共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
3.
Fujiang Cao Tao Liu Yunqiang Xu Dongdong Xu Shiqing Feng 《International journal of clinical and experimental pathology》2015,8(6):6037-6045
Curcumin is a polyphenol compound extracted from ginger plant, turmeric, commonly used in a variety of food coloring and flavoring additives. Curcumin has many effects such as anti-inflammatory, anti-tumor, antioxidant and anti-microbial effects. However, the mechanism underlying the anti-cancer effect of curcumin on human osteoclastoma (Giant cell tumor, GCT) cells remains unclear. The objectives of this study were to determine the efficacy of curcumin on proliferation and apoptosis of GCT cells and its related mechanisms. In our study, cell viability, cellular apoptosis and caspase-3 activity of GCT cells were analyzed using 3.3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, flow cytometry (FCM) assay and commercial kits, respectively. Next, MMP-9 gene expression quantity, NF-κB activity and JNK protein expression of GCT cells were tested with real-time polymerase chain reaction (RT-PCR), commercial kits and western blotting assay, respectively. Firstly, MMP-9, NF-κB and JNK inhibitors were added into GCT cells and which was researched the mechanism of curcumin on human GCT cells. In this study, the efficacy of curcumin reduced cell viability, induced cellular apoptosis and increased caspase-3 activity of GCT cells. Furthermore, curcumin inhibited the MMP-9 gene expression quantity and NF-κB activity, and activated JNK protein expression in GCT cells. Meanwhile, down-regulation of MMP-9 gene expression quantity and NF-κB activity could promote the anti-cancer effect of curcumin on cell viability of GCT cells. Interesting, down-regulation of JNK protein expression could also reversed the anti-cancer effect of curcumin on cell viability of GCT cells. Taken together, our results suggest that curcumin inhibits cell proliferation and promotes apoptosis in osteoclastoma cell through suppression of MMP-9 and NF-κB, and activation JNK signaling pathways. 相似文献
4.
5.
Advances in NF-κB Signaling Transduction and Transcription 总被引:12,自引:0,他引:12
Xiao W 《Cellular & molecular immunology》2004,1(6):425-435
6.
Cyclooxygenase-2 (COX-2), the key enzyme of the conversion of arachidonic acid to prostaglandins is an important regulator of inflammation and perhaps apoptosis. Genistein is an active component of legumes and other related food associated with prevention of degenerative diseases possibly through modulating certain signaling pathways. It was investigated whether the induction of apoptosis with genistein was carried out via COX-2 suppression through the regulation of NF-κB. The cox-2 positive and negative cells were used to compare the effect of genistein on the modulation of NF-κB in COX-2 expressed or non-expressed genotypic systems. Suppression of COX-2 as well as decreasing NF-κB DNA binding activity was accompanied with the induction of apoptosis in genistein-treated COX-2 expressed cells. However, in cox-2 negative cells, apoptosis occurred without any involvement of NF-κB with genistein treatement. Genistein induced apoptosis through the generation of reactive oxygen species (ROS) both of cox-2 positive and negative cells. These results suggested that genistein is capable of exihibiting NF-κB-dependent and NF-κB-independent apoptotic control via ROS generation depending on genetic cell types. 相似文献
7.
8.
9.
10.
11.
Kaltschmidt B Kaltschmidt C 《Experimental brain research. Experimentelle Hirnforschung. Expérimentation cérébrale》2000,130(1):100-104
NF-κB is found in many neuronal cell types in different states of activity. This study aimed to define which conditions induce
constitutive NF-κB activity in cultured hippocampal neurons using activity-specific antibody staining. In co-culture with
astroglia, hippocampal neurons were devoid of activated NF-κB. In these co-cultures, NF-κB could not be activated via kainate
or glutamate. In contrast, separating neurons from the glial compartment resulted in a time-dependent increase of activated
neuronal NF-κB. In this line, activation of NF-κB by kainate or glutamate is very effective in freshly separated cultures,
but inhibited when the cultures are reassembled after stimulation. These findings suggests that a neuronal-glial interaction
may regulate gene expression via NF-κB.
Received: 14 June 1999 / Accepted: 8 September 1999 相似文献
12.
13.
Ronco MT Manarin R Francés D Serra E Revelli S Carnovale C 《Molecular immunology》2011,48(6-7):867-873
Recent studies have shown that Benznidazole (BZL), known for its antiparasitic action on Trypanosoma cruzi, modulates pro-inflammatory cytokines and nitric oxide (NO) release in activated macrophages by blocking NF-κB through inhibition of IKK in vitro. As so far, little is known about the mechanism by which BZL provokes the inhibition of inflammatory response in sepsis in vivo, we aimed to delineate the possible role of BZL as a modulator in liver inflammation in mice with sepsis induced by cecal ligation and puncture (CLP). Specifically, we analyzed leukocytes, liver production of TNF-α and NO and the intracellular pathways modulated by these mediators, including NF-κB and MAPKs, in the liver of mice 24 h post-CLP. Our results show that BZL reduces leukocytes in peripheral blood accompanied by an increase in peritoneal macrophages 24h after CLP. In the liver of these septic mice, BZL decreased expression of mRNA and protein for TNF-α and NOS-2 by inhibition of NF-κB and MAPK (p-38 and ERK). The body of evidence suggests that the immunomodulatory effects of BZL could act selectively, as it is able to decrease the systemic inflammatory reaction and the hepatic response but it can increase the number of cells in the site of infection. 相似文献
14.
15.
16.
From the very early days of nuclear factor-κB (NF-κB) research, it was recognized that different protein kinase C (PKC) isoforms might be involved in the activation of NF-κB. Pharmacological tools and pseudosubstrate inhibitors suggested that these kinases play a role in this important inflammatory and survival pathway; however, it was the analysis of several genetic mouse knockout models that revealed the complexity and interrelations between the different components of the PB1 network in several cellular functions, including T-cell biology, bone homeostasis, inflammation associated with the metabolic syndrome, and cancer. These studies unveiled, for example, the critical role of PKCζ as a positive regulator of NF-κB through the regulation of RelA but also its inflammatory suppressor activities through the regulation of the interleukin-4 signaling cascade. This observation is of relevance in T cells, where p62, PKCζ, PKCλ/ι, and NBR1 establish a mesh of interactions that culminate in the regulation of T-cell effector responses through the modulation of T-cell polarity. Many questions remain to be answered, not just from the point of view of the implication for NF-κB activation but also with regard to the in vivo interplay between these pathways in pathophysiological processes like obesity and cancer. 相似文献
17.
18.
19.
IκB kinase-ε (IKBKE), a member of the IκB kinase (IKK) family, has been identified as an oncogenic protein and found to be up-regulated in breast cancer, ovarian cancer and prostate cancer. Nonetheless, the expression status and functional significance of IKBKE in human glioma remain unexplored. For the first time, we have demonstrated that mRNA and protein levels of IKBKE were robustly up-regulated in glioma cell lines and human primary glioma tissues. Immunohistochemistry analysis revealed that 53.5% (38/71) paraffin-embedded archived glioma specimens exhibited high levels of IKBKE expression. Intriguingly, there was no significant difference in IKBKE expression among different grades of glioma. To understand the biological function of IKBKE in the development and progression of human glioma, glioma cells lines ectopically over-expressing IKBKE were established and tested for their responsiveness to apoptotic inducers. Our data showed that IKBKE over-expression inhibited cell apoptosis induced by UV irradiation or adriamycin and, in contrast, shRNAi-mediated suppression of IKBKE increased the sensitivity of glioma cells to the apoptotic inducers. Importantly, we found that up-regulated IKBKE could induce the expression of Bcl-2 through activating NF-κB signalling, and that, specifically, we identified IκB as a critical component for this signalling cascade. The current study suggests that up-regulation of IKBKE may represent an important molecular hallmark that is biologically and clinically relevant to the development and progression, as well as the chemo- and radio-resistance, of the disease. 相似文献
20.