首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The consumption of caffeine (an adenosine receptor antagonist) correlates inversely with depression and memory deterioration, and adenosine A2A receptor (A2AR) antagonists emerge as candidate therapeutic targets because they control aberrant synaptic plasticity and afford neuroprotection. Therefore we tested the ability of A2AR to control the behavioral, electrophysiological, and neurochemical modifications caused by chronic unpredictable stress (CUS), which alters hippocampal circuits, dampens mood and memory performance, and enhances susceptibility to depression. CUS for 3 wk in adult mice induced anxiogenic and helpless-like behavior and decreased memory performance. These behavioral changes were accompanied by synaptic alterations, typified by a decrease in synaptic plasticity and a reduced density of synaptic proteins (synaptosomal-associated protein 25, syntaxin, and vesicular glutamate transporter type 1), together with an increased density of A2AR in glutamatergic terminals in the hippocampus. Except for anxiety, for which results were mixed, CUS-induced behavioral and synaptic alterations were prevented by (i) caffeine (1 g/L in the drinking water, starting 3 wk before and continued throughout CUS); (ii) the selective A2AR antagonist KW6002 (3 mg/kg, p.o.); (iii) global A2AR deletion; and (iv) selective A2AR deletion in forebrain neurons. Notably, A2AR blockade was not only prophylactic but also therapeutically efficacious, because a 3-wk treatment with the A2AR antagonist SCH58261 (0.1 mg/kg, i.p.) reversed the mood and synaptic dysfunction caused by CUS. These results herald a key role for synaptic A2AR in the control of chronic stress-induced modifications and suggest A2AR as candidate targets to alleviate the consequences of chronic stress on brain function.Repeated stress elicits neurochemical and morphological changes that negatively affect brain functioning (1, 2). Thus, repeated stress is a trigger or a risk factor for neuropsychiatric disorders, namely depression, in both humans and animal models (2, 3). Given the absence of effective therapeutic tools, novel strategies to manage the impact of chronic stress are needed, and analyzing particular lifestyles can provide important leads. Notably, caffeine consumption increases in stressful conditions (4) and correlates inversely with the incidence of depression (5, 6) and the risk of suicide (7, 8). However, the molecular targets operated by caffeine to afford these beneficial effects have not been defined.Caffeine is the most widely consumed psychoactive drug. The only molecular targets for caffeine at nontoxic doses are the main adenosine receptors in the brain, namely the inhibitory A1 receptors (A1R) and the facilitatory A2A receptors (A2AR) (9). A2AR blockade affords robust protection against noxious brain conditions (10), an effect that might result from the ability of neuronal A2AR to control aberrant plasticity (11, 12) and synaptotoxicity (1315) or from A2AR’s impact on astrocytes (16) or microglia (17). The protection provided by A2AR blockade prompts the hypothesis that A2AR antagonism may underlie the beneficial effects of caffeine on chronic stress, in accordance with the role of synaptic (18, 19) or glial dysfunction (20) in mood disorders. Thus, A2AR antagonists prolonged escape behavior in two screening tests for antidepressant activity (2123) and prevented maternal separation-induced long-term cognitive impact (12). We combined pharmacological and tissue-selective A2AR transgenic mice (24, 25) to test if neuronal A2AR controlled the modifications caused by chronic unpredictable stress (CUS).  相似文献   

2.
Three subtypes of adenosine receptors (A(1), A(2A) and A(3) ARs) are functionally expressed in cardiomyocytes. Adenosine released during ischemia and ischemia/reperfusion plays a major role in cardioprotection. Phosphatidylinositol 3-kinase (PI-3K)/protein kinase B (PKB) and MEK/ERK1/2 pathways are involved in cell survival. Since the role of these pathways in AR-mediated preconditioning is poorly understood, we have investigated whether PI-3K/PKB and/or MEK1/ERK1/2 pathways are involved in AR-induced cardioprotection in neonatal rat cardiomyocytes. Cells were pre-treated (15 min) with adenosine (non-selective), CPA (A(1)), CGS 21680 (A(2A)) or Cl-IB-MECA (A(3)) before 4 h hypoxia (0.5% O(2)) and 18 h reoxygenation (HX4/R). HX4/R-induced increase in LDH release was significantly reduced by adenosine (70%), CPA (59%) and Cl-IB-MECA (46%). The MEK1 inhibitor PD 98059 suppressed the effects of adenosine, CPA, and Cl-IB-MECA on LDH release, whereas the PI-3K inhibitor wortmannin did not reverse this cardioprotection. Western blotting of phosphorylated ERK1/2 and PKB during HX4/R supported the involvement of ERK1/2 and not PKB in A(1) and A(3) agonist-mediated cardioprotection. In addition, adenosine, CPA and Cl-IB-MECA inhibited HX4/R-induced caspase 3 activity by 75%, 70% and 59%, respectively, and this inhibition was abolished by PD 98059. Interestingly, wortmannin inhibited by 66% the anti-apoptotic response triggered by Cl-IB-MECA but had no effect on adenosine or CPA-induced inhibition of caspase 3. CGS 21680 did not modify cell survival or caspase 3 activity. In conclusion, these data show that the preconditioning effect of adenosine requires A(1) and A(3) but not A(2A) ARs and involves an anti-apoptotic effect via MEK1/ERK1/2 pathway in neonatal rat cardiomyocytes. In addition, A(3)AR-induced preconditioning also involves a PI-3K dependent pathway.  相似文献   

3.
Adenosine A2A receptor (A2AR)-dopamine D2 receptor (D2R) heteromers are key modulators of striatal neuronal function. It has been suggested that the psychostimulant effects of caffeine depend on its ability to block an allosteric modulation within the A2AR-D2R heteromer, by which adenosine decreases the affinity and intrinsic efficacy of dopamine at the D2R. We describe novel unsuspected allosteric mechanisms within the heteromer by which not only A2AR agonists, but also A2AR antagonists, decrease the affinity and intrinsic efficacy of D2R agonists and the affinity of D2R antagonists. Strikingly, these allosteric modulations disappear on agonist and antagonist coadministration. This can be explained by a model that considers A2AR-D2R heteromers as heterotetramers, constituted by A2AR and D2R homodimers, as demonstrated by experiments with bioluminescence resonance energy transfer and bimolecular fluorescence and bioluminescence complementation. As predicted by the model, high concentrations of A2AR antagonists behaved as A2AR agonists and decreased D2R function in the brain.Most evidence indicates that G protein-coupled receptors (GPCRs) form homodimers and heteromers. Homodimers seem to be a predominant species, and oligomeric entities can be viewed as multiples of dimers (1). It has been proposed that GPCR heteromers are constituted mainly by heteromers of homodimers (1, 2). Allosteric mechanisms determine a multiplicity of unique pharmacologic properties of GPCR homodimers and heteromers (1, 3). First, binding of a ligand to one of the receptors in the heteromer can modify the affinity of ligands for the other receptor (1, 3, 4). The most widely reproduced allosteric modulation of ligand-binding properties in a GPCR heteromer is the ability of adenosine A2A receptor (A2AR) agonists to decrease the affinity of dopamine D2 receptor (D2R) agonists in the A2AR-D2R heteromer (5). A2AR-D2R heteromers have been revealed both in transfected cells (6, 7), striatal neurons in culture (6, 8) and in situ, in mammalian striatum (9, 10), where they play an important role in the modulation of GABAergic striatopallidal neuronal function (9, 11).In addition to ligand-binding properties, unique properties for each GPCR oligomer emerge in relation to the varying intrinsic efficacy of ligands for different signaling pathways (13). Intrinsic efficacy refers to the power of the agonist to induce a functional response, independent of its affinity for the receptor. Thus, allosteric modulation of an agonist can potentially involve changes in affinity and/or intrinsic efficacy (1, 3). This principle can be observed in the A2AR-D2R heteromer, where a decrease in D2R agonist affinity cannot alone explain the ability of an A2AR agonist to abolish the decreased excitability of GABAergic striatopallidal neurons induced by high concentration of a D2R agonist (9), which should overcome the decrease in affinity. Furthermore, a differential effect of allosteric modulations of different agonist-mediated signaling responses (i.e., functional selectivity) can occur within GPCR heteromers (1, 2, 8). Again, the A2AR-D2R heteromer provides a valuable example. A recent study has shown that different levels of intracellular Ca2+ exert different modulations of A2AR-D2R heteromer signaling (8). This depends on the ability of low and high Ca2+ to promote a selective interaction of the heteromer with different Ca2+-binding proteins, which differentially modulate allosteric interactions in the heteromer (8).It has been hypothesized that the allosteric interactions between A2AR and D2R agonists within the A2AR-D2R heteromer provide a mechanism responsible not only for the depressant effects of A2AR agonists, but also for the psychostimulant effects of adenosine A2AR antagonists and the nonselective adenosine receptor antagonist caffeine (9, 11, 12), with implications for several neuropsychiatric disorders (13). In fact, the same mechanism has provided the rationale for the use of A2AR antagonists in patients with Parkinson’s disease (13, 14). The initial aim of the present study was to study in detail the ability of caffeine to counteract allosteric modulations between A2AR and D2R agonists (affinity and intrinsic efficacy) within the A2AR-D2R heteromer. Unexpectedly, when performing control radioligand-binding experiments, not only an A2AR agonist, but also caffeine, significantly decreased D2R agonist binding. However, when coadministered, the A2AR agonist and caffeine co-counteracted their ability to modulate D2R agonist binding. By exploring the molecular mechanisms behind these apparent inconsistencies, the present study provides new insight into the quaternary structure and function of A2AR-D2R heteromers.  相似文献   

4.
Although protein kinase C (PKC) plays a key role in ischemic preconditioning (IPC), the actual mechanism of that protection is unknown. We recently found that protection from IPC requires activation of adenosine receptors during early reperfusion. We, therefore, hypothesized that PKC might act to increase the heart's sensitivity to adenosine. IPC limited infarct size in isolated rabbit hearts subjected to 30-min regional ischemia/2-h reperfusion and IPC's protection was blocked by the PKC inhibitor chelerythrine given during early reperfusion revealing involvement of PKC at reperfusion. Similarly chelerythrine infused in the early reperfusion period blocked the increased phosphorylation of the protective kinases Akt and ERK1/2 observed after IPC. Infusing phorbol 12-myristate 13-acetate (PMA), a PKC activator, during early reperfusion mimicked IPC's protection. As expected, the protection triggered by PMA at reperfusion was blocked by chelerythrine, but surprisingly it was also blocked by MRS1754, an adenosine A(2b) receptor-selective antagonist, suggesting that PKC was somehow facilitating signaling from the A(2b) receptors. NECA [5'-(N-ethylcarboxamido) adenosine], a potent but not selective A(2b) receptor agonist, increased phosphorylation of Akt and ERK1/2 in a dose-dependent manner. Pretreating hearts with PMA or brief preconditioning ischemia had no effect on phosphorylation of Akt or ERK1/2 per se but markedly lowered the threshold for NECA to induce their phosphorylation. BAY 60-6583, a highly selective A(2b) agonist, also caused phosphorylation of ERK1/2 and Akt. MRS1754 prevented phosphorylation induced by BAY 60-6583. BAY 60-6583 limited infarct size when given to ischemic hearts at reperfusion. These results suggest that activation of cardiac A(2b) receptors at reperfusion is protective, but because of the very low affinity of the receptors endogenous cardiac adenosine is unable to trigger their signaling. We propose that the key protective event in IPC occurs when PKC increases the heart's sensitivity to adenosine so that endogenous adenosine can activate A(2b)-dependent signaling.  相似文献   

5.
AIM: To explore the relationship between gastric and intestinal microcirculatory impairment and inflammatory mediators released in rats with acute necrotizing pancreatitis (ANP). METHODS: A total of 64 rats were randomized into control group and ANP group. ANP model was induced by injection of 5% sodium taurocholate under the pancreatic membrane. Radioactive biomicrosphere technique was used to measure the gastric and intestinal tissue blood flow at 2 and 12 h after the induction of ANP, meanwhile serum phospholipase A2 (PLA2) activities and interleukin-lβ levels were determined. Pathologic changes in pancreas, gastric and intestinal mucosae were studied. RESULTS: The gastric blood flow in ANP group (0.62±0.06and 0.35±0.05) mL/(min·g) was significantly lower than that in control group (0.86±0.11 and 0.85±0.06) mL/(min·g) (P<0.01) at 2 and 12 h after induction of ANP. The intestinal blood flow in ANP group (0.80±0.07 and 0.50±0.06) mL/(min·g) was significantly lower than that in control group (1.56±0.18 and 1.61±0.11) mL/(min·g) (P<0.01). Serum PLA2 activities (94.29±9.96 and 103.71±14.40) U/L and IL-Iβ levels (0.78±0.13 and 0.83±0.20) μg/Lin ANP group were higher than those in control group (65.27±10.52 and 66.63±9.81) U/L, (0.32±0.06 and 0.33±0.07)μg/L (P<0.01). At 2 and 12 h after introduction of the model, typical pathologic changes were found in ANP. Compared with control group, the gastric and intestinal mucosal pathologic changes were aggravated significantly (P<0.01) at 12 h after induction of ANP. Gastric and intestinal mucosal necrosis, multiple ulcer and hemorrhage occurred. CONCLUSION: Decrease of gastric and intestinal blood flow and increase of inflammatory mediators occur simultaneously early in ANP, both of them are importantpat hogenic factors for gastric and intestinal mucosal injury in ANP.  相似文献   

6.
It is well established that adenosine receptors are involved in cardioprotection and that protein kinase B (PKB) is associated with cell survival. Therefore, in this study we have investigated whether adenosine receptors (A(1), A(2A) and A(3)) activate PKB by Western blotting and determined the involvement of phosphatidylinositol 3-kinase (PI-3K)/PKB in adenosine-induced preconditioning in cultured newborn rat cardiomyocytes. Adenosine (non-selective agonist), CPA (A(1) selective agonist) and Cl-IB-MECA (A(3) selective agonist) all increased PKB phosphorylation in a time- and concentration-dependent manner. The combined maximal response to CPA and Cl-IB-MECA was similar to the increase in PKB phosphorylation induced by adenosine alone. CGS 21680 (A(2A) selective agonist) did not stimulate an increase in PKB phosphorylation. Adenosine, CPA and Cl-IB-MECA-mediated PKB phosphorylation were inhibited by pertussis toxin (PTX blocks G(i)/G(o)-protein), genistein (tyrosine kinase inhibitor), PP2 (Src tyrosine kinase inhibitor) and by the epidermal growth factor (EGF) receptor tyrosine kinase inhibitor AG 1478. The PI-3K inhibitors wortmannin and LY 294002 blocked A(1) and A(3) receptor-mediated PKB phosphorylation. The role of PI-3K/PKB in adenosine-induced preconditioning was assessed by monitoring Caspase 3 activity and lactate dehydrogenase (LDH) release induced by exposure of cardiomyocytes to 4 h hypoxia (0.5% O(2)) followed by 18 h reoxygenation (HX4/R). Pre-treatment with wortmannin had no significant effect on the ability of adenosine-induced preconditioning to reduce the release of LDH or Caspase 3 activation following HX4/R. In conclusion, we have shown for the first time that adenosine A(1) and A(3) receptors trigger increases in PKB phosphorylation in rat cardiomyocytes via a G(i)/G(o)-protein and tyrosine kinase-dependent pathway. However, the PI-3K/PKB pathway does not appear to be involved in adenosine-induced cardioprotection by preconditioning.  相似文献   

7.
Cardiovascular complications are one of the major factors for early mortality in the present worldwide scenario and have become a major challenge in both developing and developed nations. It has thus become of immense importance to look for different therapeutic possibilities and treatments for the growing burden of cardiovascular diseases. Recent advancements in research have opened various means for better understanding of the complication and treatment of the disease. Adenosine receptors have become tool of choice in understanding the signaling mechanism which might lead to the cardiovascular complications. Adenosine A3 receptor is one of the important receptor which is extensively studied as a therapeutic target in cardiovascular disorder. Recent studies have shown that A3AR is involved in the amelioration of cardiovascular complications by altering the expression of A3AR. This review focuses towards the therapeutic potential of A3AR involved in cardiovascular disease and it might help in better understanding of mechanism by which this receptor may prove useful in improving the complications arising due to various cardiovascular diseases. Understanding of A3AR signaling may also help to develop newer agonists and antagonists which might be prove helpful in the treatment of cardiovascular disorder.  相似文献   

8.
Higher-level cognitive processes strongly depend on a complex interplay between mediodorsal thalamus nuclei and the prefrontal cortex (PFC). Alteration of thalamofrontal connectivity has been involved in cognitive deficits of schizophrenia. Prefrontal serotonin (5-HT)2A receptors play an essential role in cortical network activity, but the mechanism underlying their modulation of glutamatergic transmission and plasticity at thalamocortical synapses remains largely unexplored. Here, we show that 5-HT2A receptor activation enhances NMDA transmission and gates the induction of temporal-dependent plasticity mediated by NMDA receptors at thalamocortical synapses in acute PFC slices. Expressing 5-HT2A receptors in the mediodorsal thalamus (presynaptic site) of 5-HT2A receptor-deficient mice, but not in the PFC (postsynaptic site), using a viral gene-delivery approach, rescued the otherwise absent potentiation of NMDA transmission, induction of temporal plasticity, and deficit in associative memory. These results provide, to our knowledge, the first physiological evidence of a role of presynaptic 5-HT2A receptors located at thalamocortical synapses in the control of thalamofrontal connectivity and the associated cognitive functions.The prefrontal cortex (PFC) is a brain region critical for many high-level cognitive processes, such as executive functions, attention, and working and contextual memories (1). Pyramidal neurons located in layer V of the PFC integrate excitatory glutamatergic inputs originating from both cortical and subcortical areas. The latter include the mediodorsal thalamus (MD) nuclei, which project densely to the medial PFC (mPFC) and are part of the neuronal network underlying executive control and working memory (24). Disruption of this network has been involved in cognitive symptoms of psychiatric disorders, such as schizophrenia (3, 5). These symptoms severely compromise the quality of life of patients and remain poorly controlled by currently available antipsychotics (3, 6).The PFC is densely innervated by serotonin (5-hydroxytryptamine, 5-HT) neurons originating from the dorsal and median raphe nuclei and numerous lines of evidence indicate a critical role of 5-HT in the control of emotional and cognitive functions depending on PFC activity (7, 8). The modulatory action of 5-HT reflects its complex pattern of effects on cortical network activity, depending on the 5-HT receptor subtypes involved, and on receptor localization in pyramidal neurons, GABAergic interneurons or nerve terminals of afferent neurons.Among the 14 5-HT receptor subtypes, the 5-HT2A receptor is a Gq protein-coupled receptor (9, 10) particularly enriched in the mPFC, with a predominant expression in apical dendrites of layer V pyramidal neurons (1114). Moreover, a low proportion of 5-HT2A receptors was detected presynaptically on thalamocortical fibers (12, 1517).Activation of 5-HT2A receptors exerts complex effects upon the activity of the PFC network (18). The most prominent one is an increase in pyramidal neuron excitability, which likely results from the inhibition of slow calcium-activated after hyperpolarization current (19). 5-HT2A receptor stimulation also increases the frequency and amplitude of spontaneous excitatory postsynaptic currents (sEPSCs) in pyramidal neurons (1922). The prevailing view is that postsynaptic 5-HT2A receptors expressed on pyramidal neurons located in layer V are key modulators of glutamatergic PFC network activity (14, 2124). However, the role of presynaptic 5-HT2A receptors located on thalamic afferents in the modulation of glutamatergic transmission at thalamocortical synapses remains unexplored.Here, we addressed this issue by combining electrophysiological recordings in acute PFC slices with viral infections to specifically rescue the expression of 5-HT2A receptors at the presynaptic site (MD) or postsynaptic site (PFC) in 5-HT2A receptor-deficient (5-HT2A−/−) mice (25). We focused our study on NMDA transmission in line with previous findings indicating that many symptoms of schizophrenia might arise from modifications in PFC connectivity involving glutamatergic transmission at NMDA receptors (26, 27). To our knowledge, we provide the first direct evidence that stimulation of presynaptic 5-HT2A receptors at thalamocortical synapses gates the induction of spike timing-dependent long-term depression (t-LTD) by facilitating the activation of presynaptic NMDA receptors at these synapses. In line with the role of t-LTD in associative learning (28), these studies were extended by behavioral experiments to explore the role of presynaptic 5-HT2A receptors at thalamocortical synapses in several paradigms of episodic-like memory.  相似文献   

9.
We aimed to test if stimulation of both adenosine A2A and A2B receptors is required to produce an effective cardioprotection against reperfusion injury. Isolated rat hearts were subjected to 30-min regional ischemia followed by 2 h of reperfusion. The adenosine A1/A2 receptor agonist 5′-(N-ethylcarboxamido) adenosine (NECA) given at reperfusion reduced infarct size, an effect that was reversed by both the adenosine A2A antagonist SCH58261 and the A2B antagonist MRS1706. The A2B agonist BAY 60-6583 but not the selective A2A agonist CGS21680 reduced infarct size. Interestingly, a combination of BAY 60-6583 and CGS21680 further reduced infarct size. These results suggest that both A2A and A2B receptors are involved in NECA's anti-infarct effect at reperfusion. NECA attenuated mitochondrial swelling upon reperfusion and this was blocked by both SCH58261 and MRS1706, indicating that activation of A2 receptors with NECA can modulate reperfusion-induced mitochondrial permeability transition pore (mPTP) opening. In support, NECA also prevented oxidant-induced loss of mitochondrial membrane potential (ΔΨm) and matrix Ca2+ overload in cardiomyocytes via both the A2 receptors. In addition, NECA increased mitochondrial glycogen synthase kinase-3β (GSK-3β) phosphorylation upon reperfusion and this was again blocked by SCH58261 and MRS1706. In conclusion, A2A and A2B receptors work in concert to prevent reperfusion injury in rat hearts treated with NECA. NECA may protect the heart by modulating the mPTP opening through inactivating mitochondrial GSK-3β. A simultaneous stimulation of A2A and A2B receptors at reperfusion is required to produce a strong cardioprotection against reperfusion injury.  相似文献   

10.
BACKGROUND & AIMS: We studied whether administration of nitroflurbiprofen (HCT-1026), a cyclooxygenase inhibitor with nitric oxide (NO)-donating properties, modulates the increased intrahepatic vascular tone in portal hypertensive cirrhotic rats. METHODS: In vivo hemodynamic measurements (n = 8/condition) and evaluation of the increased intrahepatic resistance by in situ perfusion (n = 5/condition) were performed in rats with thioacetamide-induced cirrhosis that received either nitroflurbiprofen (45 mg/kg), flurbiprofen (30 mg/kg, equimolar concentration to nitroflurbiprofen), or vehicle by intraperitoneal injection 24 hours and 1 hour prior to the measurements. Additionally, we evaluated the effect of acute administration of both drugs (250 micromol/L) on the intrahepatic vascular tone in the in situ perfused cirrhotic rat liver (endothelial dysfunction and hyperresponsiveness to methoxamine) and on hepatic stellate cell contraction in vitro. Typical systemic adverse effects of nonsteroidal anti-inflammatory drugs, such as gastrointestinal ulceration, renal insufficiency, and hepatotoxicity, were actively explored. RESULTS: In vivo, nitroflurbiprofen and flurbiprofen equally decreased portal pressure (8 +/- 0.8 and 8.4 +/- 0.1 mm Hg, respectively, vs 11.8 +/- 0.6 mm Hg) and reduced the total intrahepatic vascular resistance. Systemic hypotension was not aggravated in the different treatment groups (P = .291). In the perfused cirrhotic liver, both drugs improved endothelial dysfunction and hyperresponsiveness. This was associated with a decreased hepatic thromboxane A(2)-production and an increased intrahepatic nitrate/nitrite level. In vitro, nitroflurbiprofen, more than flurbiprofen, decreased hepatic stellate cells contraction. Flurbiprofen-treated rats showed severe gastrointestinal ulcerations (bleeding in 3/8 rats) and nefrotoxicity, which was not observed in nitroflurbiprofen-treated cirrhotic rats. CONCLUSIONS: Treatment with nitroflurbiprofen, an NO-releasing cyclooxygenase inhibitor, improves portal hypertension without major adverse effects in thioacetamide-induced cirrhotic rats by attenuating intrahepatic vascular resistance, endothelial dysfunction, and hepatic hyperreactivity to vasoconstrictors.  相似文献   

11.
We tested the following hypothesis: if carotid body blood flow, and hence the relationship of the frequency of discharge in chemoreceptor afferent fibres to arterial PO2, were affected by atherosclerotic change, then a modification of the control of the respiratory and cardiovascular systems might result. Carotid body reflexes were therefore studied in conscious atherosclerotic rabbits and a control group of normal animals breathing 100% O2, three hypoxic gas mixtures to which was added sufficient CO2 to maintain the arterial PCO2 constant, and 2% and 4% CO2 in 21% O2 and N2. When breathing room air, the atherosclerotic rabbits breathed at a higher respiratory frequency and lower tidal volume than the normal animals, although there was no difference in the respiratory minute volume. The respiratory and cardiovascular responses to hyperoxia, isocapnic hypoxia and hypercapnia were essentially the same in both groups of animals. Serial sections of the carotid bodies showed pathological changes including interstitial fibrosis in the caudal part with interstitial haemorrhages. The proximal part of the ascending pharyngeal artery, the vessel supplying the organ, and its origin from the external carotid, and the arterioles in the caudal part of the carotid body were nearly always occluded to a varying extent by atheromatous plaques. The capillaries appeared normal under light microscopy. The rostral-caudal lengths of the carotid bodies were similar in the two groups. We conclude that the peripheral arterial chemoreceptor responses in atherosclerotic rabbits are relatively normal even though the arteries to, and arterioles within, the carotid body are partly occluded.  相似文献   

12.
The cupredoxin fold is an important motif in numerous proteins that are central to several critical cellular processes ranging from aerobic and anaerobic respiration to catalysis and iron homeostasis. Three types of copper sites have been found to date within cupredoxin folds: blue type 1 (T1) copper, red type 2 (T2) copper, and purple Cu(A). Although as much as 90% sequence difference has been observed among some members of this superfamily of proteins that span several kingdoms, sequence alignment and phylogenic trees strongly suggest an evolutionary link and common ancestry. However, experimental evidence for such a link has been lacking. We report herein the observation of pH-dependent transformation between blue T1 copper, red T2 copper, and the native purple Cu(A) centers of nitrous oxide reductase (N2OR) from Paracoccus denitrificans. The blue and red copper centers form initially before they are transformed into purple Cu(A) center. This transformation process is pH-dependent, with lower pH resulting in fewer trapped T1 and T2 coppers and faster transition to purple Cu(A). These observations suggest that the purple Cu(A) site contains the essential elements of T1 and T2 copper centers and that the Cu(A) center is preferentially formed at low pH. Therefore, this work provides an underlying link between the various cupredoxin copper sites and possible experimental evidence in vitro for the evolutionary relationship between the cupredoxin proteins. The findings also lend physiological relevance to cupredoxin site biosynthesis.  相似文献   

13.
It has been suggested that alterations in Na(+),K(+)-ATPase mediate the development of several aging-related pathologies, such as hypertension and diabetes. Thus, we evaluated Na(+),K(+)-ATPase function and H(2)O(2) production in the renal cortex and medulla of Wistar Kyoto (WKY) rats at 13, 52 and 91 weeks of age. Creatinine clearance, proteinuria, urinary excretion of Na(+) and K(+) and fractional excretion of Na(+) were also determined. The results show that at 91 weeks old WKY rats had increased creatinine clearance and did not have proteinuria. Despite aging having had no effect on urinary Na(+) excretion, urinary K(+) excretion was increased and fractional Na(+) excretion was decreased with age. In renal proximal tubules and isolated renal cortical cells, 91 week old rats had decreased Na(+),K(+)-ATPase activity when compared to 13 and 52 week old rats. In renal medulla, 91 week old rats had increased Na(+),K(+)-ATPase activity, paralleled by an increase in protein expression of α(1)-subunit of Na(+),K(+)-ATPase. In addition, renal H(2)O(2) production increased with age and at 91 weeks of age renal medulla H(2)O(2) production was significantly higher than renal cortex production. The present work demonstrates that although at 91 weeks of age WKY rats were able to maintain Na(+) homeostasis, aging was accompanied by alterations in renal Na(+),K(+)-ATPase function. The observed increase in oxidative stress may account, in part, for the observed changes. Possibly, altered Na(+),K(+)-ATPase renal function may precede the development of age-related pathologies and loss of renal function.  相似文献   

14.
Diisopropyl fluorophosphate (DFP) causes neurotoxicity related to an irreversible inhibition of acetylcholinesterase (AChE). Management of this intoxication includes: (i) pretreatment with reversible blockers of AChE, (ii) blockade of muscarinic receptors with atropine, and (iii) facilitation of GABAA receptor signal transduction by benzodiazepines. The major disadvantage associated with this treatment combination is that it must to be repeated frequently and, in some cases, protractedly. Also, the use of diazepam (DZP) and congeners includes unwanted side effects, including sedation, amnesia, cardiorespiratory depression, and anticonvulsive tolerance. To avoid these treatment complications but safely protect against DFP-induced seizures and other CNS toxicity, we adopted the strategy of administering mice with (i) small doses of huperzine A (HUP), a reversible and long-lasting (half-life ≈5 h) inhibitor of AChE, and (ii) imidazenil (IMI), a potent positive allosteric modulator of GABA action selective for α5-containing GABAA receptors. Coadministration of HUP (50 μg/kg s.c., 15 min before DFP) with IMI (2 mg/kg s.c., 30 min before DFP) prevents DFP-induced convulsions and the associated neuronal damage and mortality, allowing complete recovery within 18–24 h. In HUP-pretreated mice, the ED50 of IMI to block DFP-induced mortality is ≈10 times lower than that of DZP and is devoid of sedation. Our data show that a combination of HUP with IMI is a prophylactic, potent, and safe therapeutic strategy to overcome DFP toxicity.  相似文献   

15.
Abstract

Objective. We previously showed that activation of GABAB receptors by intravenous baclofen reduces pseudo-affective responses to colorectal distension in rats. Here we evaluate the potential clinical significance of these observations. Material and Methods. Clinically relevant colorectal distension protocols were used to assess the effects of oral baclofen on visceromotor and autonomic cardiovascular responses in conscious rats. Plasma levels of baclofen were monitored to provide clinical relevance to the doses used. Conscious female Sprague–Dawley rats were subjected to repeated noxious colorectal distension (12 × 80 mmHg), ascending-phasic colorectal distension (10–80 mmHg, 10 mmHg increments) or ramp colorectal distension (10 min ramp at 8 mmHg/min). Visceromotor and cardiovascular responses (mean arterial blood pressure and heart rate) were monitored. Pain-related response thresholds were assessed using ascending-phasic and ramp colorectal distension. Results. Baclofen (1–10 μmol/kg, p.o.) reduced the visceromotor response to colorectal distension, reaching a 40% maximal inhibition (p < 0.05). The highest dose (10 μmol/kg, p.o.) also inhibited pain-related cardiovascular responses in telemetrized rats (50–55% reduction in colorectal distension-evoked hypertensive and tachycardic responses; p < 0.05). Similar thresholds for pain-related visceromotor responses were determined during ramp or ascending-phasic colorectal distension (34.1 ± 1.9 and 31.7 ± 3.2 mmHg, respectively). Baclofen (10 μmol/kg, p.o.) increased thresholds to 71.1 ± 3.7 and 77.5 ± 1.8 mmHg during ramp and ascending-phasic colorectal distension, respectively (p < 0.001). Plasma levels of baclofen were 3.3 ± 0.2 μmol/l at 90 min post-dosing, corresponding to the end of the colorectal distension procedure. Conclusions. Oral baclofen, at plasma levels similar to those reported safe and within a therapeutic range in humans, produced significant visceral anti-nociceptive effects in rats.  相似文献   

16.
《Platelets》2013,24(5):344-351
Prostaglandin E2 (PGE2) has intriguing effects on platelet function in the presence of agents that raise cyclic adenosine 3′5′-monophosphate (cAMP). PGE2 reverses inhibition of platelet aggregation by agents that stimulate cAMP production via a Gs-linked receptor, but adds to the inhibition of platelet function brought about by agents that raise cAMP through other mechanisms. Here, we used the EP receptor antagonists DG-041 (which acts at the EP3 receptor) and ONO-AE3-208 (which acts at the EP4 receptor) to investigate the role of these receptors in mediating these effects of PGE2. Platelet aggregation was measured in platelet-rich plasma obtained from healthy volunteers in response to adenosine diphosphate (ADP) using single platelet counting. The effects of a range of concentrations of PGE2 were determined in the presence of (1) the prostacyclin mimetic iloprost, which operates through Gs-linked IP receptors, (2) the cAMP PDE inhibitor DN9693 and (3) the direct-acting adenylate cyclase stimulator forskolin. Vasodilator-stimulated phosphoprotein (VASP) phosphorylation was also determined as a measure of cAMP. PGE2 reversed the inhibition of aggregation brought about by iloprost; this was prevented in the presence of the EP3 antagonist DG-041, indicating that this effect of PGE2 is mediated via the EP3 receptor. In contrast, PGE2 added to the inhibition of aggregation brought about by DN9693 or forskolin; this was reversed by the EP4 antagonist ONO-AE3-208, indicating that this effect of PGE2 is mediated via the EP4 receptor. Effects on aggregation were accompanied by corresponding changes in VASP phosphorylation. The dominant role of EP3 receptors circumstances where cAMP is increased through a Gs-linked mechanism may be relevant to the situation in vivo where platelets are maintained in an inactive state through constant exposure to prostacyclin, and thus the main effect of PGE2 may be prothrombotic. If so, the results described here further support the potential use of an EP3 receptor antagonist in the control of atherothrombosis.  相似文献   

17.
Cannabinoid CB2 receptors (CB2Rs) have been recently reported to modulate brain dopamine (DA)-related behaviors; however, the cellular mechanisms underlying these actions are unclear. Here we report that CB2Rs are expressed in ventral tegmental area (VTA) DA neurons and functionally modulate DA neuronal excitability and DA-related behavior. In situ hybridization and immunohistochemical assays detected CB2 mRNA and CB2R immunostaining in VTA DA neurons. Electrophysiological studies demonstrated that activation of CB2Rs by JWH133 or other CB2R agonists inhibited VTA DA neuronal firing in vivo and ex vivo, whereas microinjections of JWH133 into the VTA inhibited cocaine self-administration. Importantly, all of the above findings observed in WT or CB1−/− mice are blocked by CB2R antagonist and absent in CB2−/− mice. These data suggest that CB2R-mediated reduction of VTA DA neuronal activity may underlie JWH133''s modulation of DA-regulated behaviors.The presence of functional cannabinoid CB2 receptors (CB2Rs) in the brain has been controversial. When CB2Rs were first cloned, in situ hybridization (ISH) failed to detect CB2 mRNA in brain (1). Similarly, Northern blot and polymerase chain reaction (PCR) assays failed to detect CB2 mRNA in brain (25). Therefore, CB2Rs were considered “peripheral cannabinoid receptors” (1, 6).In contrast, other studies using ISH and radioligand binding assays detected CB2 mRNA and receptor binding in rat retina (7), mouse cerebral cortex (8), and hippocampus and striatum of nonhuman primates (9). More recent studies using RT-PCR also detected CB2 mRNA in the cortex, striatum, hippocampus, amygdala, and brainstem (914). Immunoblot and immunohistochemistry (IHC) assays detected CB2R immunoreactivity or immunostaining in various brain regions (13, 1520). The specificities of the detected CB2R protein and CB2-mRNA remain questionable, however, owing to a lack of controls using CB1−/− and CB2−/− mice in most previous studies (21). A currently accepted view is that brain CB2Rs are expressed predominantly in activated microglia during neuroinflammation, whereas brain neurons, except for a very small number in the brainstem, lack CB2R expression (21).On the other hand, we recently reported that brain CB2Rs modulate cocaine self-administration and cocaine-induced increases in locomotion and extracellular dopamine (DA) in the nucleus accumbens in mice (22). This finding is supported by recent studies demonstrating that systemic administration of the CB2R agonist O-1966 inhibited cocaine-induced conditioned place preference in WT mice, but not in CB2−/− mice (23), and that increased CB2R expression in mouse brain attenuates cocaine self-administration and cocaine-enhanced locomotion (19). In addition, brain CB2Rs may be involved in several DA-related CNS disorders, such as Parkinson’s disease (24), schizophrenia (25), anxiety (26), and depression (27). The cellular mechanisms underlying CB2R modulation of DA-related behaviors and diseases are unclear, however. Given that midbrain DA neurons of the ventral tegmental area (VTA) play an important role in mediating the reinforcing and addictive effects of drugs of abuse (28, 29), we hypothesized that brain CB2Rs, similar to other G protein-coupled receptors, are expressed in VTA DA neurons, where they modulate DA neuronal function and DA-related behaviors.In the present study, we tested this hypothesis using multiple approaches. We first assayed for CB2 mRNA and protein expression in brain and in VTA DA neurons using quantitative RT-PCR (qRT-PCR), ISH, and double-label IHC techniques. We then examined the effects of the selective CB2R agonist JWH133 and several other CB2R agonists on VTA DA neuronal firing in both ex vivo and in vivo preparations using electrophysiological methods. Finally, we observed the effects of microinjections of JWH133 into the VTA on intravenous cocaine self-administration to study whether activation of VTA CB2Rs modulates DA-dependent behavior. This multidisciplinary approach has provided evidence of functional CB2Rs in VTA DA neurons. Importantly, all findings observed in WT or CB1−/− mice were blocked by a CB2R antagonist and/or absent in CB2−/− mice, suggesting that CB2Rs expressed in VTA DA neurons play an important role in modulating DA neuronal activity and DA-related functions.  相似文献   

18.
A single bout of acute exercise increases oxidative stress and stimulates a transient increase in antioxidant enzymes. We asked whether this response would induce protection from a subsequent oxidative challenge, different from that of exercise, and whether the effects were affected by aging. We compared young (20 ± 1 years, n = 8) and older (58 ± 6 years, n = 9) healthy men and women. Resistance to oxidative stress was measured by the F2-isoprostane response to forearm ischemia/reperfusion (I/R) trial. Each participant underwent the I/R trial twice, in random order; once after performing 45 min of cycling on the preceding day (IRX) and a control trial without any physical activity (IRC). Baseline F2-isoprostane levels were significantly lower at IRX compared to IRC (P < 0.05) and not different between groups. F2-isoprostane response to IRX was significantly lower compared to IRC in young (P < 0.05) but not different in the older group. Superoxide dismutase activity in response to acute exercise was significantly higher in young compared to older adults (P < 0.05). These data suggest that signal transduction of acute exercise may be impaired with aging. Repeated bouts of transient reactive oxygen species production as seen with regular exercise may be needed to increase resistance to oxidative stress in older individuals.  相似文献   

19.
20.
Hemoglobinopathies are common genetic disorders of haemoglobin. Identification of these disorders is immensely important epidemiologically and they can be prevented by population screening. The present study was carried out to evaluate the spectrum of hemoglobinopathies in the state of West Bengal by the cation-exchange high-performance liquid chromatography (CE-HPLC). A retrospective, single-center, cross-sectional study was conducted on consecutive 10,407 participants. Out of 10,407 subjects, 8,898 (85.5 %) were diagnosed as normal, 579 (5.6 %) were as β-thalassemia trait (BTT) and 522 (5.0 %) were detected as HbE carrier on HPLC study. Apart from BTT and HbE carrier ten additional variants were encountered. The present study showed that CE-HPLC is a convenient, high-throughput, labour-saving and objective screening tool for early detection and management of hemoglobinopathies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号