共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Nickel (Ni(2+)) is a transition metal that exerts multiple and complex effects on N-methyl-d-aspartate (NMDA) channels. In both HEK293 cells and Xenopus laevis oocytes expressing recombinant NMDA receptors, Ni(2+) (<100 microM) caused a potentiation of NR2B-containing channels but a voltage-independent inhibition in those containing NR2A. We took advantage of this different response to investigate the developmental switch between NR2B and NR2A subunits in neonatal rat cerebellar granule cells up to 16 days in vitro (DIV) and in rat embryo cortical neurons up to 35 DIV. In both cultures, the effect of Ni(2+) on the NMDA current gradually changed from potentiating to inhibitory with progressing DIV, and the decline of potentiation correlated well with the decrease in sensitivity for the NR2B specific antagonist ifenprodil. Dose-dependent experiments confirmed that Ni(2+) has a different effect in younger cultures with respect to older ones, in agreement with an increase of the percentage of NR2A-containing receptors. The developmental switch occurred within the first 5 DIV in cerebellar granule cells and after 20 DIV in cortical neurons. All these data indicate that Ni(2+) is a suitable marker for the identification of NR2A and NR2B native channel subunits and can be used to trace the development of NMDA receptor composition. 相似文献
3.
The slow component of the excitatory postsynaptic current in the central nervous system is generated by the activity of NMDA receptors. The activation properties of this class of glutamate receptor determine key features of the synaptic response and have important consequences for synaptic plasticity and cell physiology. NMDA receptor activation is complex and involves ligand binding, protein conformational changes, and channel blockade. Recently, two groups have proposed state models that encapsulate the essential features of NMDA receptor gating conformational changes. These models provide insight into the NMDA receptor as a molecular machine and should help us understand and manipulate NMDA receptor mediated synaptic function and pathologies. 相似文献
4.
M. Graziella De Montis Carla Gambarana Domenico Meloni Italo Taddei Alessandro Tagliamonte 《Brain research》1993,606(1)
Long-term exposure to different antidepressant treatments induces increased motor response to central stimulants, due to a selective supersensitivity of dopamine D2 receptors in the limbic areas. Such an effect is accompanied by down-regulation of dopamine D1 receptor number, and by a decreased response of adenylyl cyclase to dopamine stimulation in the limbic system. Moreover, the number of β-adrenergic receptors and the response of adenylyl cyclase to β-adrenergic stimulation in the cortex result to be reduced. The present data confirms that imipramine (10 mg/kg twice a day for 3 weeks) produces such effects, and shows that the co-administration of imipramine with MK-801 (administered by a subcutaneously implanted minipump delivering 0.05 mg/kg/day of the compound) prevented the occurence of both the behavioral supersensitivity to quinpirole, and the decrease of dopamine D1 and β-adrenergic receptor function. 相似文献
5.
Zajaczkowski W Hetman M Nikolaev E Quack G Danysz W Kaczmarek L 《Neurotoxicity research》2000,1(4):299-310
High doses of NMDA antagonists e.g. (+)MK-801 evoke neurodegeneration in retrosplenial cortex in rodents. To assess functional consequences of such treatment, three paradigms of two-way active avoidance learning (with visual or auditory conditioned stimuli) and additionally a spatial learning paradigm - radial maze - were used. Female rats were treated i.p. with 5 mg/kg of (+)MK-801. Recumbence, severe hypothermia and loss of body weight were observed for 3-7 days. Despite that, there were no statistically significant differences in performance of avoidance reaction between saline and (+)MK-801 treated animals trained 10-40 days after the drug administration. However, in the radial maze test (+)MK-801 impaired reference (but not working) memory in the experiment that started 8 days after the treatment. Similar effect was observed on reversal learning. The clinically used NMDA receptor antagonist memantine at the doses of 20 and 40 mg/kg had also no such long term negative effect on working memory during training (even positive effect was seen at 20 mg/kg) but at 40 mg/kg impaired learning on the first day of reversal. This indicates that (+)MK-801 neurotoxicity in the retrosplenial cortex is connected with subtle alterations in the learning performance that may be seen in some tests only. Moreover, memantine doses greatly exceeding therapeutically relevant range produce minimal functional alteration. An additional experiment revealed that the same dose of memantine results in two fold higher serum levels of the antagonist in female than male rats. Hence, considering that profiling studies are done in male rats, a safety factor of over 16 fold can be calculated for memantine. 相似文献
6.
The dopamine agonist apomorphine (apo) elicits bouts of stereotyped pecking in pigeons, a response which increases with successive apo injections. This sensitization is strongly context-specific and has been suggested to arise through a Pavlovian conditioning to both external and internal cues. We hypothetized that this learning involves dopamino-glutamatergic interactions and investigated the issue by inducing NMDA glutamate receptor blockades with the antagonist dizocilpine (diz). A first experiment examined the effects that four different doses (ranging between 0.05 and 0.12 mg/kg) of diz co-administered with a standard dose of 0.5 mg/kg of apo had on the development of the incremented response and on the later expression of the conditioned pecking response. Both responses were impaired by doses of around 0.10 mg/kg diz. A second experiment assessed whether either a diz treatment or a diz plus apo co-treatment affected the development of a subsequent sensitization to apo. The first treatment had no effect on the latter sensitization. A part sensitization that arose with the second treatment did not transfer to the final sensitization. The last experiment examined whether the administration of diz had an immediate effect on the incremented responding to apo and on the conditioned response shown by already sensitized pigeons. No effect was apparent with the first treatment, but there was a marked response inhibition with the second treatment. It is concluded that NMDA glutamate receptors play an important role in apo-induced sensitization in pigeons which is compatible with the Pavlovian conditioning account of sensitization. 相似文献
7.
Wojciech Zajaczkowski Michal Hetman Evgeni Nikolaev Guenter Quack Wojciech Danysz Leszek Kaczmarek 《Neurotoxicity research》1999,1(4):299-310
High doses of NMDA antagonists e.g. (+)MK-801 evoke neurodegeneration in retrosplenial cortex in rodents. To assess functional consequences of such treatment, three paradigms of two-way active avoidance learning (with visual or auditory conditioned stimuli) and additionally a spatial learning paradigm — radial maze — were used. Female rats were treated i.p. with 5 mg/kg of (+)MK-801. Recumbence, severe hypothermia and loss of body weight were observed for 3–7 days. Despite that, there were no statistically significant differences in performance of avoidance reaction between saline and (+)MK-801 treated animals trained 10–40 days after the drug administration. However, in the radial maze test (+)MK-801 impaired reference (but not working) memory in the experiment that started 8 days after the treatment. Similar effect was observed on reversal learning. The clinically used NMDA receptor antagonist memantine at the doses of 20 and 40 mg/kg had also no such long term negative effect on working memory during training (even positive effect was seen at 20 mg/kg) but at 40 mg/kg impaired learning on the first day of reversal. This indicates that (+)MK-801 neurotoxicity in the retrosplenial cortex is connected with subtle alterations in the learning performance that may be seen in some tests only. Moreover, memantine doses greatly exceeding therapeutically relevant range produce minimal functional alteration. An additional experiment revealed that the same dose of memantine results in two fold higher serum levels of the antagonist in female than male rats. Hence, considering that profiling studies are done in male rats, a safety factor of over 16 fold can be calculated for memantine. 相似文献
8.
Selected excitatory amino acids and antagonists were tested for their effects on arterial pressure and heart rate when administered intrathecally at the second (T2) or ninth (T9) thoracic spinal levels in urethane-anesthetized Sprague-Dawley rats with spontaneous or artificial respiration. Intrathecal administration of glutamate (1 mumol) and N-methyl-D-aspartic acid (NMDA; 2 nmol) at T9 increased arterial pressure and heart rate. The response began within 1 min, peaked at 2-3 min and persisted for 8-15 min. The maximum changes were 20-25 mm Hg for arterial pressure and 40-50 beats/min for heart rate. These responses were prevented by systemic administration of hexamethonium (10 mg/kg). Responses to administration of NMDA at the two spinal levels were essentially the same. Effects elicited by NMDA but not by glutamate were blocked by pretreatment with the NMDA receptor antagonists, D,L-2-amino-5-phosphonovaleric acid (APV; 10 nmol, intrathecal administration) and ketamine (7 mg/kg, i.v.). Intrathecal administration of APV (10, 50 and 200 nmol) at T2 produced dose-dependent decreases in arterial pressure without changing heart rate. The results support the hypothesis that NMDA receptors are involved in regulation of sympathetic output at the spinal level. They also indicate that in this preparation there is a tonic activation of NMDA receptors in sympathetic pathways to the vessels but not to the heart. Finally, the persistence of the response to glutamate in the presence of NMDA receptor antagonists suggests the involvement of non-NMDA receptors in spinal control of sympathetic output. 相似文献
9.
Contribution of NMDA receptor channels to the expression of LTP in the hippocampal dentate gyrus 总被引:4,自引:0,他引:4
The role of glutamatergic NMDA receptor channels (NMDARs) in the induction of long-term potentiation (LTP) has been well established. In contrast, whether or not NMDARs contribute to the expression of LTP has been an issue of debate. In this study, we investigated the contribution of NMDARs to LTP expression in the hippocampal dentate gyrus (DG) by stimulating perforant path afferents with short bursts of pulses delivered at a moderate frequency (40 Hz), instead of using the traditional protocol of a single stimulus at a low frequency (<0.1 Hz). The synaptic summation provided by the "burst" protocol enabled us to measure the NMDAR-mediated component of synaptic responses (NMDA component), defined as the NMDAR antagonist D-2-amino-5-phosphonovalerate (APV2+)-sensitive component, in the presence of physiological concentrations of Mg (1 mM). Intracellular recordings were obtained from DG granule cells of rabbit hippocampal slices, and excitatory postsynaptic potentials (EPSPs) were measured in terms of the integrated area of their profiles. At 40 Hz, frequency facilitation of the evoked EPSPs was observed. The NMDA component gradually increased during the five-pulse train and frequency facilitation was significantly reduced after the application of APV. We tested the hypothesis that NMDARs undergo potentiation in LTP by comparing the NMDA/non-NMDA ratio of the synaptic responses in control and LTP groups. An increase in the ratio was observed in the LTP group, strongly suggesting potentiation of NMDARs. To infer changes in conductance at individual synapses based on EPSPs recorded at the soma, we constructed a compartmental model of a morphologically reconstructed DG granule cell. The effect on the NMDA/non-NMDA ratio of changes in AMPA and NMDA component synaptic conductance, and of differences in the distribution of activated synapses, was studied with computer simulations. The results confirmed that NMDARs are potentiated after the induction of LTP and contribute significantly to the expression of potentiation under physiological conditions. 相似文献
10.
Because hyperammonemia is thought to contribute to the pathogenesis of hepatic encephalopathy, we examined the effects of ammonia on ATP levels, neuronal morphology, and synaptic function in rat hippocampal slices. Although ammonia did not alter ATP levels supported by 10 mM glucose, ammonia significantly depressed ATP levels in the presence of 3.3 mM glucose or 10 mM pyruvate, suggesting effects on respiratory energy metabolism. Ammonia also impaired synaptic function and neuronal integrity sustained by pyruvate. In 10 mM glucose, ammonia inhibited the induction and maintenance of long-term potentiation (LTP) in a concentration-dependent fashion. These inhibitory effects of ammonia were overcome by L-carnitine. DL-APV, an antagonist of NMDA receptors, also diminished the effects of ammonia on ATP levels and LTP induction, indicating that ammonia impairs neuronal function via altered metabolism and untimely NMDA receptor activation. These results suggest that L-carnitine and NMDA receptor antagonists have the potential to preserve neuronal function during hyperammonemia. 相似文献
11.
Inducible expression of N-methyl-d-aspartate (NMDA) receptor channels from cloned cDNAs in CHO cells
《Brain research. Molecular brain research》1997,44(1):1-11
To develop a drug screening system, we introduced expression vectors carrying the mouse N-methyl-d-aspartate (NMDA) receptor channel ϵ1 and ζ1 subunit cDNAs under the promoter of the Drosophila heat shock protein hsp70 into Chinese hamster ovary (CHO) cells. We selected clonal cell lines by means of RNA blot hybridization and fura-2 fluorometry. One of these cell lines, ZE1-1, optimally expressed the ϵ1 and ζ1 subunit mRNAs when induced by an incubation at 43°C for 2 h. Heated ZE1-1 cells exhibited the NMDA-induced intracellular Ca2+ elevation, whereas unheated they showed no such response. NMDA and l-glutamate, but not α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) and kainate, induced an increase in the intracellular Ca2+ concentration. The response to the agonists was marginal in the absence of glycine, and diminished by Mg2+ and NMDA receptor antagonists. Furthermore, exposure to agonists of ZE1-1 cells expressing the ϵ1/ζ1 NMDA receptor channel resulted in the release of lactate dehydrogenase (LDH) activity in the culture medium indicating agonist-induced cell death. NMDA receptor antagonists inhibited the LDH activity release. These results suggest that ZE1-1 cells will provide a useful screening system for novel drugs acting on the ϵ1/ζ1 NMDA receptor channel. 相似文献
12.
13.
Photolytic release of neurotransmitters from caged precursors is a useful method to study synaptic processes with high temporal and spatial resolution. At present, the two most widely used classes of caged precursors for studies on glutamate receptors are based on derivatives of the 2-nitrobenzyl caging group (alpha-carboxy-2-nitrobenzyl, CNB) and the nitroindoline caging group (7-nitroindoline, NI, and 4-methoxy-7-nitroindoline, MNI). Besides NI- and MNI-caged amino acids being thermally more stable than the CNB-caged amino acids, there have been no other major advantages reported of using compounds from either of these two classes. Here, we show inhibitory effects of CNB-glutamate and a number of other CNB-caged agonists on N-methyl-D-aspartate (NMDA) receptors at non-saturating concentrations of the co-agonist glycine. In contrast, NI- and MNI-glutamate and most other NI-/MNI-caged agonists that we tested were inert under these conditions. Furthermore, we demonstrate that carboxynitroindoline-caged glycine (CNI-glycine), which was previously found to inhibit glycine receptors, has no such effect on NMDA receptors. Together, these findings underline the usefulness of NI- and MNI-caged ligands and show that CNB-caged compounds should be avoided in studies involving NMDA receptors. 相似文献
14.
Gibb AJ 《Trends in neurosciences》2004,27(1):7-10; discussion 10
15.
N-methyl-D-aspartate receptor (NMDAR) ontogeny and subunit expression are altered during developmental lead (Pb2+) exposure. However, it is unknown whether these changes occur at the synaptic or cellular level. Synaptic and extra-synaptic NMDARs have distinct cellular roles, thus, the effects of Pb2+ on NMDAR synaptic targeting may affect neuronal function. In this communication, we show that Pb2+ exposure during synaptogenesis in hippocampal neurons altered synaptic NMDAR composition, resulting in a decrease in NR2A-containing NMDARs at established synapses. Conversely, we observed increased targeting of the obligatory NR1 subunit of the NMDAR to the postsynaptic density (PSD) based on the increased colocalization with the postsynaptic protein PSD-95. This finding together with increased binding of the NR2B-subunit specific ligand [3H]-ifenprodil, suggests increased targeting of NR2B-NMDARs to dendritic spines as a result of Pb2+ exposure. During brain development, there is a shift of NR2B- to NR2A-containing NMDARs. Our findings suggest that Pb2+ exposure impairs or delays this developmental switch at the level of the synapse. Finally, we show that alter expression of NMDAR complexes in the dendritic spine is most likely due to NMDAR inhibition, as exposure to the NMDAR antagonist aminophosphonovaleric acid (APV) had similar effects as Pb2+ exposure. These data suggest that NMDAR inhibition by Pb2+ during synaptogensis alters NMDAR synapse development, which may have lasting consequences on downstream signaling. 相似文献
16.
The effects of NMDA receptor blockade on the acquisition of a conditioned emotional response. 总被引:3,自引:0,他引:3
Excitatory amino acids, acting at the N-methyl-d-aspartate (NMDA) receptor, have been postulated to play an important role in the acquisition of behavior (learning). Previous studies have shown that some forms of response acquisition can be impaired by drugs that block the NMDA receptor. To determine whether excitatory amino acid blockade could also affect the ability to acquire an emotional response, the effects of the noncompetitive NMDA receptor antagonist MK-801 were studied on the development of response suppression under a conditioned emotional response (CER) procedure in the rat. The CER procedure progressively suppressed responding when saline was given prior to the eight daily sessions over which animals were initially exposed. Daily treatment with MK-801 blocked the development of response suppression. Thus, these data are consistent with the notion that excitatory amino acid blockade prevents or diminishes the development of a learned emotional response. This suggests a potential role for this receptor in the development of anxiety-related disorders in humans. 相似文献
17.
Chronic nicotine and dizocilpine effects on regionally specific nicotinic and NMDA glutamate receptor binding 总被引:2,自引:0,他引:2
Chronic nicotine administration has long been known to increase the number of high-affinity alpha4beta2 nicotinic receptors with lesser effects on low-affinity alpha7 nicotinic receptors. Nicotine has been shown to promote the release of a variety of neurotransmitters including glutamate. Nicotine may also interact directly with the glutamatergic receptors. Nicotinic-glutamate interactions may be critical to the long-term effects of nicotine. Conversely, glutamatergic drugs may interact with the nicotinic system. Such interactions have important implications in interpretation of the mechanism of drug actions, especially when the drugs are given together. The current study examined the effects of chronic administration of nicotine (5 mg of the nicotine base/kg/day for 28 days), dizocilpine (MK-801) (0.3 mg/kg/day for 28 days), an NMDA receptor antagonist, as well as the combination of the two drugs on nicotinic and NMDA receptor densities in discrete brain regions. The chronic dose of dizocilpine used was behaviorally active causing a dramatic reduction in prepulse inhibition (PPI) of acoustic startle response. The nicotine dose used did not significantly affect PPI but previously we have found it to be behaviorally active in improving working memory function. High-affinity nicotinic receptor binding, as has been seen previously, was significantly increased by chronic nicotine in most areas. Chronic dizocilpine alone did not affect high-affinity nicotinic receptor binding, but it did modify the effects of chronic nicotine, attenuating nicotine-induced increases in the frontal cortex and striatum. Low-affinity nicotinic binding was significantly increased by chronic nicotine in only one area, the cerebellum. Chronic dizocilpine significantly increased low-affinity nicotinic binding in several brain areas, the colliculi, hippocampus, and the hypothalamus. The combination of nicotine and dizocilpine attenuated the effects of each with diminished nicotine-induced increased nicotinic low-affinity binding in the cerebellum and diminished dizocilpine-induced increased nicotinic low-affinity binding in the hippocampus and hypothalamus. In contrast, chronic nicotine and dizocilpine had a mutually potentiating effect of increasing nicotinic low-affinity binding in the frontal cortex. NMDA receptor binding was affected only in the hippocampus, where both dizocilpine and nicotine significantly increased binding. Chronic nicotine effects on receptor regulation are significantly affected by concurrent blockade of NMDA glutamate receptors. 相似文献
18.
Harris LW Sharp T Gartlon J Jones DN Harrison PJ 《The European journal of neuroscience》2003,18(6):1706-1710
Brief N-methyl-D-aspartate (NMDA) receptor blockade in neonatal rats has been reported to increase neuronal apoptosis. We replicated this finding using MK-801 (0.5 mg/kg) administered twice on postnatal day 7, and then studied the long-term consequences. In adulthood, treated rats showed reduced volume and neuronal number within the hippocampus, and altered hippocampal NMDA receptor (NR1 subunit) expression. Synaptophysin mRNA was decreased in the thalamus (laterodorsal nucleus). Adult MK-801-treated females had prepulse inhibition deficits and increased locomotor activity. The data show that a transient and limited glutamatergic intervention during development can have chronic behavioural, structural and molecular effects. The effects are reminiscent of alterations reported in schizophrenia and, as such, are consistent with hypotheses advocating a role for NMDA receptor hypofunction, and aberrant apoptosis, in the neurodevelopmental pathogenesis of the disorder. 相似文献
19.
Functional NMDA receptor channels generated by NMDAR2B gene transfer in rat cerebellar Purkinje cells 总被引:4,自引:0,他引:4
The adult cerebellar Purkinje cell is an exceptional neuron in the central nervous system in that it expresses high levels of NMDAR1 (NR1) mRNA without expressing any NMDAR2 (NR2) mRNAs. It has no functional NMDA receptor (NMDAR) channels, although it receives enormous numbers of excitatory inputs. Despite the high level of NR1 mRNA expression, the presence and localization of NR1 protein in mature Purkinje cells are controversial. To examine the presence of NR1 protein and its ability to form functional NMDARs, we expressed the NR2B subunit in rat mature Purkinje neurons by Sindbis viral-mediated gene transfer. The recombinant virus encoding both the NR2B and enhanced green fluorescent protein (GFP) genes (designated as SIN-EG-NR2B) infected Purkinje cells without infecting glial cells. GFP fluorescence was detected in the soma and throughout dendrites of Purkinje cells 18-24 h postinfection. In most of GFP-positive cells, the expression of NR2B protein was detected by immunostaining with NR2B-specific antibodies. In Purkinje cells infected with SIN-EG-NR2B, the iontophoretic application of NMDA induced prominent NMDAR-mediated current responses, indicating that the exogenous NR2B was assembled with endogenous NR1 to form functional NMDARs. Furthermore, NMDAR-mediated synaptic currents were detected at both the climbing fibre and parallel fibre synapses in infected Purkinje cells. Thus, the mature Purkinje cell produces NR1 protein that is ready to combine with NR2 to form functional NMDARs in excitatory synapses. 相似文献
20.
Poleszak E Socała K Szopa A Wróbel A Szewczyk B Kasperek R Blicharska E Nowak G Wlaź P 《Journal of neural transmission (Vienna, Austria : 1996)》2011,118(6):857-864
In the present study, we demonstrated that low, ineffective doses of N-methyl-d-aspartic acid (NMDA) receptor antagonists [competitive NMDA antagonist, CGP 37849, at 0.312 mg/kg intraperitoneally (i.p.),
antagonist of the glycineB sites, L-701,324, at 2 mg/kg i.p., partial agonist of glycineB sites, d-cycloserine, at 2.5 mg/kg i.p.] administered jointly with an ineffective dose of the benzodiazepine, chlordiazepoxide (CDP,
2.5 mg/kg i.p.), significantly increased the percentage of time spent in the open arms of the elevated plus-maze (index of
anxiolytic effect). Furthermore, CDP-induced anxiolytic-like activity (5 mg/kg i.p.) was antagonized by NMDA (75 mg/kg i.p.)
and by an agonist of glycineB sites of the NMDA receptor complex, d-serine [100 nmol/mouse intracerebroventricularly (i.c.v.)]. The present study showed a positive interaction between γ-aminobutyric
acid (GABA) and glutamate neurotransmission in the anxiolytic-like activity in the elevated plus-maze test in mice and this
activity seems to particularly involve the NMDA receptors. 相似文献