首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Binding and conversion of the plasma protein plasminogen is an important pathogenesis mechanism of the human pathogen Streptococcus pneumoniae. Once converted into plasmin, the proteolytic activity of this major fibrinolysis component promotes degradation of extracellular matrix and the dissolution of fibrin clots. Here, we present the exploitation of plasminogen-binding as a further pivotal strategy of pneumococci facilitating adherence to eukaryotic cells. Flow cytometric measurements demonstrated the immobilization of plasminogen on host cell surfaces of human alveolar type II pneumocytes (A549), nasopharyngeal epithelium (Detroit 562) and brain-derived endothelial cells (HBMEC). These host-derived cells were employed in cell culture infection analyses followed by confocal microscopy to monitor the plasminogen-mediated adherence. Results of these studies revealed that host cell-bound plasminogen promotes pneumococcal adherence to human epithelial and endothelial cells in dose-dependent manner, whereas pneumococcal internalization was not enhanced. As an opposed effect pneumococcal-bound plasminogen reduced attachment to the epithelial and endothelial cells, and increased the interaction with neutrophil granulocytes. Moreover, the surface-displayed enolase, which serves as major pneumococcal plasminogen receptor, was identified as a key factor for plasminogen-mediated bacterial attachment in infection analyses with S. pneumoniae enolase mutants.  相似文献   

2.
The Gram-positive bacterium Streptococcus pneumoniae is the main causative agent of bacterial meningitis. S. pneumoniae is thought to invade the central nervous system via the bloodstream by crossing the vascular endothelium of the blood-brain barrier. The exact mechanism by which pneumococci cross endothelial cell barriers before meningitis develops is unknown. Here, we investigated the role of PECAM-1/CD31, one of the major endothelial cell adhesion molecules, in S. pneumoniae adhesion to vascular endothelium of the blood-brain barrier. Mice were intravenously infected with pneumococci and sacrificed at various time points to represent stages preceding meningitis. Immunofluorescent analysis of brain tissue of infected mice showed that pneumococci colocalized with PECAM-1. In human brain microvascular endothelial cells (HBMEC) incubated with S. pneumoniae, we observed a clear colocalization between PECAM-1 and pneumococci. Blocking of PECAM-1 reduced the adhesion of S. pneumoniae to endothelial cells in vitro, implying that PECAM-1 is involved in pneumococcal adhesion to the cells. Furthermore, using endothelial cell protein lysates, we demonstrated that S. pneumoniae physically binds to PECAM-1. Moreover, both in vitro and in vivo PECAM-1 colocalizes with the S. pneumoniae adhesion receptor pIgR. Lastly, immunoprecipitation experiments revealed that PECAM-1 can physically interact with pIgR. In summary, we show for the first time that blood-borne S. pneumoniae colocalizes with PECAM-1 expressed by brain microvascular endothelium and that, in addition, they colocalize with pIgR. We hypothesize that this interaction plays a role in pneumococcal binding to the blood-brain barrier vasculature prior to invasion into the brain.  相似文献   

3.
The recruitment of plasminogen endows the bacterial cell surface of Streptococcus pneumoniae with proteolytic activity. In this study we demonstrate specific plasmin- and plasminogen-binding activity for the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH), which is located in the cytoplasm as well as on the surface of pneumococci. GAPDH exhibits a high affinity for plasmin and a significantly lower affinity for plasminogen.  相似文献   

4.
《Microbial pathogenesis》1994,17(6):361-374
The adherence of S. pneumoniae to human type-II pneumocytes and endothelial cells (EC) is critical to the pathogenesis of pneumococcal pneumonia and bacteremia. We established that the preferred target cell to which pneumococci adhere in the lung is the type-II lung cell (LC) and have developed an in vitro adherence assay to determine the molecular details of this interaction. Pneumococcal receptors on cultured human LC and EC appeared to be glycoproteins since treatment of the monolayers with tunicamycin significantly impaired bacterial adherence. Inhibition of adherence to LC and EC occurred following incubation with several carbohydrates including GalNAc, mannose and GalNAcβ-4Gal- and GalNAcβ1-3Gal-containing glycoconjugates. Pneumococci could bind directly to these immobilized sugars and their addition to adherent pneumococci could elute the bacteria from LC and EC. Combinations of glycoconjugates indicated that two independent classes of pneumococcal receptor existed on both cell types. These were defined by the minimal receptor units GalNAcβ1-4Gal and GalNAcβ1-3Gal which participate in pneumococcal cell wall and protein-dependent mechanisms of adherence, respectively.  相似文献   

5.
Pneumococcal adherence to alveolar epithelial cells and nasopharyngeal epithelial cells has been well characterized. However, the interaction of Streptococcus pneumoniae with bronchial epithelial cells has not been studied. We have now shown that pneumococci bind specifically to a human bronchial epithelial cell line (BEAS-2B cells). Pneumococci adhered to BEAS-2B cells in a time- and dose-dependent manner. These results suggest that the bronchial epithelium may serve as an additional site of attachment for pneumococci and demonstrate the utility of the BEAS-2B cell line for studying mechanisms of pneumococcal infection.  相似文献   

6.
Streptococcus pneumoniae is a Gram-positive bacterium, causing acute sinusitis, otitis media, and severe diseases such as pneumonia, bacteraemia, meningitis and sepsis. Here we identify elongation factor Tu (Tuf) as a new Factor H binding protein of S. pneumoniae. The surface protein PspC which also binds a series of other human immune inhibitors, was the first identified pneumococcal Factor H binding protein of S. pneumoniae. Pneumococcal Tuf, a 55 kDa pneumococcal moonlighting protein which is displayed on the surface of pneumococci, is also located in the cytoplasm and is detected in the culture supernatant. Tuf binds the human complement inhibitors Factor H, FHL-1, CFHR1 and also the proenzyme plasminogen. Factor H and FHL-1 bound to Tuf, retain their complement regulatory activities. Similarly, plasminogen bound to Tuf was accessible for the activator uPA and activated plasmin cleaved the synthetic chromogenic substrate S-2251 as well as the natural substrates fibrinogen and the complement proteins C3 and C3b. Taken together, Tuf of S. pneumoniae is a new multi-functional bacterial virulence factor that helps the pathogen in complement escape and likely also in ECM degradation.  相似文献   

7.
Neurological manifestations of Lyme disease in humans are attributed in part to penetration of the blood-brain barrier (BBB) and invasion of the central nervous system (CNS) by Borrelia burgdorferi. However, how the spirochetes cross the BBB remains an unresolved issue. We examined the traversal of B. burgdorferi across the human BBB and systemic endothelial cell barriers using in vitro model systems constructed of human brain microvascular endothelial cells (BMEC) and EA.hy 926, a human umbilical vein endothelial cell (HUVEC) line grown on Costar Transwell inserts. These studies showed that B. burgdorferi differentially crosses human BMEC and HUVEC and that the human BMEC form a barrier to traversal. During the transmigration by the spirochetes, it was found that the integrity of the endothelial cell monolayers was maintained, as assessed by transendothelial electrical resistance measurements at the end of the experimental period, and that B. burgdorferi appeared to bind human BMEC by their tips near or at cell borders, suggesting a paracellular route of transmigration. Importantly, traversal of B. burgdorferi across human BMEC induces the expression of plasminogen activators, plasminogen activator receptors, and matrix metalloproteinases. Thus, the fibrinolytic system linked by an activation cascade may lead to focal and transient degradation of tight junction proteins that allows B. burgdorferi to invade the CNS.  相似文献   

8.
The universal and highly conserved production of pneumolysin, the major pneumococcal cytolysin, among clinical isolates ofStreptococcus pneumoniaeand the previously reported association of pneumolysin production with increased pneumococcal adherence to respiratory epithelium in organ cultures suggest that this toxin might be important for nasopharyngeal colonization. We confirmed that pneumolysin-deficient mutant pneumococcal strains had decreased adherence to respiratory epithelial cellsin vitrocompared with their isogeneic wild-type strains. However, neither early nor sustained colonization by type 14S. pneumoniaein an established murine model was dependent on bacterial production of pneumolysin. We conclude that pneumolysin production is not a major determinant of successful nasopharyngeal colonization by pneumococci.  相似文献   

9.
Pneumococcal adherence and virulence factor A (PavA) is displayed to the cell outer surface of Streptococcus pneumoniae and mediates pneumococcal binding to immobilized fibronectin. PavA, which lacks a typical gram-positive signal sequence and cell surface anchorage motif, is essential for pneumococcal virulence in a mouse infection model of septicemia. In this report the impact of PavA on pneumococcal adhesion to and invasion of eukaryotic cells and on experimental pneumococcal meningitis was investigated. In the experimental mouse meningitis model, the virulence of the pavA knockout mutant of S. pneumoniae D39, which did not show alterations of subcellular structures as indicated by electron microscopic studies, was strongly decreased. Pneumococcal strains deficient in PavA showed substantially reduced adherence to and internalization of epithelial cell lines A549 and HEp-2. Similar results were obtained with human brain-derived microvascular endothelial cells and human umbilical vein-derived endothelial cells. Attachment and internalization of pneumococci were not significantly affected by preincubation or cocultivations of pneumococci with anti-PavA antisera. Pneumococcal adherence was also not significantly affected by the addition of PavA protein. Complementation of the pavA knockout strain with exogenously added PavA polypeptide did not restore adherence of the mutant. These data suggest that PavA affects pneumococcal colonization by modulating expression or function of important virulence determinants of S. pneumoniae.  相似文献   

10.
《Mucosal immunology》2019,12(5):1231-1243
Secondary bacterial pneumonia is a significant complication of severe influenza infection and Staphylococcus aureus and Streptococcus pneumoniae are the primary pathogens of interest. IL-22 promotes S. aureus and S. pneumoniae host defense in the lung through epithelial integrity and induction of antimicrobial peptides and is inhibited by the soluble decoy receptor IL-22-binding protein (IL-22BP). Little is known about the effect of the IL-22/IL-22BP regulatory pathway on lung infection, and it has not been studied in the setting of super-infection. We exposed wild-type and IL-22BP−/− mice to influenza A/PR/8/34 for 6 days prior to infection with S. aureus (USA300) S. pneumoniae. Super-infected IL-22BP−/− mice had decreased bacterial burden and improved survival compared to controls. IL-22BP−/− mice exhibited decreased inflammation, increased lipocalin 2 expression, and deletion of IL-22BP was associated with preserved epithelial barrier function with evidence of improved tight junction stability. Human bronchial epithelial cells treated with IL-22Fc showed evidence of improved tight junctions compared to untreated cells. This study revealed that IL-22BP−/− mice are protected during influenza, bacterial super-infection, suggesting that IL-22BP has a pro-inflammatory role and impairs epithelial barrier function likely through interaction with IL-22  相似文献   

11.
The potential of bacterium-bound plasmin to degrade mammalian extracellular matrix and to enhance bacterial penetration through basement membrane was assessed with the adherent strain SH401-1 of Salmonella enterica serovar Typhimurium. Typhimurium SH401-1 was able to bind plasminogen and to enhance the tissue-type plasminogen activator-mediated activation of the single-chain plasminogen to the two-chain plasmin. The end product, the enzymatically active, bacterium-bound plasmin activity, was also formed in a normal human plasma milieu in the presence of exogenous tissue-type plasminogen activator, indicating that plasmin was protected from the plasminogen activator inhibitors and plasmin inhibitors of plasma. Plasmin bound on Typhimurium cells degraded 125I-labeled laminin as well as 3H-labeled extracellular matrix prepared from the human endothelial cell line EA.hy926. The degradations were not seen with Typhimurium cells without plasminogen and were inhibited by the low-molecular-weight plasmin inhibitor aprotinin. Plasmin bound on Typhimurium cells also potentiated penetration of bacterial cells through the basement membrane preparation Matrigel reconstituted on membrane filters. The results give in vitro evidence for degradation of the mammalian extracellular matrix by bacterium-bound plasmin and for a pathogenetic role for bacterial plasminogen receptors.  相似文献   

12.
BACKGROUND: Chronic severe persistent asthma is associated with damaged epithelial cells with discontinuous tight junctions that contribute to dysregulated fibroblast and endothelial cell (mesenchymal) growth. Dermatophagoides species-derived proteases have been shown to cause damage to epithelial cell tight junctions. OBJECTIVE: To determine whether Dermatophagoides species can stimulate confluent A549 (cA549), a cell type with discontinuous tight junctions that approximate differentiated type II cells, to undergo altered growth and secrete putative soluble factors that affect the growth of human lung fibroblasts and microvascular endothelial cells. METHODS: Dialyzed Dermatophagoides pteronyssinus or Dermatophagoides farinae extracts (0, 300, 600, and 1000 AU/mL) were cultured with and without cA549 in serum-free media for 24 hours. After changes in cA549 growth were recorded, conditioned media from extracts with cA549 (CM) and without cA549 (control media [CTLM]) were transferred to fibroblasts and endothelial cells for 24 hours. Fibroblast and endothelial cell growth responses to CM and CTLM were observed and measured. RESULTS: All conditions showed greater than 95% cell viability. Confluent A549 showed dose-dependent growth changes characterized by increased aggregation when incubated with 300, 600, and 1000 AU/mL of D pteronyssinus in serum-free media relative to control. The CM, but not the CTLM, induced dose-dependent aggregation by fibroblasts and endothelial cells. Fibroblasts also showed decreased adhesion when incubated with CM. Dermatophagoides farinae-treated cA549 showed similar but weaker results. The use of serum, boiled CM, or boiled extract inhibited these findings. CONCLUSIONS: Dialyzed Dermatophagoides species extracts altered cA549 growth and stimulated the secretion of factors that dysregulate mesenchymal cell growth in vitro.  相似文献   

13.
Colonization of Streptococcus pneumoniae (pneumococci) is a prerequisite for bacterial dissemination and their capability to enter the bloodstream. Pneumococci have evolved various successful strategies to colonize the mucosal epithelial barrier of humans. A pivotal mechanism of host cell invasion implicated with invasive diseases is promoted by the interaction of pneumococcal PspC with the polymeric Ig-receptor (pIgR). However, the mechanism(s) of pneumococcal endocytosis and the intracellular route of pneumococci upon uptake by the PspC–pIgR-interaction are not known. Here, we demonstrate by using a combination of pharmacological inhibitors and genetics interference approaches the involvement of active dynamin-dependent caveolae and clathrin-coated vesicles for pneumococcal uptake via the PspC–pIgR mechanism. Depleting cholesterol from host cell membranes and disruption of lipid microdomains impaired pneumococcal internalization. Moreover, chemical inhibition of clathrin or functional inactivation of dynamin, caveolae or clathrin by RNA interference significantly affected pneumococcal internalization suggesting that clathrin-mediated endocytosis (CME) and caveolae are involved in the bacterial uptake process. Confocal fluorescence microscopy of pIgR-expressing epithelial cells infected with pneumococci or heterologous Lactococcus lactis expressing PspC demonstrated bacterial co-localization with fluorescent-tagged clathrin and early as well as recycling or late endosomal markers such as Lamp1, Rab5, Rab4, and Rab7, respectively. In conclusion these data suggest that PspC-promoted uptake is mediated by both CME and caveolae. After endocytosis pneumococci are routed via the endocytic pathway into early endosomes and are then sorted into recycling or late endosomes, which can result in pneumococcal killing in phagolysosomes or transcytosis via recycling endosomes.  相似文献   

14.
To study carbohydrate-mediated adherence of Streptococcus pneumoniae to the human airway, we measured binding of live S. pneumoniae organisms to a cultured cell line derived from the lining of the conjunctiva and to primary monolayers of human bronchial epithelial cells in the presence and absence of oligosaccharide inhibitors. Both encapsulated and nonencapsulated strains of S. pneumoniae grown to mid-logarithmic phase in suspension culture adhered to cultured primary respiratory epithelial cells and the conjunctival cell line. Adherence of nine clinically prevalent S. pneumoniae capsular types studied was inhibited preferentially by sialylated oligosaccharides that terminate with the disaccharide NeuAcα2-3(or 6)Galβ1. Adherence of some strains also was weakly inhibited by oligosaccharides that terminate with lactosamine (Galβ1-4GlcNAcβ1). When sialylated oligosaccharides were covalently coupled to human serum albumin at a density of approximately 20 oligosaccharides per molecule of protein, the molar inhibitory potency of the oligosaccharide inhibitor was enhanced 500-fold. The above-mentioned experiments reveal a previously unreported dependence upon sialylated carbohydrate ligands for adherence of S. pneumoniae to human upper airway epithelial cells. Enhanced inhibitory potencies of polyvalent over monovalent forms of oligosaccharide inhibitors of adherence suggest that the putative adhesin(s) that recognizes the structure NeuAcα2-3(or 6)Galβ1 is arranged on the bacterial surface in such a manner that it may be cross-linked by oligosaccharides covalently linked to human serum albumin.  相似文献   

15.
Tight junctions seal polarised surface epithelial respiratory cells so as to prevent the passage of bacteria and toxins through the epithelial sheet. Disruption of tight junctions, which may occur during injury and repair processes of airway epithelium, favours potential bacterial interaction with receptors from cell basolateral membranes. Earlier studies reported that non-polarised and untight epithelial respiratory cells are highly susceptible to Pseudomonas aeruginosa adherence and internalisation. As heparan sulphate proteoglycans (HSP) from cell basolateral membranes in epithelial cells without tight junctions may become accessible to bacterial ligands, the present study investigated their role as potential receptors for non-piliate P. aeruginosa ligands. Treatment of cells with heparitinase I and II significantly reduced (51.2% and 51.7%, respectively) P. aeruginosa adherence to epithelial respiratory cells without tight junctions. The internalisation of bacteria was not affected by treatment with heparitinases. Treatment of the bacteria with heparin and heparan sulphate also significantly reduced their adherence to respiratory cells (34.3% and 43.7%, respectively). Treatment of cells with other enzymes (trypsin, lipase and chondroitinase ABC) or treatment of bacteria with chondroitin-4-sulphate did not modify the adherence to respiratory cells significantly. Both affinity chromatography and Western blotting assays showed the interaction of different P. aeruginosa outer-membrane proteins (OMPs) with heparin. Several bacterial strains showed differences in their profile of heparin-binding OMPs, but all exhibited low mol. wt (< 30 kDa) reactive proteins. Reactivity of whole bacterial cells with heparin was also observed by transmission electron microscopy. These results suggest that HSP are potential receptors for P. aeruginosa adherence to non-polarised and untight epithelial respiratory cells.  相似文献   

16.
《Microbial pathogenesis》1997,23(4):249-255
Human respiratory cells participating in the repair of epithelial wounds have been shown to be highly susceptible toPseudomonas aeruginosaadherence. To ascertain whether such susceptibility is a common feature of different repairing epithelial cells, Caco-2 cell monolayers were chemically injured, reincubated for 48 h to partially repair and exposed to bacteria. Cells edging the wounds that spread and migrate to re-establish cell confluence were called ‘repairing cells’ while cells far from the wounds were called ‘non-repairing cells’. By light microscopy, bacteria were seen to adhere to and to enter into both repairing and non-repairing cells. The percentage of intracellular bacteria in repairing cells was significantly higher than in non-repairing cells. The higher susceptibility of repairing monolayers to bacterial entry was confirmed by the gentamicin exclusion assay.P. aeruginosaentry into Caco-2 cells was greatly enhanced in non-injured confluent monolayers treated with EDTA to disrupt intercellular junctions. As tight junction disfunctions have been described during the wound repair process, we speculate that exposure of basolateral receptors to bacterial ligands may account for the enhancement ofP. aeruginosainternalization by repairing monolayers.  相似文献   

17.
The virulence mechanisms leading Streptococcus pneumoniae to convert from nasopharyngeal colonization to a tissue-invasive phenotype are still largely unknown. Proliferation of infection requires penetration of the extracellular matrix, which occurs by recruitment of host proteases to the bacterial cell surface. We present evidence supporting the role of choline-binding protein E (CBPE) (a member of the surface-exposed choline-binding protein family) as an important receptor for human plasminogen, the precursor of plasmin. The results of ligand overlay blot analyses, solid-phase binding assays, and surface plasmon resonance experiments support the idea of an interaction between CBPE and plasminogen. We have shown that the phosphorylcholine esterase (Pce) domain of CBPE interacts with the plasminogen kringle domains. Analysis of the crystal structure of the Pce domain, followed by site-directed mutagenesis, allowed the identification of the plasminogen-binding region composed in part by lysine residues, some of which map in a linear fashion on the surface of the Pce domain. The biological relevance of the CBPE-plasminogen interaction is supported by the fact that, compared to the wild-type strain, a mutant of pneumococcus with the cbpE gene deleted (i) displays a reduced level of plasminogen binding and plasmin activation and (ii) shows reduced ability to cross the extracellular matrix in an in vitro model. These results support the idea of a physiological role for the CBPE-plasminogen interaction in pneumococcal dissemination into human tissue.  相似文献   

18.
We have established a coculture system of human distal lung epithelial cells and human microvascular endothelial cells in order to study the cellular interactions of epithelium and endothelium at the alveolocapillary barrier in both pathogenesis and recovery from acute lung injury. The aim was to determine conditions for the development of functional cellular junctions and the formation of a tight epithelial barrier similar to that observed in vivo. The in vitro coculture system consisted of monolayers of human lung epithelial cell lines (A549 or NCI H441) and primary human pulmonary microvascular endothelial cells (HPMEC) on opposite sides of a permeable filter membrane. A549 failed to show sufficient differentiation with respect to formation of a tight epithelial barrier with intact cell-cell junctions. Stimulated with dexamethasone, the cocultures of NCI H441 and HPMEC established contact-inhibited differentiated monolayers, with NCI H441 showing a continuous, circumferential immunostaining of the tight junctional protein, ZO-1 and the adherens junction protein, E-cadherin. The generation of a polarized epithelial cell monolayer with typical junctional structures was confirmed by transmission electron microscopy. Dexamethasone treatment resulted in average transbilayer electrical resistance (TER) values of 500 Omega cm(2) after 10-12 days of cocultivation and correlated with a reduced flux of the hydrophilic permeability marker, sodium-fluorescein. In addition, basolateral distribution of the proinflammatory cytokine tumour necrosis factor-alpha caused a significant reduction of TER-values after 24 h exposure. This decrease in TER could be re-established to control level by removal of the cytokine within 24 h. Thus, the coculture system of the NCI H441 with HPMEC should be a suitable in vitro model system to examine epithelial and endothelial interactions in the pathogenesis of acute lung injury, infectious lung diseases and toxic lung injury. In addition, it could be used to improve techniques of lung drug delivery that also requires a functional barrier.  相似文献   

19.
The blood–cerebrospinal fluid (CSF) barrier physiologically protects the meningeal spaces from bloodborne bacterial pathogens, due to the existence of specialized junctional interendothelial complexes. A few bacterial pathogens are able to reach the subarachnoidal space and cause bacterial meningitis in humans, a rare but dreadful disease. Surprisingly, most of them are extracellular commensals of the nasopharynx (Neisseria meningitidis, Streptococcus pneumoniae and Haemophilus influenzae) or of the digestive tract (Escherichia coli and Streptococcus agalactiae). The particular ability of these pathogens to induce meningitis is related to virulence factors that allow them to escape host innate immunity, to multiply within the serum, and to interact closely with the endothelial front line of defense of the blood–CSF barrier. In vitro studies using microvascular brain endothelial cell lines have shown that induced transcytosis may be a common route used by H. influenzae, S. pneumoniae, E. coli and S. agalactiae to reach the CSF. N. meningitidis is a strict human pathogen that interacts very tightly with endothelial cells. Adhesion of the meningococcus is mediated by type IV pili that induce a localized remodeling of the sub cortical cytoskeleton, leading to the formation of endothelial membrane protrusions that anchor bacterial colonies at the endoluminal face of the endothelial cell membrane, allowing a better resistance to blood flow. Recent work has shown that N. meningitidis is also able to recruit the polarity complex Par3/Par6/aPKC that re-routes endothelial cell adhesion molecules of interendothelial junctions, opening a paracellular route for bacteria to cross the endothelial barrier.  相似文献   

20.
The binding of iodine-labelled plasminogen to Helicobacter pylori CCUG 17874 was characterized. Inhibition of the binding was observed after preincubation of H. pylori cells with nonradiolabelled plasminogen, lysine, or the lysine analogue -aminocaproic acid. Fragments of plasminogen, kringles 1 to 3, kringle 4, and mini-plasminogen, were also studied as potential inhibitors. Mini-plasminogen caused total inhibition of the plasminogen binding, while the other fragments caused only partial inhibition. These findings suggest that H. pylori binds specifically the fifth kringle structure of the plasminogen molecule. Plasminogen binding to H. pylori seems to be independent of culture media and independent of the presence of the cytotoxin-associated CagA antigen. Immunoblot analysis identified two plasminogen binding proteins of 57 and 42 kDa. Scatchard plot analysis revealed one binding mechanism with a Kd value of 7 × 10−7 M. Conversion of H. pylori cell-bound plasminogen to plasmin in the presence of a tissue-type plasminogen activator was demonstrated by digestion of the chromogenic substrate S-2251. No activation was noted when plasminogen or tissue-type plasminogen activator was incubated with H. pylori cells alone. Formation of H. pylori cell surface-bound plasmin may be important to provide a powerful proteolytic mechanism for gastric tissue penetration in type B gastritis and peptic ulcer disease, since plasmin degrades not only fibrin but also extracellular matrix proteins such as various collagens and fibronectin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号