首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
N-desethyl sunitinib is a major and pharmacologically active metabolite of the tyrosine kinase inhibitor and anticancer drug sunitinib. Because the combination of N-desethyl sunitinib and sunitinib represents total active drug exposure, we investigated the impact of several multidrug efflux transporters on plasma pharmacokinetics and brain accumulation of N-desethyl sunitinib after sunitinib administration to wild-type and transporter knockout mice. In vitro, N-desethyl sunitinib was a good transport substrate of human ABCB1 and ABCG2 and murine Abcg2, but not ABCC2 or Abcc2. At 5 μM, ABCB1 and ABCG2 contributed almost equally to N-desethyl sunitinib transport. In vivo, the systemic exposure of N-desethyl sunitinib after oral dosing of sunitinib malate (10 mg/kg) was unchanged when Abcb1 and/or Abcg2 were absent. However, brain accumulation of N-desethyl sunitinib was markedly increased (13.7-fold) in Abcb1a/1b(-/-)/Abcg2(-/-) mice, but not in Abcb1a/1b(-/-) or Abcg2(-/-) mice. In the absence of the ABCB1 and ABCG2 inhibitor elacridar, brain concentrations of N-desethyl sunitinib were detectable only in Abcb1a/1b(-/-)/Abcg2(-/-) mice after sunitinib administration. Combined elacridar plus N-desethyl sunitinib treatment increased N-desethyl sunitinib plasma and brain exposures, but not brain-to-plasma ratios in wild-type mice. In conclusion, brain accumulation of N-desethyl sunitinib is effectively restricted by both Abcb1 and Abcg2. The effect of elacridar treatment in improving brain accumulation of N-desethyl sunitinib in wild-type mice was limited compared with its effect on sunitinib brain accumulation.  相似文献   

2.
ABCG2 is a transporter with potential importance in cancer drug resistance, drug oral absorption, and stem cell biology. In an effort to identify novel inhibitors of ABCG2, we examined the ability of commercially available bisindolylmaleimides (BIM) and indolocarbazole protein kinase inhibitors (PKI) to inhibit ABCG2, given the previous demonstration that the indolocarbazole PKI UCN-01 interacted with the transporter. At a concentration of 10 micromol/L, all of the compounds tested increased intracellular fluorescence of the ABCG2-specific substrate pheophorbide a in ABCG2-transfected HEK-293 cells by 1.3- to 6-fold as measured by flow cytometry; the ABCG2-specific inhibitor fumitremorgin C increased intracellular fluorescence by 6.6-fold. In 4-day cytotoxicity assays, wild-type ABCG2-transfected cells were not more than 2-fold resistant to any of the compounds, suggesting that the PKIs are not significantly transported by ABCG2. BIMs I, II, III, IV, and V, K252c, and arcyriaflavin A were also able to inhibit [(125)I]iodoarylazidoprazosin labeling of ABCG2 by 65% to 80% at 20 micromol/L, compared with a 50% to 70% reduction by 20 micromol/L fumitremorgin C. K252c and arcyriaflavin A were the most potent compounds, with IC(50) values for inhibition of [(125)I]iodoarylazidoprazosin labeling of 0.37 and 0.23 micromol/L, respectively. K252c and arcyriaflavin A did not have any effect on the ATPase activity of ABCG2. Four minimally toxic compounds--BIM IV, BIM V, arcyriaflavin A, and K252c-reduced the relative resistance of ABCG2-transfected cells to SN-38 in cytotoxicity assays. We find that indolocarbazole and BIM PKIs directly interact with the ABCG2 protein and may thus increase oral bioavailability of ABCG2 substrates.  相似文献   

3.
Curcumin (curcumin I), demethoxycurcumin (curcumin II), and bisdemethoxycurcumin (curcumin III) are the major forms of curcuminoids found in the turmeric powder, which exhibit anticancer, antioxidant, and anti-inflammatory activities. In this study, we evaluated the ability of purified curcuminoids to modulate the function of either the wild-type 482R or the mutant 482T ABCG2 transporter stably expressed in HEK293 cells and drug-selected MCF-7 FLV1000 and MCF-7 AdVp3000 cells. Curcuminoids inhibited the transport of mitoxantrone and pheophorbide a from ABCG2-expressing cells. However, both cytotoxicity and [(3)H]curcumin I accumulation assays showed that curcuminoids are not transported by ABCG2. Nontoxic concentration of curcumin I, II, and III sensitized the ABCG2-expressing cells to mitoxantrone, topotecan, SN-38, and doxorubicin. This reversal was not due to reduced expression because ABCG2 protein levels were unaltered by treatment with 10 mumol/L curcuminoids for 72 hours. Curcumin I, II, and III stimulated (2.4- to 3.3-fold) ABCG2-mediated ATP hydrolysis and the IC(50)s were in the range of 7.5 to 18 nmol/L, suggesting a high affinity of curcuminoids for ABCG2. Curcuminoids also inhibited the photolabeling of ABCG2 with [(125)I]iodoarylazidoprazosin and [(3)H]azidopine as well as the transport of these two substrates in ABCG2-expressing cells. Curcuminoids did not inhibit the binding of [alpha-(32)P]8-azidoATP to ABCG2, suggesting that they do not interact with the ATP-binding site of the transporter. Collectively, these data show that, among curcuminoids, curcumin I is the most potent modulator of ABCG2 and thus should be considered as a treatment to increase the efficacy of conventional chemotherapeutic drugs.  相似文献   

4.
Wei Y  Ma Y  Zhao Q  Ren Z  Li Y  Hou T  Peng H 《Molecular cancer therapeutics》2012,11(8):1693-1702
Human ABCG2, a member of the ATP-binding cassette transporter superfamily, represents a promising target for sensitizing MDR in cancer chemotherapy. Although lots of ABCG2 inhibitors were identified, none of them has been tested clinically, maybe because of several problems such as toxicity or safety and pharmacokinetic uncertainty of compounds with novel chemical structures. One efficient solution is to rediscover new uses for existing drugs with known pharmacokinetics and safety profiles. Here, we found the new use for sorafenib, which has a dual-mode action by inducing ABCG2 degradation in lysosome in addition to inhibiting its function. Previously, we reported some novel dual-acting ABCG2 inhibitors that showed closer similarity to degradation-induced mechanism of action. On the basis of these ABCG2 inhibitors with diverse chemical structures, we developed a pharmacophore model for identifying the critical pharmacophore features necessary for dual-acting ABCG2 inhibitors. Sorafenib forms impressive alignment with the pharmacophore hypothesis, supporting the argument that sorafenib is a potential ABCG2 inhibitor. This is the first article that sorafenib may be a good candidate for chemosensitizing agent targeting ABCG2-mediated MDR. This study may facilitate the rediscovery of new functions of structurally diverse old drugs and provide a more effective and safe way of sensitizing MDR in cancer chemotherapy.  相似文献   

5.
HDLs protect against the development of atherosclerosis, but the underlying mechanisms are poorly understood. HDL and its apolipoproteins can promote cholesterol efflux from macrophage foam cells via the ATP-binding cassette transporters ABCA1 and ABCG1. Experiments addressing the individual roles of ABCA1 and ABCG1 in the development of atherosclerosis have produced mixed results, perhaps because of compensatory upregulation in the individual KO models. To clarify the role of transporter-mediated sterol efflux in this disease process, we transplanted BM from Abca1(-/-)Abcg1(-/-) mice into LDL receptor-deficient mice and administered a high-cholesterol diet. Compared with control and single-KO BM recipients, Abca1(-/-)Abcg1(-/-) BM recipients showed accelerated atherosclerosis and extensive infiltration of the myocardium and spleen with macrophage foam cells. In experiments with isolated macrophages, combined ABCA1 and ABCG1 deficiency resulted in impaired cholesterol efflux to HDL or apoA-1, profoundly decreased apoE secretion, and increased secretion of inflammatory cytokines and chemokines. In addition, these cells showed increased apoptosis when challenged with free cholesterol or oxidized LDL loading. These results suggest that the combined effects of ABCA1 and ABCG1 in mediating macrophage sterol efflux are central to the antiatherogenic properties of HDL.  相似文献   

6.
Plasma HDL levels are inversely related to the incidence of atherosclerotic disease. Some of the atheroprotective effects of HDL are likely mediated via preservation of EC function. Whether the beneficial effects of HDL on ECs depend on its involvement in cholesterol efflux via the ATP-binding cassette transporters ABCA1 and ABCG1, which promote efflux of cholesterol and oxysterols from macrophages, has not been investigated. To address this, we assessed endothelial function in Abca1(-/-), Abcg1(-/-), and Abca1(-/-)Abcg1(-/-) mice fed either a high-cholesterol diet (HCD) or a Western diet (WTD). Non-atherosclerotic arteries from WTD-fed Abcg1(-/-) and Abca1(-/-)Abcg1(-/-) mice exhibited a marked decrease in endothelium-dependent vasorelaxation, while Abca1(-/-) mice had a milder defect. In addition, eNOS activity was reduced in aortic homogenates generated from Abcg1(-/-) mice fed either a HCD or a WTD, and this correlated with decreased levels of the active dimeric form of eNOS. More detailed analysis indicated that ABCG1 was expressed primarily in ECs, and that these cells accumulated the oxysterol 7-ketocholesterol (7-KC) when Abcg1(-/-) mice were fed a WTD. Consistent with these data, ABCG1 had a major role in promoting efflux of cholesterol and 7-KC in cultured human aortic ECs (HAECs). Furthermore, HDL treatment of HAECs prevented 7-KC-induced ROS production and active eNOS dimer disruption in an ABCG1-dependent manner. Our data suggest that ABCG1 and HDL maintain EC function in HCD-fed mice by promoting efflux of cholesterol and 7-oxysterols and preserving active eNOS dimer levels.  相似文献   

7.
Multidrug resistance (MDR) in cancer cells is the development of resistance to a variety of structurally and functionally nonrelated anticancer drugs. This phenomenon has become a major obstacle to cancer chemotherapy seriously affecting the clinical outcome. MDR is associated with increased drug efflux from cells mediated by an energy‐dependent mechanism involving the ATP‐binding cassette (ABC) transporters, mainly P‐glycoprotein (ABCB1), the MDR‐associated protein‐1 (ABCC1), and the breast cancer resistance protein (ABCG2). The first two transporters have been widely studied already and reviews summarized the results. The ABCG2 protein has been a subject of intense study since its discovery as its overexpression has been detected in resistant cell lines in numerous types of human cancers. To date, a long list of modulators of ABCG2 exists and continues to increase. However, little is known about the clinical consequences of ABCG2 modulation. This makes the design of novel, potent, and nontoxic inhibitors of this efflux protein a major challenge to reverse MDR and thereby increase the success of chemotherapy. The aim of the present review is to describe and highlight specific and nonspecific modulators of ABCG2 reported to date based on the selectivity of the compounds, as many of them are effective against one or more ABC transport proteins.  相似文献   

8.
One activity potentially limiting the efficacy of camptothecin anticancer agents is their cellular efflux by the ATP-binding cassette half-transporter, ABCG2. Homocamptothecins are novel anticancer drugs that inhibit topoisomerase 1 with a greater potency than camptothecins. Homocamptothecins differ from camptothecins by their E-ring, which is seven-membered instead of the six-membered ring of camptothecins. We report herein that, like camptothecins, homocamptothecin and its difluoro derivative BN80915 are substrates for ABCG2. However, the resistance of three selected cell lines overexpressing wild-type or mutant ABCG2 to homocamptothecin or BN80915 was less than resistance to SN-38 (7-ethyl-10-hydroxycamptothecin), indicating that both the seven-membered E-ring present in homocamptothecin and the A- and B-ring modifications present in SN-38 are involved in substrate recognition by ABCG2. HEK-293 cells transfected with vectors encoding wild-type or mutant ABCG2 were found to be less resistant to both homocamptothecins than to SN-38. However, transfectants overexpressing mutant ABCG2 had relative resistance values for homocamptothecin and BN80915 4- to 14-fold higher than cells expressing wild-type ABCG2, suggesting that the gain of function resulting from mutation at amino acid 482, although not affecting SN-38, extends to the homocamptothecins. Resistance was reversed by the ABCG2 inhibitor fumitremorgin C. BN80915 was 17-fold more potent than SN-38 in wild-type ABCG2-transfected cells, suggesting that BN80915 has the potential to overcome ABCG2-related resistance to SN-38, the active metabolite of CPT-11 (irinotecan).  相似文献   

9.
ATP‐Binding Cassette transporters such as ABCG2 confer resistance to various anticancer drugs including irinotecan and its active metabolite, SN38. Early quantitative evaluation of efflux transporter inhibitors‐cytotoxic combination requires quantitative drug‐disease models. A proof‐of‐concept study has been carried out for studying the effect of a new ABCG2 transporter inhibitor, MBLI87 combined to irinotecan in mice xenografted with cells overexpressing ABCG2. Mice were treated with irinotecan alone or combined to MBLI87, and tumour size was periodically measured. To model those data, a tumour growth inhibition model was developed. Unperturbed tumour growth was modelled using Simeoni's model. Drug effect kinetics was accounted for by a Kinetic–Pharmacodynamic approach. Effect of inhibitor was described with a pharmacodynamic interaction model where inhibitor enhances activity of cytotoxic. This model correctly predicted tumour growth dynamics from our study. MBLI87 increased irinotecan potency by 20% per μmol of MBLI87. This model retains enough complexity to simultaneously describe tumour growth and effect of this type of drug combination. It can thus be used as a template to early evaluate efflux transporter inhibitors in‐vivo.  相似文献   

10.
The human ATP-binding cassette (ABC) transporter ABCG2 (BCRP/MXR1/ABCP) plays a critical role in cellular protection against xenobiotics as well as pharmacokinetics of drugs in our body. In the present study, we aimed to analyze the quantitative structure-activity relationship (QSAR) latently residing in ABCG2-drug interactions. We first established standard methods for expression of human ABCG2 in insect cells, quality control of plasma membrane samples by using electron microscopy techniques, and high-speed screening of ABCG2 inhibition with test compounds. Plasma membrane vesicles prepared from ABCG2-expressing Sf9 cells were used as a model system to measure the ATP-dependent transport of [3H]methotrexate (MTX). Forty-nine different therapeutic drugs and natural compounds were tested for their ability to inhibit ABCG2-mediated MTX transport. Based on their inhibition profiles, we performed QSAR analysis using chemical fragmentation codes deduced from the structures of test compounds. Multiple linear regression analysis delineated a relationship between the structural components and the extent of ABCG2 inhibition, allowing us to identify one set of structure-specific chemical fragmentation codes that are closely correlated with the inhibition of ABCG2 transport activity. Based on the QSAR analysis data, we predicted the potency of gefitinib to inhibit ABCG2. The validity of our QSAR-based prediction for gefitinib was examined by actual experiments. Our kinetic analysis experiments suggest that the ABCG2-ATP complex binds gefitinib. The present study provides a new strategy for analyzing ABCG2-drug interactions. This strategy is considered to be practical and useful for the molecular designing of new ABCG2 modulators.  相似文献   

11.
12.
ABCG2, a transporter of the ATP-binding cassette family, is known to play a prominent role in the absorption, distribution, metabolism, and excretion of xenobiotics. Drug-transporter interactions are commonly screened by high-throughput systems using transfected insect and/or human cell lines. The determination of ABCG2-ATPase activity is one method to identify ABCG2 substrate and inhibitors. We demonstrate that the ATPase activities of the human ABCG2 transfected Sf9 cell membranes (MXR-Sf9) and ABCG2-overexpressing human cell membranes (MXR-M) differ. Variation due to disparity in the glycosylation level of the protein had no effect on the transporter. The influence of cholesterol on ABCG2-ATPase activity was investigated because the lipid compositions of insect and human cells are largely different from each other. Differences in cholesterol content, shown by cholesterol loading and depletion experiments, conferred the difference in stimulation of basal ABCG2-ATPase of the two cell membranes. Basal ABCG2-ATPase activity could be stimulated by sulfasalazine, prazosin, and topotecan, known substrates of ABCG2 in cholesterol-loaded MXR-Sf9 and MXR-M cell membranes. In contrast, ABCG2-ATPase could not be stimulated in MXR-Sf9 or in cholesterol-depleted MXR-M membranes. Moreover, cholesterol loading significantly improved the drug transport into inside-out membrane vesicles prepared from MXR-Sf9 cells. MXR-M and cholesterol-loaded MXR-Sf9 cell membranes displayed similar ABCG2-ATPase activity and vesicular transport. Our study indicates an essential role of membrane cholesterol for the function of ABCG2.  相似文献   

13.
OCTN2 is a bifunctional transporter that reabsorbs filtered carnitine in a sodium-dependent manner and secretes organic cations into urine as a proton antiport mechanism. We hypothesized that inhibition of OCTN2 by anticancer drugs can influence carnitine resorption. OCTN2-mediated transport inhibition by anticancer drugs was assessed using cells transfected with human OCTN2 (hOCTN2) or mouse Octn2 (mOctn2). Excretion of carnitine and acetylcarnitine was measured in urine collected from mice and pediatric patients with cancer before and after administration of etoposide. Five of 27 tested drugs (50-100 μmol/L) inhibited hOCTN2-mediated carnitine uptake by 42% to 85% (P < 0.001). Of these inhibitors, etoposide was itself a transported substrate of hOCTN2 and mOctn2. Etoposide uptake by hOCTN2 was reversed in the presence of excess carnitine. This competitive inhibitory mechanism was confirmed in an in silico molecular docking analysis. In addition, etoposide inhibited the transcellular apical-to-basolateral flux of carnitine in kidney cells. Etoposide was also associated with a significant urinary loss of carnitine in mice (~1.5-fold) and in patients with cancer (~2.4-fold). Collectively, these findings indicate that etoposide can inhibit hOCTN2 function, potentially disturb carnitine homeostasis, and that this phenomenon can contribute to treatment-related toxicities.  相似文献   

14.
5-Hydroxytryptamine (serotonin) (5-HT) is a neurotransmitter with both central and peripheral functions, including the modulation of mood, appetite, hemodynamics, gastrointestinal (GI) sensation, secretion, and motility. Its synthesis is initiated by the enzyme tryptophan hydroxylase (TPH). Two isoforms of TPH have been discovered: TPH1, primarily expressed in the enterochromaffin cells of the gastrointestinal tract, and TPH2, expressed exclusively in neuronal cells. Mice lacking Tph1 contain little to no 5-HT in the blood and GI tract while maintaining normal levels in the brain. Because GI 5-HT is known to play important roles in normal and pathophysiology, we set out to discover and characterize novel compounds that selectively inhibit biosynthesis of GI 5-HT. Here, we describe two of a series of these inhibitors that are potent for TPH activity both in biochemical and cell-based assays. This class of compounds has unique properties with respect to pharmacokinetic and pharmacodynamic effects on GI serotonin production. Similar to the Tph1 knockout results, these TPH inhibitors have the ability to selectively reduce 5-HT levels in the murine GI tract without affecting brain 5-HT levels. In addition, administration of these compounds in a ferret model of chemotherapy-induced emesis caused modest reductions of intestinal serotonin levels and a decreased emetic response. These findings suggest that GI-specific TPH inhibitors may provide novel treatments for various gastrointestinal disorders associated with dysregulation of the GI serotonergic system, such as chemotherapy-induced emesis and irritable bowel syndrome.  相似文献   

15.
Ponatinib is a novel tyrosine kinase inhibitor with potent activity against BCR-ABL with mutations, including T315I, and also against fms-like tyrosine kinase 3. We tested interactions between ponatinib at pharmacologically relevant concentrations of 50 to 200 nmol/L and the MDR-associated ATP-binding cassette (ABC) proteins ABCB1, ABCC1, and ABCG2. Ponatinib enhanced uptake of substrates of ABCG2 and ABCB1, but not ABCC1, in cells overexpressing these proteins, with a greater effect on ABCG2 than on ABCB1. Ponatinib potently inhibited [(125)I]-IAAP binding to ABCG2 and ABCB1, indicating binding to their drug substrate sites, with IC(50) values of 0.04 and 0.63 μmol/L, respectively. Ponatinib stimulated ABCG2 ATPase activity in a concentration-dependent manner and stimulated ABCB1 ATPase activity at low concentrations, consistent with it being a substrate of both proteins at pharmacologically relevant concentrations. The ponatinib IC(50) values of BCR-ABL-expressing K562 cells transfected with ABCB1 and ABCG2 were approximately the same as and 2-fold higher than that of K562, respectively, consistent with ponatinib being a substrate of both proteins, but inhibiting its own transport, and resistance was also attenuated to a small degree by ponatinib-induced downregulation of ABCB1 and ABCG2 cell-surface expression on resistant K562 cells. Ponatinib at pharmacologically relevant concentrations produced synergistic cytotoxicity with ABCB1 and ABCG2 substrate chemotherapy drugs and enhanced apoptosis induced by these drugs, including daunorubicin, mitoxantrone, topotecan, and flavopiridol, in cells overexpressing these transport proteins. Combinations of ponatinib and chemotherapy drugs warrant further testing. Mol Cancer Ther; 11(9); 2033-44. ?2012 AACR.  相似文献   

16.
Yersinia pestis, the causative agent of plague, utilizes a plasmid-encoded type III secretion system (T3SS) to aid it with its resistance to host defenses. This system injects a set of effector proteins known as Yops (Yersinia outer proteins) into the cytosol of host cells that come into contact with the bacteria. T3SS is absolutely required for the virulence of Y. pestis, making it a potential target for new therapeutics. Using a novel and simple high-throughput screening method, we examined a diverse collection of chemical libraries for small molecules that inhibit type III secretion in Y. pestis. The primary screening of 70,966 compounds and mixtures yielded 421 presumptive inhibitors. We selected eight of these for further analysis in secondary assays. Four of the eight compounds effectively inhibited Yop secretion at micromolar concentrations. Interestingly, we observed differential inhibition among Yop species with some compounds. The compounds did not inhibit bacterial growth at the concentrations used in the inhibition assays. Three compounds protected HeLa cells from type III secretion-dependent cytotoxicity. Of the eight compounds examined in secondary assays, four show good promise as leads for structure-activity relationship studies. They are a diverse group, with each having a chemical scaffold not only distinct from each other but also distinct from previously described candidate type III secretion inhibitors.  相似文献   

17.
Cholesterol is a critical component of cell membranes, and cellular cholesterol levels and distribution are tightly regulated in mammals. Recent evidence has revealed a critical role for pancreatic β cell–specific cholesterol homeostasis in insulin secretion as well as in β cell dysfunction in diabetes and the metabolic response to thiazolidinediones (TZDs), which are antidiabetic drugs. The ATP-binding cassette transporter G1 (ABCG1) has been shown to play a role in cholesterol efflux, but its role in β cells is currently unknown. In other cell types, ABCG1 expression is downregulated in diabetes and upregulated by TZDs. Here we have demonstrated an intracellular role for ABCG1 in β cells. Loss of ABCG1 expression impaired insulin secretion both in vivo and in vitro, but it had no effect on cellular cholesterol content or efflux. Subcellular localization studies showed the bulk of ABCG1 protein to be present in insulin granules. Loss of ABCG1 led to altered granule morphology and reduced granule cholesterol levels. Administration of exogenous cholesterol restored granule morphology and cholesterol content and rescued insulin secretion in ABCG1-deficient islets. These findings suggest that ABCG1 acts primarily to regulate subcellular cholesterol distribution in mouse β cells. Furthermore, islet ABCG1 expression was reduced in diabetic mice and restored by TZDs, implicating a role for regulation of islet ABCG1 expression in diabetes pathogenesis and treatment.  相似文献   

18.
Breast cancer resistance protein (BCRP/ABCG2) is a member of the ATP-binding cassette transporter family that recognizes a variety of chemically unrelated compounds. Its expression has been revealed in many mammal tissues, including placenta. The purpose of this study was to describe its role in transplacental pharmacokinetics using rat placental HRP-1 cell line and dually perfused rat placenta. In HRP-1 cells, expression of Bcrp, but not P-glycoprotein, was revealed at mRNA and protein levels. Cell accumulation studies confirmed Bcrp-dependent uptake of BODIPY FL prazosin. In the placental perfusion studies, a pharmacokinetic model was applied to distinguish between passive and Bcrp-mediated transplacental passage of cimetidine as a model substrate. Bcrp was shown to act in a concentration-dependent manner and to hinder maternal-to-fetal transport of the drug. Fetal-to-maternal clearance of cimetidine was found to be 25 times higher than that in the opposite direction; this asymmetry was partly eliminated by BCRP inhibitors fumitremorgin C (2 microM) or N-(4-[2-(1,2,3,4-tetrahydro-6,7-dimethoxy-2-isoquinolinyl)ethyl]-phenyl)-9,10-dihydro-5-methoxy-9-oxo-4-acridine carboxamide (GF120918; 2 microM) and abolished at high cimetidine concentrations (1000 microM). When fetal perfusate was recirculated, Bcrp was found to actively remove cimetidine from the fetal compartment to the maternal compartment even against a concentration gradient and to establish a 2-fold maternal-to-fetal concentration ratio. Based on our results, we propose a two-level defensive role of Bcrp in the rat placenta in which the transporter 1) reduces passage of its substrates from mother to fetus but also 2) removes the drug already present in the fetal circulation.  相似文献   

19.
Verapamil is subject to extensive oxidative metabolism mediated by cytochrome P450 enzymes with less than 5% of an oral dose being excreted unchanged in urine. Furthermore, verapamil is known to be a potent inhibitor of P-glycoprotein function. There is evidence from in vivo investigations that some verapamil metabolites might be actively transported. The aim of the present study was to investigate P-glycoprotein-mediated transport and inhibition properties of verapamil and its metabolites norverapamil, D-620, D-617, and D-703. Polarized transport of these compounds was assessed in P-glycoprotein-expressing Caco-2 and L-MDR1 cells (LLC-PK1 cells stably transfected with human MDR1-P-glycoprotein). Inhibition of P-glycoprotein-mediated transport by these compounds was determined using digoxin as P-glycoprotein substrate. At concentrations of 5 microM, significant differences between basal-to-apical and apical-to-basal apparent permeability coefficients were observed for D-617 and D-620 in all P-glycoprotein-expressing cell monolayers, indicating that both are P-glycoprotein substrates. In contrast, no P-glycoprotein-dependent transport was found for verapamil, norverapamil, and D-703 in Caco-2 cells and for D-703 in L-MDR1 cells. Moreover, verapamil, norverapamil, and D-703 inhibited P-glycoprotein-mediated digoxin transport with IC(50) values of 1.1, 0.3, and 1.6 microM, respectively, whereas D-617 and D-620 did not (at concentrations up to 100 microM). We conclude that verapamil phase I metabolites exhibit different P-glycoprotein substrate and inhibition characteristics, with the N-dealkylated metabolites D-617 and D-620 being P-glycoprotein substrates and norverapamil and D-703 being inhibitors of P-glycoprotein function, which may influence P-glycoprotein-dependent drug disposition and elimination.  相似文献   

20.
Carboxylesterases, expressed at high levels in human liver and intestine, are thought to detoxify xenobiotics. The anticancer prodrug 7-ethyl-10-[4-1-piperidino)-1-piperidino]carbonyloxycamptothecin (CPT-11) is also metabolized by carboxylesterases to produce the active drug 7-ethyl-10-hydroxycamptothecin. Activation of CPT-11 by human intestinal carboxylesterase (hiCE) in the human intestine may contribute to delayed onset diarrhea, a dose-limiting side effect of this drug. The goal of this study was to develop small molecule inhibitors selective for hiCE to circumvent or treat the toxic side effects of CPT-11. A secondary goal was to develop molecules that specifically inhibit activation of CPT-11 by a rabbit liver carboxylesterase (rCE). rCE is the most efficient CPT-11-activating enzyme thus far identified, and this enzyme is being developed for viral-directed enzyme prodrug therapy applications. Based on in vitro assays with partially purified hiCE and rCE proteins and on growth inhibition assays using U373MG human glioma cells transfected to express hiCE or rCE (U373pIREShiCE or U373pIRESrCE), we identified specific inhibitors of each enzyme. Lead compounds are derivatives of nitrophenol having 4-(furan-2-carbonyl)-piperazine-1-carboxylic acid or 4-[(4-chlorophenyl)-phenylmethyl]-piperazine-1-carboxylic acid substitutions in the p position. Kinetic analysis of each compound for hiCE compared with rCE showed that the Ki values of the most selective of these inhibitors differed by 6- to 10-fold. In growth inhibition assays, nontoxic, low micromolar concentrations of these inhibitors increased the EC50 of CPT-11 for U373pIREShiCE or U373pIRESrCE cells by 13- to >1,500-fold. The four compounds characterized in this study will serve as lead compounds for a series of inhibitors to be constructed using a combinatorial approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号