increased intracellular reactive oxygen species (ROS) were detected using a redox-sensitive fluorescent dye, a cytochrome c reduction assay, and measurements of glutathione. Apoptosis was evaluated by detecting DNA fragmentation and caspase activation. Infection with H. pylori or exposure of epithelial cells to hydrogen peroxide resulted in apoptosis and a dose-dependent increase in ROS generation that was enhanced by pretreatment with inflammatory cytokines. Basal levels of ROS were greater in epithelial cells isolated from gastric mucosal biopsy specimens from H. pylori-infected subjects than in cells from uninfected individuals. H. pylori strains bearing the cag pathogenicity island (PAI) induced higher levels of intracellular oxygen metabolites than isogenic cag PAI-deficient mutants. H. pylori infection and hydrogen peroxide exposure resulted in similar patterns of caspase 3 and 8 activation. Antioxidants inhibited both ROS generation and DNA fragmentation by H. pylori. These results indicate that bacterial factors and the host inflammatory response confer oxidative stress to the gastric epithelium during H. pylori infection that may lead to apoptosis.  相似文献   

13.

Purpose

This study tried to identify novel gastric autoimmune antigens that might be involved in aggravating the atrophic gastritis among patients with Helicobacter pylori infection using two-dimensional immunoblotting analysis.

Materials and Methods

Proteins from gastric mucosal antrectomy specimens and AGS cells (gastric adenocarcinoma cell lines derived from a Caucasian patient who had received no prior therapy) were 2-dimensionally immunoblotted separately with a pool of 300 sera from H. pylroi-infected patients at Gyeongsang National University Hospital.

Results

Thirty-eight autoantigenic proteins including alcohol dehydrogenase [NADP+], alpha enolase, gastrokine-1, gastric triacylglycerol lipase, heat shock 70 kDa protein 1, and peroxiredoxin-2 were identified in the gastric mucosal tissue. Fourteen autoantigenic proteins including programmed cell death 6-interacting protein, serum albumin and T-complex protein 1 subunit gamma were identified in the AGS cells. Albumin, alpha-enolase, annexin A3, cytoplasmic actin 1, heat shock cognate 71 kDa protein and leukocyte elastase inhibitor were commonly observed autoantigenic proteins in both gastric mucosal tissue and AGS cells. Alpha-enolase, glutathione S-transferase P, heat shock cognate 71 kDa protein, heat shock 70 kDa protein 1, human mitochondrial adenosine triphosphate synthase (ATP) subunit beta, mitochondrial 60 kDa heat shock protein, peroxiredoxin-2, 78 kDa glucose-regulated protein precursor, tyrosine-protein phosphatase non-receptor type 11 and Tryptophan-Aspartic acid (WD) repeat-containing protein 1 showed 60% or higher amino acid positivity.

Conclusion

These newly identified gastric autoimmune antigens might be useful in the control and prevention of gastroduodenal disorders, and might be valuable in breaking the vicious circle that exists in gastroduodenal disorders if their pathophysiological roles could be understood in the progress of chronic atrophic gastritis, gastroduodenal ulcers, intestinal metaplasia, and gastric carcinogenesis.  相似文献   

14.
Helicobacter pylori infection systematically causes chronic gastric inflammation that can persist asymptomatically or evolve toward more severe gastroduodenal pathologies, such as ulcer, mucosa-associated lymphoid tissue (MALT) lymphoma, and gastric cancer. The cag pathogenicity island (cag PAI) of H. pylori allows translocation of the virulence protein CagA and fragments of peptidoglycan into host cells, thereby inducing production of chemokines, cytokines, and antimicrobial peptides. In order to characterize the inflammatory response to H. pylori, a new experimental protocol for isolating and culturing primary human gastric epithelial cells was established using pieces of stomach from patients who had undergone sleeve gastrectomy. Isolated cells expressed markers indicating that they were mucin-secreting epithelial cells. Challenge of primary epithelial cells with H. pylori B128 underscored early dose-dependent induction of expression of mRNAs of the inflammatory mediators CXCL1 to -3, CXCL5, CXCL8, CCL20, BD2, and tumor necrosis factor alpha (TNF-α). In AGS cells, significant expression of only CXCL5 and CXCL8 was observed following infection, suggesting that these cells were less reactive than primary epithelial cells. Infection of both cellular models with H. pylori B128ΔcagM, a cag PAI mutant, resulted in weak inflammatory-mediator mRNA induction. At 24 h after infection of primary epithelial cells with H. pylori, inflammatory-mediator production was largely due to cag PAI substrate-independent virulence factors. Thus, H. pylori cag PAI substrate appears to be involved in eliciting an epithelial response during the early phases of infection. Afterwards, other virulence factors of the bacterium take over in development of the inflammatory response. Using a relevant cellular model, this study provides new information on the modulation of inflammation during H. pylori infection.  相似文献   

15.
Helicobacter pylori infection represents a major risk factor for the development of gastric diseases and gastric cancer. The capability of H. pylori to inject the virulence factor cytotoxin-associated gene A (CagA) depends on a type IV secretion system (T4SS) encoded by the cag pathogenicity island (cagPAI). Further, infection by H. pylori activates the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) in a T4SS-dependent manner but CagA-independent manner. Here we investigated the role of host cell receptors carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) and the bacterial adhesin HopQ in the activation of non-canonical NF-κB and CagA translocation into gastric epithelial cells. AGS cells express six of twelve CEACAMs found in humans. In HeLa cells, only CEACAM19 is expressed. We showed that deletion of hopQ attenuates the activation of non-canonical NF-κB only in AGS but not in HeLa cells. CagA translocation was in both cell lines affected by HopQ depletion, although to a much lesser extent in HeLa cells. Moreover, we observed a possible redundancy between the three HopQ-binding CEACAMs 1, 5 and 6 and their capacity to support non-canonical NF-κB activation. Our results illustrate that the interaction between HopQ and CEACAMs could promote the efficiency of the T4SS.  相似文献   

16.
While Helicobacter pylori infects over 50% of the world''s population, the mechanisms involved in the development of gastric disease are not fully understood. Bacterial, host, and environmental factors play a role in disease outcome. To investigate the role of bacterial factors in H. pylori pathogenesis, global gene expression of six H. pylori isolates was analyzed during coculture with gastric epithelial cells. Clustering analysis of six Colombian clinical isolates from a region with low gastric cancer risk and a region with high gastric cancer risk segregated strains based on their phylogeographic origin. One hundred forty-six genes had increased expression in European strains, while 350 genes had increased expression in African strains. Differential expression was observed in genes associated with motility, pathogenicity, and other adaptations to the host environment. European strains had greater expression of the virulence factors cagA, vacA, and babB and were associated with increased gastric histologic lesions in patients. In AGS cells, European strains promoted significantly higher interleukin-8 (IL-8) expression than did African strains. African strains significantly induced apoptosis, whereas only one European strain significantly induced apoptosis. Our data suggest that gene expression profiles of clinical isolates can discriminate strains by phylogeographic origin and that these profiles are associated with changes in expression of the proinflammatory and protumorigenic cytokine IL-8 and levels of apoptosis in host epithelial cells. These findings support the hypothesis that bacterial factors determined by the phylogeographic origin of H. pylori strains may promote increased gastric disease.  相似文献   

17.
Polaprezinc (PZ) plays a role in the protection of gastric mucosa and inhibiting Helicobacter pylori (H. pylori) growth in vitro. The objective of this study was to determine the protective effects of PZ on human gastric epithelial cells (GES-1) against H. pylori-induced damage, while also examining heat shock protein 70 (HSP70) as a potential underlying factor in this protection. Our findings revealed that PZ exerted bactericidal effects against H. pylori strains. We also observed that PZ mitigated the H. pylori-induced damage to GES-1 cells by increasing cell viability, reducing LDH release, and decreasing the secretion of pro-inflammatory factors such as MCP-1 and IL-6. Co-culturing PZ with GES-1 cells significantly up-regulated the GES-1 HSP70 expression in both a time and dose-dependent manner. Pre-incubating (for 12 h) or co-culturing (for 24 h) GES-1 cells with PZ reversed the down-regulation of HSP70 in GES-1 cells caused by H. pylori infection. However, when quercetin was used to inhibit the up-regulation of HSP70 in GES-1 cells, the protective effect of PZ on GES-1 cells was significantly reduced. Based on the results of this study, PZ exhibits a protective role on GES-1 cells against H. pylori injury, as well as a direct bactericidal effect on H. pylori. HSP70 is involved in the PZ-driven host cell protection against H. pylori injury. These findings provide insight into alternative strategies for H. pylori treatment.  相似文献   

18.
Previous studies suggested that polymorphisms of proinflammatory cytokine genes are important host genetic factors in Helicobacter pylori infection. The present study evaluated whether IL-8-251 polymorphism affected H. pylori eradication rate and to investigate the effect of H. pylori eradication on angiogenesis and the inflammatory process according to the IL-8-251 polymorphism. A total of 250 H. pylori-positive patients treated by endoscopic resection of the gastric neoplasm were classified into 3 groups (134 H. pylori-eradicated group, 19 H. pylori-eradication failure group, and 97 H. pylori-infected group). H. pylori status, histology, and angiogenic factor levels were evaluated at baseline, 6 months, and 18 months. H. pylori eradication rate was 92.9% in AA genotype, 85.7% in AT genotype and 88.4% in TT genotype (P value = 0.731). Elevated IL-8 and matrix metalloproteinase-9 concentrations in H. pylori-infected gastric mucosa were reversible by successful eradication of H. pylori, independent of the IL-8-251 polymorphism. It is suggested that elevated IL-8 and MMP-9 concentrations in H. pylori-infected gastric mucosa are altered significantly after successful eradication and these conditions continue for 18 months. However, IL-8-251 polymorphism does not affect H. pylori eradication rate and the sequential changes of related angiogenic factors after H. pylori eradication in Koreans.  相似文献   

19.
Helicobacter pylori is a Gram-negative, spiral-shaped bacterium that infects more than 50% of the human population and can cause gastritis, peptic ulcer, or gastric malignancies. It is generally viewed as an extracellular microorganism. In a gentamicin protection assay on AGS or MKN45 cells, H. pylori could invade the epithelial cells and multiply within double-layer vesicles either on the plasma membrane or in the cytoplasm. A 5-fold increase in the number of bacteria was recultured from the infected cells at 12 h, compared with the number of invading cells at 2.5 h postinfection. The autophagic vesicles induced by H. pylori are the sites of replication and also of the degradation of the replicating bacteria after fusion with lysosomes. Many H. pylori bacteria in coccoid form associated with the plasma membrane can be released into culture. Only cell-penetrating antibiotics can enhance the intracellular killing of the replicating bacteria. The multiplication of H. pylori within cells provides a niche for its resistance to antibacterial therapy and has a significant impact on its biological life cycle.Helicobacter pylori is a Gram-negative, flagellated, microaerophilic bacterium that selectively colonizes the gastric mucosa. It infects people worldwide and is correlated with socioeconomic conditions (24). The prevalence among middle-aged adults is over 80% in many developing countries. Overt disease, however, occurs in only 10 to 20% of infected individuals. The most common pathology associated with H. pylori infection is chronic active gastritis and peptic ulceration. A long-term chronic infection will increase the risk of gastric adenocarcinoma and mucosa-associated lymphoid-tissue lymphoma (19). Gastric mucosa is well protected against bacterial infections. However, H. pylori adapts and resides in the mucus and achieves attachment to epithelial cells, evasion of the immune responses, and persistent colonization in the stomach. It is not well understood why the immune system fails to clear H. pylori infection. Furthermore, the mechanisms controlling the induction and maintenance of the H. pylori-induced chronic inflammation are only partly understood.Although H. pylori is generally viewed as a noninvasive pathogen, a number of in vivo and in vitro studies have shown that H. pylori is invasive, and it can reside in the vacuole in the cytoplasm or even replicate on the cell membrane to form a microcolony (2, 11, 25). This suggests that H. pylori can be considered a facultative intracellular organism (6, 20). We have reported that H. pylori can multiply in macrophages and bone marrow-derived dendritic cells with autophagy induction (27, 28). In this study, we further extended this line of research to epithelial cells and found that H. pylori could invade and replicate in epithelial cells. Thus, H. pylori can be considered an intracellular microorganism, and this has an impact on its own biological life cycle and its resistance to antibiotics.  相似文献   

20.
Reactive oxygen species (ROS) and deposition of cleaved products of amyloid precursor protein (APP) are thought to contribute to neuronal loss observed in Alzheimer's disease (AD). The relationship between these factors was studied in a neuroblastoma and microglia co-culture system. Overexpression of wild-type APP (APP-wt) or APP with three mutations typical of familial AD (APP-3m) in SH-SY5Y neuroblastoma cells did not directly alter their morphology, growth rate, cell cycle or H(2)O(2) sensitivity. In a co-culture of APP-wt neuroblastoma cells with microglia, microglial cells generated ROS and neuronal cells died. The cell death was more pronounced in APP-3m-expressing neurons. Neuroblastoma cell death was attenuated by ROS-scavengers and was dose-dependently inhibited by the NADPH oxidase inhibitor diphenyleneiodonium chloride (DPI). Macrophage cell lines behaved similarly to microglia in the co-culture model. However, a macrophage cell line deficient in the NADPH oxidase subunit, gp91phox, failed to kill neurons. These results suggest that APP-dependent microglia activation and subsequent ROS generation by the phagocyte NADPH oxidase play a crucial role in neuronal killing in a cellular model of AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号