首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BackgroundFunctional ambulation requires concurrent performance of motor and cognitive tasks, which may create interference (degraded performance) in either or both tasks. People with essential tremor (ET) demonstrate impairments in gait and cognitive function. In this study we examined the extent of interference between gait and cognition in people with ET and controls during dual-task gait.MethodsWe tested 62 controls and 151 ET participants (age range: 72–102). ET participants were divided into two groups based on median score on the modified Mini Mental State Examination. Participants walked at their preferred speed, and performed a verbal fluency task while walking. We analyzed gait velocity, cadence, stride length, double support time, stride time, step width, step time difference, coefficient of variation (CV) of stride time and stride length.ResultsVerbal fluency performance during gait was similar across groups (p = 0.68). Velocity, cadence and stride length were lowest whereas step time difference (p = 0.003), double support time (p = 0.009), stride time (p = 0.002) and stride time CV (p = 0.007) were highest for ET participants with lower cognitive scores (ETp-LCS), compared with ET participants with higher cognitive scores (ETp-HCS) and controls. ETp-LCS demonstrated greatest interference for double support time (p = 0.005), step time difference (p = 0.013) and stride time coefficient of variation (p = 0.03).ConclusionsETp-LCS demonstrated high levels of cognitive motor interference. Gait impairments during complex tasks may increase risk for falls for this subgroup and underscore the importance of clinical assessment of gait under simple and dual-task conditions.  相似文献   

2.
PurposeTo analyze how fibromyalgia affected the variability, asymmetry, and bilateral coordination of gait walking at comfortable and fast speeds.Methods65 fibromyalgia (FM) patients and 50 healthy women were analyzed. Gait analysis was performed using an instrumented walkway (GAITRite system). Average walking speed, coefficient of variation (CV) of stride length, swing time, and step width data were obtained and bilateral coordination and gait asymmetry were analyzed.ResultsFM patients presented significantly lower speeds than the healthy group. FM patients obtained significantly higher values of CV_StrideLength (p = 0.04; p < 0.001), CV_SwingTime (p < 0.001; p < 0.001), CV_StepWidth (p = 0.004; p < 0.001), phase coordination index (p = 0.01; p = 0.03), and p_CV (p < 0.001; p = 0.001) than the control group, walking at comfortable or fast speeds. Gait asymmetry only showed significant differences in the fast condition.ConclusionFM patients walked more slowly and presented a greater variability of gait and worse bilateral coordination than healthy subjects. Gait asymmetry only showed differences in the fast condition. The variability and the bilateral coordination were particularly affected by FM in women. Therefore, variability and bilateral coordination of gait could be analyzed to complement the gait evaluation of FM patients.  相似文献   

3.
We investigated the effects of reduction in plantar skin temperature on gait. Thirty-four healthy subjects (20 men and 14 women; mean age 22.2 ± 2.5 years; mean height 166.8 ± 8.3 cm) walked 16 m under two different conditions – normal conditions (NC) with the skin at a basal temperature, and cold conditions (CC) after cooling of the plantar skin to about 15 °C. Wireless motion-recording sensor units were placed on the back at the level of L3 and on both heels to measure acceleration and angular velocity. Gait velocity and mean stride, stance and swing times were calculated. The variability of lower limb movement was represented by the coefficients of variation (CVs) of stride, stance and swing times, and that of trunk movement was represented by autocorrelation coefficients (ACs) in three directions (vertical: VT; mediolateral: ML; and anteroposterior: AP). Gait velocity was significantly lower under CC conditions than under NC (p < 0.0001). None of the temporal parameters were changed by plantar cooling. However, all parameters of gait variability were significantly worse under CC, and AC-VT, AC-ML, and AC-AP were significantly lower under CC than under NC, even after adjusting for gait velocity (p = 0.0005, 0.0071, and 0.0126, respectively). Our results suggest that reducing plantar skin temperature induces gait variability among healthy young adults. Further studies are now needed to explore the relationship between plantar skin temperature and gait in the elderly.  相似文献   

4.
The aim of this study was to examine the possible long-term effects of high school concussion history on gait performance across the lifespan. Individuals with and without a concussion history were grouped into 20-year-old (yo) (n = 40), 40yo (n = 19), and 60yo (n = 18) age groups. Participants completed five trials of four walking conditions: a normal walk, a dual task walk, an obstructed walk, and an obstructed, dual task walk. Spatiotemporal gait parameters for gait analyses during single and dual task conditions. Gait velocity, step width, stride length, percent of time in double support, and obstacle toe clearance were the gait variables assessed along with number correct from dual task. Gait was analyzed via optical motion capture. Data were analyzed by two-factor, multivariate ANOVAs and significant interactions were explored using post hoc contrasts. A significant (F = 2.62, p = 0.03) interaction was observed for the obstructed walk condition. Further analyses yielded no significant concussion history and control group differences, within age. The data indicate that an adolescent concussion history has a non-observable effect on gait across the lifespan.  相似文献   

5.
BackgroundPrevious findings showed a tendency toward higher gait variability in children with attention-deficit/hyperactivity disorder (ADHD) compared to controls. This study examined whether gait variability in children with ADHD eventually approaches normality with increasing age (delay hypothesis) or whether these gait alterations represent a persistent deviation from typical development (deviation hypothesis).MethodThis cross-sectional study compared 30 children with ADHD (25 boys; Mage = 10 years 11 months, range 8–13 years; n = 21 off medication, n = 9 without medication) to 28 controls (25 boys; Mage = 10 years 10 months, range 8–13 years). Gait parameters (i.e. velocity and variability in stride length and stride time) were assessed using an electronic walkway system (GAITRite) while children walked at their own pace.ResultsChildren with ADHD walked with significantly higher variability in stride time compared to controls. Age was negatively associated with gait variability in children with ADHD such that children with higher age walked with lower variability, whereas in controls there was no such association.ConclusionsChildren with ADHD displayed a less regular gait pattern than controls, indicated by their higher variability in stride time. The age-dependent decrease of gait variability in children with ADHD showed that gait performance became more regular with age and converged toward that of typically developing children. These results may reflect a maturational delay rather than a persistent deviation of gait regularity among children with ADHD compared to typically developing children.  相似文献   

6.
ObjectivesTo examine gait parameters in people with gout during different walking speeds while adjusting for body mass index (BMI) and foot-pain, and to determine the relationship between gait parameters and foot-pain and disability.MethodGait parameters were measured using the GAITRite™ walkway in 20 gout participants and 20 age- and sex-matched controls during self-selected and fast walking speeds. Foot-pain and disability was measured using the Manchester Foot Pain and Disability Index (MFPDI) which contains four domains relating to function, physical appearance, pain and work/leisure.ResultsAt the self-selected speed, gout participants demonstrated increased step time (p = 0.017), and stance time (p = 0.012), and reduced velocity (p = 0.031) and cadence (p = 0.013). At the fast speed, gout participants demonstrated increased step time (p = 0.007), swing time (p = 0.005) and stance time (p = 0.019) and reduced velocity (p = 0.036) and cadence (p = 0.009). For participants with gout, step length was correlated with total MFPDI (r = −0.62, p = 0.008), function (r = −0.65, p = 0.005) and physical appearance (r = −0.50, p = 0.041); stride length was correlated with total MFPDI (r = −0.62, p = 0.008), function (r = −0.65, p = 0.005) and physical appearance (r = −0.50, p = 0.041); and velocity was correlated with total MFPDI (r = −0.60, p = 0.011), function (r = −0.63, p = 0.007) and work/leisure (r = −0.53, p = 0.030).ConclusionGait patterns exhibited by people with gout are different from controls during both self-selected and fast walking speeds, even after adjusting for BMI and foot-pain. Additionally, gait parameters were strongly correlated with patient-reported functional limitation, physical appearance and work/leisure difficulties, while pain did not significantly influence gait in people with gout.  相似文献   

7.
Knee osteoarthritis (KOA) can affect the spatiotemporal (ST) aspects of gait as well as the variability of select ST parameters based on standard linear measures of variability (e.g., standard deviation (SD) and coefficient of variation). Non-linear measures (e.g., fractal scaling index (FSI) and sample entropy) can be more sensitive to changes in gait variability, and have been used to quantify differences in the stride patterns of patients with Parkinson’s disease and the motion of ACL-deficient knees. However, the effect of KOA on the dynamic complexity of the stride pattern has not been investigated. Therefore, the purpose of this study was to investigate the effect of KOA on gait variability (linear and non-linear measures) in a group of older adults, and to compare these results to a healthy control group. Participants walked for 10 min with a tri-axial accelerometer placed at the lower back. Mean and SDs of stride time and step time as well as the FSI for the entire series of stride times were calculated for each participant. Participants with KOA had significantly greater mean stride time (p = 0.031) and step time (p = 0.024) than control group participants. While stride and step time variability (SD) were greater in the KOA group, the differences were not significant, nor was the difference in the FSI. Low statistical power (β = 0.40 and 0.30 for stride and step time SD, respectively) combined with the confounding effects of walking speed and heterogeneous KOA severity likely prevented significant differences from being found.  相似文献   

8.
We developed and evaluated properties of a new measure of variability in stride length and cadence, termed residual standard deviation (RSD). To calculate RSD, stride length and cadence are regressed against velocity to derive the best fit line from which the variability (SD) of the distance between the actual and predicted data points is calculated. We examined construct, concurrent, and discriminative validity of RSD using dual-task paradigm in 14 below-knee prosthesis users and 13 age- and education-matched controls. Subjects walked first over an electronic walkway while performing separately a serial subtraction and backwards spelling task, and then at self-selected slow, normal, and fast speeds used to derive the best fit line for stride length and cadence against velocity. Construct validity was demonstrated by significantly greater increase in RSD during dual-task gait in prosthesis users than controls (group-by-condition interaction, stride length p = 0.0006, cadence p = 0.009). Concurrent validity was established against coefficient of variation (CV) by moderate-to-high correlations (r = 0.50–0.87) between dual-task cost RSD and dual-task cost CV for both stride length and cadence in prosthesis users and controls. Discriminative validity was documented by the ability of dual-task cost calculated from RSD to effectively differentiate prosthesis users from controls (area under the receiver operating characteristic curve, stride length 0.863, p = 0.001, cadence 0.808, p = 0.007), which was better than the ability of dual-task cost CV (0.692, 0.648, respectively, not significant). These results validate RSD as a new measure of variability in below-knee prosthesis users. Future studies should include larger cohorts and other populations to ascertain its generalizability.  相似文献   

9.
The purpose of this study was to describe the characteristics of stroke patient gait using the acceleration signals which were obtained during walking. Sixty-three stroke hemiplegic patients and 21 age-matched healthy elderly individuals took part in this study. A wireless tri-axial accelerometer, fixed to a belt at the level of the L3 spinous process, was used to measure trunk acceleration. Subjects were instructed to walk at a self-selected, comfortable walking speed. The acceleration signal was sampled at the rate of 200 Hz. Gait parameters and functional recovery tests were also evaluated. We analyzed the correlation between the gait parameters, functional recovery and acceleration. Acceleration was utilized as the root mean square (RMS), normalized RMS by velocity and average step length, as a measure of gait smoothness, and autocorrelation (AC) as a measure of stride similarity and regularity. The raw RMS and AC values of the stroke were significantly lower than the matched healthy elderly (p < 0.01) in all axes. In contrast, the stroke patients’ normalized RMS values were higher than the controls (p < 0.05) in all axes. These results suggest that accelerometry gait parameters can discriminate between the stroke patients and the control group. The values of normalized RMS correlated with the smoothness or dynamics of the walking pattern, which reflects motor recovery and gait abilities. This study suggests that normalized RMS of accelerometer recordings from the trunk is valid in objectively measuring walking movements as an index of treatment outcome for patients in rehabilitation.  相似文献   

10.
This study compared the gait characteristics of individuals walking in heat while wearing firefighting equipment in fatigued and non-fatigued states. Nineteen subjects performed a 50-min treadmill protocol in a heated room while gait patterns were recorded using a digital video camcorder. Forty gait cycles were analyzed near the beginning (9 min) and at the end (39–49 min) of exercise. Spatio-temporal gait variables including step frequency, step length, swing time, stance time, cycle time and double-support time were determined. Gait variability was quantified by the standard deviation (SD) and coefficient of variation (CV) of each variable. Left–right symmetry was calculated using the symmetry index (SI) and symmetry angle (SA). Paired t-tests (α = 0.05) were performed to identify difference between the beginning and the end of the protocol for each measured variable. Spatio-temporal gait characteristics did not differ between the beginning and the end of exercise. Gait variability of the double-support time increased at the end as measured by both SD (P = 0.037) and CV (P = 0.030) but no change was observed for other variables. Left–right symmetry measured using either SI or SA did not differ between sessions. In summary, spatio-temporal gait characteristics and symmetry while wearing firefighting equipment are insensitive to physiological fatigue. Prolonged walking in heat while wearing firefighting equipment may increase gait variability and therefore the likelihood of a fall. Future studies are needed to confirm the potential relationship between fatigue and gait variability and to investigate the possible influence of individual variation.  相似文献   

11.
This study examined the impact of gait analysis on surgical outcomes in ambulatory children with cerebral palsy (CP) through a randomized controlled trial. 156 children with CP (94 male; age 10.2 ± 3.7 years) underwent gait analysis and were randomized to two groups: Gait Report group (N = 83), where the referring surgeon received the patient's gait analysis report, and Control group (N = 73), where the surgeon did not receive the gait report. Outcomes were assessed pre- and 1.3 ± 0.5 years post-operatively. An intent-to-treat analysis compared outcomes between the two groups. Outcome measures included the Gillette Functional Activity Questionnaire (FAQ), Gait Deviation Index (GDI), oxygen cost, gross motor function measure, Child Health Questionnaire (CHQ), Pediatric Outcomes Data Collection Instrument (PODCI), and Pediatric Evaluation and Disability Inventory. The outcomes that differed significantly between groups were change in health from the CHQ, which was rated as much better for 56% (46/82) of children in the Gait Report group compared with 38% (28/73) in the Control group (p = 0.04), and upper extremity physical function from the PODCI. Gait outcomes (FAQ and GDI) improved more when over half of the recommendations for a patient were followed or the recommended extent of surgery (none, single, or multi-level) was done (p  0.04). On average, however, only 42% of the recommendations were followed in the Gait Report group, compared with 35% in the Control group (p = 0.23). This is much less than the >85% reported in previous studies and may account for the lack of differences between groups for some of the outcome measures.  相似文献   

12.
《Gait & posture》2015,41(4):715-718
PurposeTo evaluate the reliability and minimum detectable change (MDC) of spatial–temporal gait parameters in subjects with multiple sclerosis (MS) during dual tasking.MethodThis cross-sectional study involved 25 healthy subjects (mean age 49.9 ± 15.8 years) and 25 people with MS (mean age 49.2 ± 11.5 years). Gait under motor-cognitive and motor–motor dual tasking conditions was evaluated in two sessions separated by a one-day interval using the GAITRite® Walkway System. Test–retest reliability was assessed using intraclass correlation coefficients (ICCs), standard errors of measurement (SEM), and coefficients of variation (CV). MDC scores were computed for the velocity, cadence, step and stride length, step and stride time, double support time, the % of gait cycle for single support and stance phase, and base of support.ResultsAll of the gait parameters reported good to excellent ICCs under both conditions, with healthy subject values of >0.69 and MS subject values of >0.84. SEM values were always below 18% for both groups of subjects. The gait patterns of the people with MS were slightly more variable than those of the normal controls (CVs: 5.88–41.53% vs 2.84–30.48%).ConclusionsThe assessment of quantitative gait parameters in healthy subjects and people with MS is highly reliable under both of the investigated dual tasking conditions.  相似文献   

13.
《Gait & posture》2014,39(4):715-718
PurposeTo evaluate the reliability and minimum detectable change (MDC) of spatial–temporal gait parameters in subjects with multiple sclerosis (MS) during dual tasking.MethodThis cross-sectional study involved 25 healthy subjects (mean age 49.9 ± 15.8 years) and 25 people with MS (mean age 49.2 ± 11.5 years). Gait under motor-cognitive and motor–motor dual tasking conditions was evaluated in two sessions separated by a one-day interval using the GAITRite® Walkway System. Test–retest reliability was assessed using intraclass correlation coefficients (ICCs), standard errors of measurement (SEM), and coefficients of variation (CV). MDC scores were computed for the velocity, cadence, step and stride length, step and stride time, double support time, the % of gait cycle for single support and stance phase, and base of support.ResultsAll of the gait parameters reported good to excellent ICCs under both conditions, with healthy subject values of >0.69 and MS subject values of >0.84. SEM values were always below 18% for both groups of subjects. The gait patterns of the people with MS were slightly more variable than those of the normal controls (CVs: 5.88–41.53% vs 2.84–30.48%).ConclusionsThe assessment of quantitative gait parameters in healthy subjects and people with MS is highly reliable under both of the investigated dual tasking conditions.  相似文献   

14.
This study examined whether epidural injection-induced anesthesia acutely and positively affected temporal spatial parameters of gait in patients with chronic low back pain (LBP) due to lumbar spinal stenosis. Twenty-five patients (61.7 ± 13.6 years) who were obtaining lumbar epidural injections for stenosis-related LBP participated. Oswestry Disability Index (ODI) scores, Medical Outcomes Short Form (SF-36) scores, 11-point Numerical pain rating (NRSpain) scores, and temporal spatial parameters of walking gait were obtained prior to, and 11-point Numerical pain rating (NRSpain) scores, and temporal spatial parameters of walking gait were obtained after the injection. Gait parameters were measured using an instrumented gait mat. Patients received transforaminal epidural injections in the L1-S1 vertebral range (1% lidocaine, corticosteroid) under fluoroscopic guidance. Patients with post-injection NRSpain ratings of “0” or values greater than “0” were stratified into two groups: 1) full pain relief, or 2) partial pain relief, respectively. Post-injection, 48% (N = 12) of patients reported full pain relief. ODI scores were higher in patients with full pain relief (55.3 ± 21.4 versus 33.7 12.8; p = 0.008). Post-injection, stride length and step length variability were significantly improved in the patients with full pain relief compared to those with partial pain relief. Effect sizes between full and partial pain relief for walking velocity, step length, swing time, stride and step length variability were medium to large (Cohen’s d > 0.50). Patients with LBP can gain immediate gait improvements from complete pain relief from transforaminal epidural anesthetic injections for LBP, which could translate to better stability and lower fall risk.  相似文献   

15.
ObjectivesThe objective of this study was to assess the relationship between sleep behavior and gait performance under single-task (ST) and dual-task (DT) walking conditions in community- dwelling older adults.MethodsWalking under ST and DT conditions was evaluated in 34 community-dwelling older adults, 64.7% women, mean age 71.5 (SD ± 5.8). Gait-speed and gait-variability data were collected using the OPAL wearable sensors of the Mobility Lab. Sleep behavior (sleep efficiency [SE] and sleep latency [SL]) was assessed using actigraphy, over 5 consecutive nights.ResultsLower SE was associated with decreased gait speed and increased stride-length variability during DT (rs = 0.35; p = 0.04; rs = −0.36; p = 0.03, respectively), whereas longer SL was associated with increased stride-length variability during DT (rs = 0.38; p = .03). After controlling for age and cognition, SE accounted for 24% and 33% of the variability in stride length and stride time. No associations were found between sleep and gait measures under ST walking.ConclusionsLower SE is associated with decreased gait speed and increased gait variability under DT conditions that are indicative of an increased risk for falls in older adults. Our findings support clinical recommendations to incorporate the evaluation of sleep quality in the context of risk assessment for falls.  相似文献   

16.
Gait variability is clinically relevant in some populations, but there is limited documentation of gait variability in persons with multiple sclerosis (MS). This investigation examined average and variability of spatiotemporal gait parameters in persons with MS and healthy controls and subsequent associations with disability status. 88 individuals with MS (age 52.4 ± 11.1) and 20 healthy controls (age 50.9 ± 8.7) performed two self-paced walking trials on a 7.9-m electronic walkway to determine gait parameters. Disability was indexed by the Expanded Disability Status Scale (EDSS) and ranged between 2.5 and 6.5. Gait variability was indexed by standard deviation (SD) and coefficient of variation (CV = SD/mean) of step time, step length, and step width. Average gait parameters were significantly correlated with EDSS (ρ = 0.756–0.609) and were significantly different in individuals with MS compared to controls (p  0.002). Also, step length (p < 0.001) and step time (p < 0.001) variability were both significantly greater in MS compared to controls. EDSS was positively correlated with step length variability and individuals with MS who used assistive devices to walk had significantly greater step length variability than those who walked independently (p's < .05). EDSS was correlated with step time and length variability even when age was taken into account. Additionally, Fisher's z test of partial correlations revealed that average gait parameters were more closely related to disability status than gait variability in individuals with MS. This suggests that focusing on average gait parameters may be more important than variability in therapeutic interventions in MS.  相似文献   

17.
IntroductionWe asked whether conflicting visual cues influences gait initiation, gait inhibition and postural control in Parkinson’s disease (PD) between freezers, non-freezers and healthy older adults.MethodsTwenty-five PD participants on dopaminergic medication and 17 healthy older adults were asked to initiate or refrain gait depending on visual cues: green GO (GG), green STOP (GS), red GO (RG), red STOP (RS). Center of pressure (CoP) displacement, variability and mean velocity (VCoP) in the anterior-posterior (AP) and medial-lateral (ML) directions and movement time (MT) were measured.ResultsGait initiation: Both freezers and non-freezers were different from controls in GG and GS. In GS, freezers had smaller CoP displacement and velocity in both directions (p < 0.01), while non-freezers had smaller VCoP in AP and ML (p < 0.01). AP CoP displacement in GS was smaller in freezers compared to non-freezers (p < 0.05). Freezers had longer MT compared to controls in GG and compared to both groups in GS (p < 0.01). Gait inhibition: Controls and freezers had larger CoP displacement variability (p < 0.05) and velocity (p < 0.01) in both directions in RG compared to RS. No differences were seen in non-freezers. Three freezers initiated walking during the RG or RS conditions.ConclusionFreezers were in general slower at initiating gait, displayed a more restrictive postural strategy and were more affected by the conflicting conditions compared to both controls and non-freezers. In freezers, the conflicting visual cues may have increased the cognitive load enough to provoke delays in processing the visual information and implementing the appropriate motor program.  相似文献   

18.
This study determined whether manipulations to walking path configuration influenced six-minute walk test (6MWT) outcomes and assessed how gait variability changes over the duration of the 6MWT in different walking path configurations. Healthy older (ODR) and younger (YNG) (n = 24) adults completed familiarisation trials and five randomly ordered experimental trials of the 6MWT with walking configurations of; 5, 10 and 15 m straight lines, a 6 m by 3 m rectangle (RECT), and a figure of eight (FIG8). Six-minute walk distance (6MWD) and walking speed (m.s−1) were recorded for all trials and the stride count recorded for experimental trials. Reflective markers were attached to the sacrum and feet with kinematic data recorded at 100 Hz by a nine-camera motion capture system for 5 m, 15 m and FIG8 trials, in order to calculate variability in stride and step length, stride width, stride and step time and double limb support time. Walking speeds and 6MWD were greatest in the 15 m and FIG8 experimental trials in both groups (p < 0.01). Step length and stride width variability were consistent over the 6MWT duration but greater in the 5 m trial vs. the 15 m and FIG8 trials (p < 0.05). Stride and step time and double limb support time variability all reduced between 10 and 30 strides (p < 0.01). Stride and step time variability were greater in the 5 m vs. 15 m and FIG8 trials (p < 0.01). Increasing uninterrupted gait and walking path length results in improved 6MWT outcomes and decreased gait variability in older and younger adults.  相似文献   

19.
ObjectivesThis study sought to examine the biomechanical effects of an in-field sensor-based gait retraining program targeting footstrike pattern modification during level running, uphill running and downhill running.DesignQuasi-experimental design.MethodsSixteen habitual rearfoot strikers were recruited. All participants underwent a baseline evaluation on an instrumented treadmill at their preferred running speeds on three slope settings. Participants were then instructed to modify their footstrike pattern from rearfoot to non-rearfoot strike with real-time audio biofeedback in an 8-session in-field gait retraining program. A reassessment was conducted to evaluate the post-training biomechanical effects. Footstrike pattern, footstrike angle, vertical instantaneous loading rate (VILR), stride length, cadence, and knee flexion angle at initial contact were measured and compared.ResultsNo significant interaction was found between training and slope conditions for all tested variables. Significant main effects were observed for gait retraining (p-values  0.02) and slopes (p-values  0.01). After gait retraining, 75% of the participants modified their footstrike pattern during level running, but effects of footstrike pattern modification were inconsistent between slopes. During level running, participants exhibited a smaller footstrike angle (p  0.01), reduced VILR (p  0.01) and a larger knee flexion angle (p = 0.01). Similar effects were found during uphill running, together with a shorter stride length (p = 0.01) and an increased cadence (p  0.01). However, during downhill running, no significant change in VILR was found (p = 0.16), despite differences found in other biomechanical measurements (p-values = 0.02–0.05).ConclusionAn 8-session in-field gait retraining program was effective in modifying footstrike pattern among runners, but discrepancies in VILR, stride length and cadence were found between slope conditions.  相似文献   

20.
Turning is a requirement for most locomotor tasks; however, knowledge of the biomechanical requirements of successful turning is limited. Therefore, the aims of this study were to investigate the spatio-temporal and lower-limb kinematics of 90° turning. Seventeen typically developing children, fitted with full body and multi-segment foot marker sets, having performed both step (outside leg) and spin (inside leg) turning strategies at self-selected velocity, were included in the study. Three turning phases were identified: approach, turn, and depart. Stride velocity and stride length were reduced for both turning strategies for all turning phases (p < 0.03 and p < 0.01, respectively), while stance time and stride width were increased during only select phases (p < 0.05 and p < 0.01, respectively) for both turn conditions compared to straight gait. Many spatio-temporal differences between turn conditions and phases were also found (p < 0.03). Lower-limb kinematics revealed numerous significant differences mainly in the coronal and transverse planes for the hip, knee, ankle, midfoot, and hallux between conditions (p < 0.05). The findings summarized in this study help explain how typically developing children successfully execute turns and provide greater insight into the biomechanics of turning. This knowledge may be applied to a clinical setting to help improve the management of gait disorders in pathological populations, such as children with cerebral palsy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号