首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
At the end of 2002 and throughout 2003, there was a severe outbreak of infectious laryngotracheitis (ILT) in an intensive production area of commercial hens in the São Paulo State of Brazil. ILT virus was isolated from 28 flocks, and 21 isolates were genotyped by polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP) using four genes and eight restriction enzymes, and by partial sequencing of the infected cell protein 4 (ICP4) and thymidine kinase (TK) genes. Three groups resulted from the combinations of PCR-RFLP patterns: 19 field isolates formed Group I, and the remaining two isolates together with the chicken embryo origin (CEO) vaccine strains formed Group II. Group III comprised the tissue-culture origin (TCO) vaccine strain by itself. The PCR-RFLP results agreed with the sequencing results of two ICP4 gene fragments. The ICP4 gene sequence analysis showed that the 19 field isolates classified into Group I by RFLP-PCR were identical among themselves, but were different to the TCO and CEO vaccines. The two Group II isolates could not be distinguished from one of the CEO vaccines. The nucleotide and amino acid sequence analyses discriminated between the Brazilian and non-Brazilian isolates, as well as between the TCO and CEO vaccines. Sequence analysis of the TK gene enabled classification of the field isolates (Group I) as virulent and non-vaccine. This work shows that the severe ILT outbreak was caused by a highly virulent, non-vaccine strain.  相似文献   

2.
Infectious laryngotracheitis (ILT) is an acute respiratory disease of chickens controlled through vaccination with live-modified attenuated vaccines, the chicken embryo origin (CEO) vaccines and the tissue-culture origin (TCO) vaccines. Recently, novel recombinant vaccines have been developed using herpesvirus of turkey (HVT) and fowl pox virus (FPV) as vectors to express ILTV immunogens for protection against ILT. The objective of this study was to assess the protection efficacy against ILT induced by recombinants, live-modified attenuated, and inactivated virus vaccines when administered alone or in combination. Commercial layer pullets were vaccinated with one or more vaccines and challenged at 35 (35 WCH) or 74 weeks of age (74 WCH). Protection was assessed by scoring clinical signs; and by determining the challenge viral load in the trachea at five days post-challenge. The FPV-LT vaccinated birds were not protected when challenged at 35 weeks; the HVT-LT and TCO vaccines in combination provided protection similar to that observed in chickens vaccinated with either HVT-LT or TCO vaccines when challenged at 35 weeks, whereas protection induced by vaccination with HVT-LT followed by TCO was superior in the 74 WCH group compared with the 35 WCH group. Birds given the inactivated ILT vaccine had fewer clinical signs and/or lower viral replication at 74 WCH when combined with TCO or HVT-LT, but not when given alone. Finally, the CEO-vaccinated birds had top protection as indicated by reduction of clinical signs and viral replication when challenged at 35 weeks (74 weeks not done). These results suggest that certain vaccine combinations may be successful to produce long-term protection up to 74 weeks of age against ILT.  相似文献   

3.
In a recent study (Oldoni & García, 2007), some field strains of infectious laryngotracheitis viruses (ILTV) were characterized as genotypically different (group VI) from ILT vaccine strains. The objective of this study was to evaluate the protection elicited by one chicken embryo origin (CEO) and one tissue culture origin (TCO) vaccine against a field isolate from group VI after direct and indirect exposure to ILTV live attenuated vaccines. In phase 1 of the experiment, non-vaccinated chickens were placed into contact with the eye drop vaccinates for a period of four weeks after vaccination. Transmission of the vaccine virus to these in-contact birds was demonstrated by real time PCR and antibody production, although the in-contact birds did not become protected against disease when subsequently challenged in phase 2 of the experiment. This emphasized the importance of uniform vaccination to obtain adequate protection, both to avoid the occurrence of susceptible chickens, and to minimize the potential for reversion to virulence of live-attenuated vaccines. In phase 2, protection against challenge with a group VI field virus was assessed four weeks after vaccination by scoring clinical signs and mortality, and quantifying weight gain. Sentinel birds were added to the groups one day after challenge to assess shedding of challenge virus, using real time PCR and virus isolation, during the period 2 to 12 days post challenge. The results showed that the CEO and TCO eye drop-vaccinated chickens were protected against challenge with the group VI virus, even though it was genetically different from the vaccine strains, and that challenge virus was not transmitted from these protected birds to the sentinels.  相似文献   

4.
Infectious laryngotracheitis (ILT) is an important respiratory disease of chickens and annually causes significant economic losses in the poultry industry world-wide. ILT virus (ILTV) belongs to alphaherpesvirinae and the Gallid herpesvirus 1 species. The transmission of ILTV is via respiratory and ocular routes. Clinical and post-mortem signs of ILT can be separated into two forms according to its virulence. The characteristic of the severe form is bloody mucus in the trachea with high mortality. The mild form causes nasal discharge, conjunctivitis, and reduced weight gain and egg production. Conventional polymerase chain reaction (PCR), nested PCR, real-time PCR, and loop-mediated isothermal amplification were developed to detect ILTV samples from natural or experimentally infected birds. The PCR combined with restriction fragment length polymorphism (RFLP) can separate ILTVs into several genetic groups. These groups can separate vaccine from wild type field viruses. Vaccination is a common method to prevent ILT. However, field isolates and vaccine viruses can establish latent infected carriers. According to PCR-RFLP results, virulent field ILTVs can be derived from modified-live vaccines. Therefore, modified-live vaccine reversion provides a source for ILT outbreaks on chicken farms. Two recently licensed commercial recombinant ILT vaccines are also in use. Other recombinant and gene-deficient vaccine candidates are in the developmental stages. They offer additional hope for the control of this disease. However, in ILT endemic regions, improved biosecurity and management practices are critical for improved ILT control.  相似文献   

5.
Infectious laryngotracheitis (ILT) is an acute respiratory disease in poultry that is commonly controlled by vaccination with conventionally attenuated virus strains. Despite the use of these vaccines, ILT remains a threat to the intensive poultry industry. Our laboratory has developed a novel candidate vaccine strain of infectious laryngotracheitis virus (ILTV) lacking glycoprotein G (ΔgG-ILTV). The aim of the present study was to directly compare this candidate vaccine with three currently available commercial vaccines in vivo. Five groups of specific-pathogen-free chickens were eye-drop inoculated with one of the three commercial vaccine strains (SA2-ILTV, A20-ILTV or Serva-ILTV), or ΔgG-ILTV, or sterile medium. Vaccine safety was assessed by examining clinical signs, weight gain and persistence of virus in the trachea. Vaccine efficacy was assessed by scoring clinical signs and conducting post-mortem analyses following challenge with virulent virus. Following vaccination, birds that received ΔgG-ILTV had the highest weight gain among the vaccinated groups and had clinical scores that were significantly lower than birds vaccinated with SA2-ILTV or A20-ILTV, but not significantly different from those of birds vaccinated with Serva-ILTV. Analysis of clinical scores, weight gain, tracheal pathology and virus replication after challenge revealed a comparable level of efficacy for all vaccines. Findings from this study further demonstrate the suitability of ΔgG-ILTV as a vaccine to control ILT.  相似文献   

6.
Infectious laryngotracheitis (ILT) is an economically important respiratory disease of poultry that affects the poultry industry worldwide. The disease is caused by gallid herpesvirus I (GaHV-1), a member of the genus Iltovirus, family Herpesviridae, subfamily Alphaherpesvirinae. The current incidence of the disease is heavily influenced by live attenuated vaccines, which have been used extensively since their introduction in the mid-twentieth century. The capability of current live attenuated vaccine viruses to revert to virulence and spread from bird to bird has shaped the molecular epidemiology of ILT. Because of the antigenic homogeneity among GaHV-1 strains, differentiation of strains has been achieved by targeting genomic differences between outbreak-related isolates and vaccine strains. Numerous genes and genomic regions have been utilized in the development of DNA-based diagnostic assays to differentiate outbreak-related isolates from vaccine strains in countries where ILT outbreaks have occurred. More recently, full genome sequences have allowed determination of the origin of some of the outbreak-related isolates circulating in some poultry production countries. Overall, molecular typing data collected worldwide have identified live attenuated vaccine-related isolates as the primary source for outbreaks of the disease.  相似文献   

7.
Infectious laryngotracheitis (ILT) is an acute infectious viral disease that affects chickens, causing respiratory disease, loss of production and mortality in severe cases. Biosecurity measures and administration of attenuated viral vaccine strains are commonly used to prevent ILT. It is notable that most recent ILT outbreaks affecting the intensive poultry industry have been caused by vaccine-related virus strains. The purpose of this study was to characterize and compare viral replication and transmission patterns of two attenuated chicken embryo origin ILT vaccines delivered via the drinking water. Two groups of specific pathogen free chickens were each inoculated with SA-2 ILT or Serva ILT vaccine strains. Unvaccinated birds were then placed in contact with vaccinated birds at regular intervals. Tracheal swabs were collected every 4 days over a period of 60 days and examined for the presence and amount of virus using a quantitative polymerase chain reaction. A rapid increase in viral genome copy numbers was observed shortly after inoculation with SA-2 ILT virus. In contrast, a comparatively delayed virus replication was observed after vaccination with Serva ILT virus. Transmission to in-contact birds occurred soon after exposure to Serva ILT virus but only several days after exposure to SA-2 ILT virus. Results from this study demonstrate in vivo differences between ILT vaccine strains in virus replication and transmission patterns.  相似文献   

8.
Chandra YG  Lee J  Kong BW 《Virus genes》2012,44(3):470-474
This study was conducted to identify unique nucleotide differences in two U.S. chicken embryo origin (CEO) vaccines [LT Blen (GenBank accession: JQ083493) designated as vaccine 1; Laryngo-Vac? (GenBank accession: JQ083494) designated as vaccine 2] of infectious laryngotracheitis virus (ILTV) genomes compared to an Australian Serva vaccine reference ILTV genome sequence [Gallid herpesvirus 1 (GaHV-1); GenBank accession number: HQ630064]. Genomes of the two vaccine ILTV strains were sequenced using Illumina Genome Analyzer 2X of 36 cycles of single-end reads. Results revealed that few nucleotide differences (23 in vaccine 1; 31 in vaccine 2) were found and indicate that the US CEO strains are practically identical to the Australian Serva CEO strain, which is a European-origin vaccine. The sequence differences demonstrated the spectrum of variability among vaccine strains. Only eight amino acid differences were found in ILTV proteins including UL54, UL27, UL28, UL20, UL1, ICP4, and US8 in vaccine 1. Similarly, in vaccine 2, eight amino acid differences were found in UL54, UL27, UL28, UL36, UL1, ICP4, US10, and US8. Further comparison of US CEO vaccines to several ILTV genome sequences revealed that US CEO vaccines are genetically close to both the Serva vaccine and 63140/C/08/BR (GenBank accession: HM188407) and are distinct from the two Australian-origin CEO vaccines, SA2 (GenBank accession: JN596962) and A20 (GenBank accession: JN596963), which showed close similarity to each other. These data demonstrate the potential of high-throughput sequencing technology to yield insight into the sequence variation of different ILTV strains. This information can be used to discriminate between vaccine ILTV strains and further, to identify newly emerging mutant strains of field isolates.  相似文献   

9.
ABSTRACT

The chicken embryo origin (CEO) infectious laryngotracheitis (ILT) live attenuated vaccines, although capable of protecting against disease and reducing challenge virus replication, can regain virulence. Recombinant ILT vaccines do not regain virulence but are partially successful at blocking challenge virus replication. The objective of this study was to evaluate the effect of rHVT-LT vaccination on CEO replication and how this vaccination strategy enhances protection and limits challenge virus transmission to naïve contact chickens. The rHVT-LT vaccine was administered at 1 day of age subcutaneously and the CEO vaccine was administered at 6 weeks of age via eye-drop or drinking water. CEO vaccine replication post vaccination, challenge virus replication and transmission post challenge were evaluated. After vaccination, only the group that received the CEO via eye-drop developed transient conjunctivitis. A significant decrease in CEO replication was detected for the rHVT-LT?+?CEO groups as compared to groups that received CEO alone. After challenge, reduction in clinical signs and challenge virus replication were observed in all vaccinated groups. However, among the vaccinated groups, the rHVT-LT group presented higher clinical signs and challenge virus replication. Transmission of the challenge virus to naïve contact chickens was only observed in the rHVT-LT vaccinated group of chickens. Overall, this study found that priming with rHVT-LT reduced CEO virus replication and the addition of a CEO vaccination provided a more robust protection than rHVT alone. Therefore, rHVT-LT?+?CEO vaccination strategy constitutes an alternative approach to gain better control of the disease.  相似文献   

10.
11.
Live attenuated vaccines have been extensively used to control infectious laryngotracheitis (ILT). Most vaccines are registered/recommended for use via eye-drop although vaccination via drinking-water is commonly used in the field. Drinking-water vaccination has been associated with non-uniform protection. Bird-to-bird passage of chick-embryo-origin (CEO) ILT vaccines has been shown to result in reversion to virulence. The purpose of the present study was to examine the replication and transmission of a commercial CEO infectious laryngotracheitis virus (ILTV) vaccine strain following drinking-water or eye-drop inoculation. Two groups of 10 specific-pathogen-free chickens were each vaccinated with Serva ILTV vaccine strain either via eye-drop or drinking-water. Groups of four or five unvaccinated birds were placed in contact with vaccinated birds at regular intervals. Tracheal swabs were collected every 4 days from vaccinated and in-contact birds to assess viral replication and transmission using quantitative polymerase chain reaction. Compared with eye-drop-vaccinated birds, drinking-water-vaccinated birds showed delayed viral replication but had detectable viral DNA for a longer period of time. Transmission to chickens exposed by contact on day 0 of the experiments was similar in both groups. Birds exposed to ILTV by contact with eye-drop vaccinated birds on days 4, 8, 12 and 16 of the experiment had detectable ILTV for up to 8 days post exposure. ILTV was not detected in chickens that were exposed by contact with drinking-water vaccinated birds on day 12 of the experiment or later. Results from this study provide valuable practical information for the use of ILT vaccine.  相似文献   

12.
Over the last decade the US broiler industry has fought long-lasting outbreaks of infectious laryngotracheitis (ILTV). Previously, nine genotypes (I-IX) of ILTVs have been recognized using the polymerase chain reaction-restriction fragment length polymorphisms (PCR-RFLP) method with three viral alleles (gB, gM and UL47/gG). In this study, the genotyping system was simplified to six genotypes by amplicon sequencing and examining discriminating single nucleotide polymorphisms (SNPs) within these open reading frames. Using phylogenomic analysis of 27 full genomes of ILTV, a single allele (ORF A/ORF B) was identified containing SNPs that could differentiate ILTVs into genotypes congruent with the phylogenetic partitioning. The allelic variations allowed for the cataloging of the 27 strains into 5 genotypes: vaccinal TCO, vaccinal CEO, virulent CEO-like, virulent US and virulent US backyard flocks from 1980 to 1990, correlating with the PCR-RFLP genotypes I/ II/ III (TCO), IV (CEO), V (virulent CEO-like), VI (virulent US) and VII/VIII/IX (virulent US backyard flock isolates). With the unique capabilities of third generation sequencing, we investigated the application of Oxford Nanopore MinION technology for rapid sequencing of the amplicons generated in the single-allele assay. This technology was an improvement over Sanger-based sequencing of the single allele amplicons due to a booster amplification step in the MinION sequencing protocol. Overall, there was a 90% correlation between the genotyping results of the single-allele assay and the multi-allele assay. Surveillance of emerging ILTV strains could greatly benefit from real-time amplicon sequencing using the single-allele assay and MinION sequencing.

RESEARCH HIGHLIGHTS

  • A multi-allelic assay identified nine ILTV genotypes circulating in the US

  • Single-allele genotyping is congruent with whole genome phylogenetic partitioning

  • US ILTV strains can be grouped into five genotypes using the single-allele assay

  • The single-allele assay can be done using MinION sequencing of barcoded amplicons

  相似文献   

13.
14.
Live attenuated vaccines are extensively used worldwide to control the outbreak of infectious laryngotracheitis. Virulent field strains showing close genetic relationship with the infectious laryngotracheitis virus (ILTV) vaccines of chicken embryo origin have been detected in the poultry industry. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis, a reliable molecular epidemiological method, of multiple genomic regions was performed. The PCR-RFLP is a time-consuming method that requires considerable amount of intact viral genomic DNA to amplify genomic regions greater than 4?kb. In this study, six variable genomic regions were selected and amplified for sequencing. The multi-allelic PCR-sequence genotyping showed better discrimination power than that of previous PCR-sequencing schemes using single or two target regions. The allelic variation patterns yielded 16 strains of ILTV classified into 14 different genotypes. Three Korean field strains, 550/05/Ko, 0010/05/Ko and 40032/08/Ko, were found to have the same genotype as the commercial vaccine strain, Laryngo Vac (Zoetis, Florham Park, NJ, USA). Three other Korean field strains, 40798/10/Ko, 12/07/Ko, and 30678/14/Ko, showed recombined allelic patterns. The multi-allelic PCR-sequencing method was proved to be an efficient and practical procedure to classify the different strains of ILTV. The method could serve as an alternate diagnostic and differentiating tool for the classification of ILTV, and contribute to understanding of the epidemiology of the disease at a global level.  相似文献   

15.
Infectious laryngotracheitis (ILT) is a highly contagious acute respiratory disease of chickens with outbreaks resulting in high economic losses due to increased mortality and drop in egg production. This study reports a survey of ILT virus antibody conducted in nine local government areas (LGAs) of Plateau State involving 67 randomly selected commercial poultry flocks. In all, 938 sera were tested using the Agar Gel Immuno-diffusion (AGID) technique. Overall prevalence of 1.2% (N = 11) was recorded. ILT virus antibody was found in 2.5% (n = 9) and 7.1% (n = 2) of the tested sera from Jos South and Langtang North LGAs, respectively. No detectable ILT virus antibody was found from the other seven LGAs. This is the first report of ILT infection in poultry from the North central part of Nigeria. It is therefore recommended that the economic implication of ILT infection in Nigerian poultry population be conducted in order to know if vaccination should be adopted for control.  相似文献   

16.
Nineteen street rabies virus strains, isolated in Egypt from humans (two), dogs (nine), cats (two), farm animals (two), gerbils (three), and a jackal were antigenically analyzed. The Pasteur strain used for the preparation of human rabies vaccine, the Flury high and low egg passage stains (HEP, LEP) used for animal vaccines, and the challenge virus standard (CVS) strain were also assayed. All were examined by the indirect fluorescent antibody test, using a panel of 20 monoclonal antibodies against the nucleocapsid of rabies and rabies-related viruses. The rabies isolates demonstrated patterns of reactivity with the antinucleocapsid panel different from those of the Pasteur, HEP, and CVS strains. Representative human, dog, and rodent isolates were analyzed by neutralization tests in mice, with a second panel of 19 monoclonal antibodies against rabies and Mokola envelope glycoproteins. With this panel, the isolates demonstrated patterns of reactivity different from the vaccine strains. These data indicate antigenic variation between wild virus and vaccine strains.  相似文献   

17.
Infectious laryngotracheitis (ILT) is an economically important disease of chickens caused by a type I gallid herpesvirus, infectious laryngotracheitis virus (ILTV). The vaccines currently available are modified live viruses, which are effective in preventing disease outbreaks. However, they have often been associated with a variety of adverse effects including spread of vaccine virus to non-vaccinates, inadequate attenuation, production of latently infected carriers, and increased virulence as a result of in vivo passage. In this study, a recombinant fowlpox virus expressing glycoprotein B (gB) of ILTV (rFPV-ILTVgB) was constructed. Protection of specific pathogen free (SPF) and commercial chickens from ILT with the rFPV-ILTVgB and commercial ILTV vaccine (Nobilis ILT) were compared after challenge with a lethal dose of virulent ILTV.Both the rFPV-ILTVgB- and the Nobilis ILT-vaccinated SPF chickens were completely protected from death, while 90% of the unvaccinated chickens died after challenge. The immunized commercial chickens were also 100% protected with rFPV-ILTVgB, compared with 85% protected with Nobilis ILT. The protective efficacy was also measured by the antibody response to ILTV gB, isolation of challenge virus and polymerase chain reaction amplification of the ILTV thymidine kinase gene after challenge. The results showed that rFPV-ILTVgB could be a potential safe vaccine to replace current modified live vaccines for preventing ILT.  相似文献   

18.
Ribotyping with a 16S ribosomal RNA gene (rDNA) probe was applied to 25 Mycoplasma gallisepticum strains composed of nine originally isolated in the US and UK, and 16 field isolates from Japan. Four distinct ribotypes were identified among the M. gallisepticum strains on the basis of sizes of the bands produced by digesting genomic DNA with restriction enzymes HindIII, EcoRI, BglII and EcoRV. Three ribotypes were recognized among the 16 Japanese isolates. The original and vaccine F strains were classified as the same ribotype, although they produced different banding patterns with BglII, suggesting that the vaccine strain may be a mutant of the original. Other avian mycoplasma species produced banding patterns different from each other and from M. gallisepticum strains. Characterization of M. gallisepticum strains by ribotyping with a 16S rDNA probe may benefit surveillance and epidemiological investigations on M. gallisepticum infection.  相似文献   

19.
Over the past 80 years, biosecurity measures and vaccines have been used to prevent the occurrence of outbreaks of infectious laryngotracheitis (ILT). Despite these control strategies, ILT continues to have an impact on intensive poultry industries. Attenuated vaccines, particularly those derived by passage in chicken embryos, have been associated with a number of side effects, including residual virulence, transmission to naïve birds, establishment of latent infections with subsequent reactivation and shedding of virus, and reversion to virulence after in vivo passage. Most recently, recombination between attenuated ILT vaccines in the field has been shown to be responsible for the emergence of new virulent viruses that have caused widespread disease. To address some of these issues, new-generation virally vectored recombinant vaccines have been developed and recently released in some countries. In addition, recombinant deletion mutants of ILT virus have been proposed as vaccine candidates. In this review, recent advances in the understanding of the epidemiology of traditionally attenuated ILT vaccines as well as in the development and use of new generation vaccines are examined. Next-generation vaccines, along with more appropriate immunological screening strategies, are identified as particularly promising options to enhance ILT control in the future.  相似文献   

20.
We sought to determine whether nonrandom association of IS6110 with Mycobacterium tuberculosis could result in false-positive clustering in unselected collections of isolates. We typed 196 strains of M. tuberculosis from an unselected community-based study in northern Tanzania by IS6110 and polymorphic GC-rich repetitive-sequence (PGRS) methodologies. The strains were analyzed by Gelcompar computer software. Analysis of 13 out of 25 groups showed that isolates with identical IS6110 and PGRS patterns were likely to be the same strain. Some IS6110 groups containing strains with identical PGRS patterns had similar IS6110 patterns that differed only by movement of the element. Isolates assigned to a single group (i.e., group 11) on the basis of sharing an identical IS6110 fingerprint pattern did not share identical PGRS fingerprint patterns. Six out of the nine bands in these isolates were in hot-spot locations, as previously defined. This indicates that nonrandom association may result in false-positive clustering in unselected community-based studies. Only strains with identical PGRS and IS6110 patterns are likely to be recently transmitted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号