首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The motor neuron degeneration (mnd) mouse, which has widespread abnormal accumulating lipoprotein and neuronal degeneration, has a mutation in CLN8, the gene for human progressive epilepsy with mental retardation (EPMR). EPMR is one of the neuronal ceroid lipofuscinoses (NCLs), a group of neurological disorders characterized by autofluorescent lipopigment accumulation, blindness, seizures, motor deterioration, and dementia. The human phenotype of EPMR suggests that, in addition to the motor symptoms previously categorized, various types of progressive behavioral abnormalities would be expected in mnd mice. We have therefore examined exploratory behavior, fear conditioning, and aggression in 2-3 month and 4-5 month old male mnd mice and age-matched C57BL/6 (B6) controls. The mnd mice displayed increased activity with decreased habituation in the activity monitor, poor contextual and cued memory, and heightened aggression relative to B6 controls. These behavioral deficits were most prominent at 4-5 months of age, which is prior to the onset of gross motor symptoms at 6 months. Our results provide a link from the mutation via pathology to a quantifiable multidimensional behavioral phenotype of this naturally occurring mouse model of NCL.  相似文献   

2.
The mnd mouse spontaneously develops slowly evolving motoneuron pathology leading to progressive motor impairment. There is strong evidence that a complex interplay between oxidative stress, mitochondria abnormalities and alteration of glutamate neurotransmission plays an important role in the pathogenesis of motor neuron diseases. Therefore, we investigated the presence of mitochondrial dysfunction in frontal, central (comprising the motor area) and occipital regions of the cerebral cortex and in the spinal cord of 35-week-old mnd mice. Lipid peroxide derivatives reacting with thiobarbituric acid (TBARS) were measured in the cervical, thoracic and lumbar spinal cord. In addition biochemical and behavioural analyses were carried out in mnd mice chronically treated with l-carnitine from the 11th to the 34th week of life (mndT mice). Slight but significant alterations of mitochondrial enzyme activities were seen in the mnd cortical regions. The central area was the most affected and both complex I, IV and citrate synthase were decreased with respect to controls. The rate of oxygen consumption (QO2) was markedly decreased in both the upper (cervical + upper portion of the thoracic region) and lower (lumbar + lower portion of the thoracic region) mnd spinal cord. The level of TBARS showed a rostro-caudal trend to increase, being 30% higher in the lumbar tract of mnd mice in comparison with controls. L-carnitine treatment increased the mitochondrial enzyme activities in cortical regions towards control value and was effective in enhancing QO2 and decreasing TBARS levels in the spinal cord of mndT. Behavioural testing showed that L-carnitine significantly delayed the onset of motor behaviour impairment. This beneficial effect was declining at 35 week of age, when the biochemical measurements were performed.  相似文献   

3.
4.
Feline spinal muscular atrophy (SMA) is a fully penetrant, autosomal recessive lower motor neuron disease in domestic cats that clinically resembles human SMA Type III. A whole genome linkage scan identified a ~140-kb deletion that abrogates expression of LIX1, a novel SMA candidate gene of unknown function. To characterize the progression of feline SMA, we assessed pathological changes in muscle and spinal cord from 3 days of age to beyond onset of clinical signs. Electromyographic (EMG) analysis indicating denervation occurred between 10 and 12 weeks, with the first neurological signs occurring at the same time. Compound motor action potential (CMAP) amplitudes were significantly reduced in the soleus and extensor carpi radialis muscles at 8-11 weeks. Quadriceps femoris muscle fibers from affected cats appeared smaller at 10 weeks; by 12 weeks atrophic fibers were more prevalent than in age-matched controls. In affected cats, significant loss of L5 ventral root axons was observed at 12 weeks. By 21 weeks of age, affected cats had 40% fewer L5 motor axons than normal. There was no significant difference in total L5 soma number, even at 21 weeks; thus degeneration begins distal to the cell body and proceeds retrogradely. Morphometric analysis of L5 ventral roots and horns revealed that 4 weeks prior to axon loss, motor axons in affected cats failed to undergo radial enlargement, suggesting a role for the putative disease gene LIX1 in radial growth of axons.  相似文献   

5.
Motor neurons (MNs) are designated as alpha/gamma and fast/slow based on their target sites and the types of muscle fibers innervated; however, few molecular markers that distinguish between these subtypes are available. Here we report that osteopontin (OPN) is a selective marker of alpha MNs in the mouse spinal cord. OPN was detected in approximately 70% of postnatal choline acetyltransferase (ChAT)-positive MNs with relatively large somas, but not in those with smaller somas. OPN+/ChAT+ MNs were also positive for NeuN, an alpha MN marker, but were negative for Err3, a gamma MN marker. The size distribution of OPN+/ChAT+ cells was nearly identical to that of NeuN+/ChAT+ alpha MNs. Group Ia proprioceptive terminals immunoreactive for vesicular glutamate transporter-1 were selectively detected on the OPN+/ChAT+ cells. OPN staining was also detected at motor axon terminals at neuromuscular junctions, where the OPN+ terminals were positive or negative for SV2A, a marker distinguishing fast/slow motor endplates. Finally, retrograde labeling following intramuscular injection of fast blue indicated that OPN is expressed in both fast and slow MNs. Collectively, our findings show that OPN is an alpha MN marker present in both the soma and the endplates of alpha MNs in the postnatal mouse spinal cord.  相似文献   

6.
7.
Spinal muscular atrophy (SMA) is an autosomal recessive disease characterized by a progressive degeneration of motoneurons in spinal cord and brainstem. The telomeric copy of a duplicated gene termed survival motor neuron (smn), which maps to chromosome 5q13, has been found to be deleted in most patients. The encoded gene product is a novel protein which recently has been shown to accumulate in specific nuclear organelles (gemini of coiled bodies, GEMS), and to play a part in the formation of the spliceosome complex. We have cloned and sequenced the rat smn cDNA. Antibodies generated against an N-terminus peptide recognized a main protein of 32 kDa in immunoblots of rat embryonic tissue extracts. Minor bands of 35 kDa, 45 kDa and, in perinatal muscle, of 24 kDa were also specifically detected, indicating that SMN is expressed as different molecular forms. Subcellular fractionation indicated that the 32 kDa form is mainly soluble, while the 35 kDa and 45 kDa products segregate to the microsomal–mitochondrial fraction. SMN protein is highly regulated during development: expression is high in embryonic tissues (central nervous system, muscle, lung and liver), and then progressively decreases to very low levels in most tissues of the adult. The demonstration of different molecular forms of SMN along with its developmental regulation may help to understand the contribution of this protein in the appearance of SMA phenotype.  相似文献   

8.
Introduction: PLS is defined as pure upper motor neuron disease/dysfunction (PUMND) beyond 48 months after symptom onset. We know little about its early stages, but such knowledge would help to identify the mechanisms underlying PLS and ALS and determine why PLS patients seem to be protected against lower MND (LMND). Methods: We reviewed 622 MND cases during a 4‐year period and identified 34 patients with PUMND (5.4%). Results: Among 23 cases with follow‐up data/electromyograms (EMGs; 2 had only 1 EMG), 13 (57%) remained classified as PUMND, and 8 (35%) developed LMND (mean, 51.4 months after onset). Of these 8, LMND developed in 3 after 48 months from symptom onset. Patients with PUMND and LMND were more functionally impaired (P = 0.02). Separately, we identified 5 patients with PUMND who developed LMND long after 48 months (range, 50–127 months). Conclusions: PLS belongs to the ALS spectrum, and perhaps all cases eventually develop LMND. Muscle Nerve, 2013  相似文献   

9.
Sporadic motor neuron disease (MND) causes a progressive loss of motor neurons. West Nile virus can attack motor neurons, so we examined whether flavivirus infection could be detected in MND cases. Spinal cord sections from 22 MND cases were stained immunohistochemically with a flavivirus-specific antibody. No staining for flavivirus was seen in any case. Sporadic MND does not appear to arise from a recent infection with a flavivirus.  相似文献   

10.
目的探讨运动神经元病(MND)患者胸锁乳突肌(SCM)肌电图的特征。方法回顾性分析461例MND患者及349例非MND患者的临床和肌电图资料。结果MND组SCM肌电图异常率(60.3%)显著高于非MND组(4.6%)(P<0.01);确诊级MND患者SCM肌电图的异常率(77.4%)明显高于其他诊断级(均P<0.01);MND组中,SCM肌电图的异常率(60.3%)低于上、下肢体肌肉的肌电图(93.2%、84.4%)(均P<0.001);MND患者SCM肌电图异常以自发电位(42.5%)和轻收缩时运动单位电位时限增宽(43.2%)最为常见;MND组有延髓症状者SCM肌电图的异常率(71.7%)明显高于无延髓症状者(54.3%)(P<0.05)。结论MND患者SCM肌电图异常率及其特异性高,为延髓肌受累的指征,有助于MND的诊断与鉴别诊断。  相似文献   

11.
Depletion and sizes of motor units in spinal muscular atrophy   总被引:3,自引:0,他引:3  
Motor unit number estimation (MUNE) was applied to the biceps brachii muscles of 13 young patients (age 5--24 years) with spinal muscular atrophy (SMA) and the results compared with those of healthy control subjects matched for age and gender. In the SMA patients, all motor unit (MU) estimates fell below the control range, and there was good correspondence between the values for the two arms in the same subject. No correlation could be found between the MUNEs and the severity of the weakness. This unexpected result was attributed to the presence of small and normal-sized MUs in the muscles of patients, in addition to MUs that appeared to be considerably enlarged. The threefold mean increase in MU potential size was insufficient to compensate for the MU loss. In addition, the study confirmed that there are, on average, approximately 130 MUs in the healthy biceps brachii muscle.  相似文献   

12.
13.
Spinal muscular atrophy (SMA) is a frequently occurring autosomal recessive disease, characterized by the degeneration of spinal cord anterior horn cells, leading to muscular atrophy. Most SMA patients carry homozygous deletions of the telomeric survival motor neuron gene (SMN) exons 7 and 8. In the study presented here, we examined 20 Japanese SMA patients and found that 4 of these patients were lacking in telomeric SMN exon 7, but retained exon 8. In these 4 patients, who exhibited all grades of disease severity, direct sequencing analysis demonstrated the presence of a hybrid SMN gene in which centromeric SMN exon 7 was adjacent to telomeric SMN exon 8. In an SMA family, a combination of polymerase chain reaction and enzyme-digestion analysis and haplotype analysis with the polymorphic multicopy marker Agl-CA indicated that the patient inherited the hybrid gene from her father. In conclusion, hybrid SMN genes can be present in all grades of disease severity and inherited from generation to generation in an SMA family.  相似文献   

14.
Mice with a null mutation in the myogenic basic helix-loop-helix regulatory gene myogenin have severe developmental muscle defects resulting in loss of secondary muscle fibers and perinatal death. In this study, we used the myogenin mutant mouse as a model to study the effects of the loss of secondary muscle fibers and the contribution of primary muscle fibers on the survival of motor neurons during programmed cell death. We demonstrate that in the absence of secondary skeletal muscle fibers there is complete survival of facial motor nucleus motor neurons and approximately 60% survival of spinal lumbar motor neurons in the myogenin mutant mouse. The surviving spinal motor neurons maintain axonal projections into the hindlimb and display aspects of synaptic contact into the remaining rudimentary fibers. These findings suggest that primary muscle fibers, representing approximately 10% of normal muscle mass, contribute significantly to the control of motor neuron cell survival in mammals. © 1996 Wiley-Liss, Inc.  相似文献   

15.
Kojun Torigoe   《Brain research》1985,330(2):273-282
The distribution and frequency of motor nerve sproutings in the mouse gastrocnemius muscle were examined after a partial denervation. Terminal and nodal sproutings could be seen for a period of 7–28 days after transecting one of the two muscular nerves in the medial head. They grew out not only from the endplates and terminal nerves,but also from the preterminal nerve regions of both the intra-and extramuscular nerve. The terminal sproutings originated from endplates close to the denervated portion and subsequently they were seen farther away in the medial head. Upon regeneration of the originally transected nerve the terminal sproutings were withdrawn in the reverse sequence, i.e., first from the region farthest from the denervated area and last from the region adjacent to the denervation. The frequency of terminal sproutings was constant in the area immediately bordering the denervated portion (11–15% of the total number of enplates). In other areas more distant from the denervated portion, however, it showed a gradient which varied with the time course. The higher the frequency of terminal sproutings, the more actively each endplate prroduced two of three terminal sproutings without significant difference in length.  相似文献   

16.
Introduction: The purpose of this study was to measure and analyze motor unit number estimation (MUNE) values longitudinally in spinal muscular atrophy (SMA). Methods: Sixty‐two children with SMA types 2 and 3 were observed prospectively for up to 42 months. Longitudinal electrophysiological data were collected, including compound motor action potential (CMAP), single motor unit action potential (SMUP), and MUNE. Results: Significant motor neuron loss and compensatory collateral reinnervation were noted at baseline. Over time, there was a significant mean increase in MUNE (4.92 units/year, P = 0.009), a mean decrease in SMUP amplitude (?6.32 μV/year, P = 0.10), and stable CMAP amplitude. Conclusions: The unexpected longitudinal results differ from findings in amyotrophic lateral sclerosis studies, perhaps indicating that compensatory processes in SMA involve new motor unit development. A better understanding of the mechanisms of motor unit decline and compensation in SMA is important for assessing novel therapeutic strategies and for providing key insights into disease pathophysiology. Muscle Nerve 49 : 636–644, 2014  相似文献   

17.
Spinal muscular atrophy (SMA) is among the most common recessive autosomal diseases and is characterized by the loss of spinal motor neurons. A gene termed ‘Survival of Motor Neurons' (SMN) has been identified as the SMA-determining gene. Recent work indicates the involvement of the SMN protein and its associated protein SIP1 in spliceosomal snRNP biogenesis. However, the function of SMN remains unknown. Here, we have studied the subcellular localization of SMN in the rat spinal cord and more generally in the central nervous system (CNS), by light fluorescence and electron microscopy. SMN immunoreactivity (IR) was found in the different regions of the spinal cord but also in various regions of the CNS such as the brainstem, cerebellum, thalamus, cortex and hippocampus. In most neurons, we observed a speckled labelling of the cytoplasm and a discontinuous staining of the nuclear envelope. For some neurons (e.g. brainstem nuclei, dentate gyrus, cortex: layer V) and, in particular in motoneurons, SMN-IR was also present as prominent nuclear dot-like-structures. In these nuclear dots, SMN colocalized with SIP1 and with fibrillarin, a marker of coiled bodies. Ultrastructural studies in the anterior horn of the spinal cord confirmed the presence of SMN in the coiled bodies and also revealed the protein at the external side of nuclear pores complexes, in association with polyribosomes, and in dendrites, associated with microtubules. These localizations suggest that, in addition to its involvement in the spliceosome biogenesis, the SMN protein could also play a part in nucleocytoplasmic and dendritic transport.  相似文献   

18.
Spinal muscular atrophy (SMA) is an inherited motor neuron disease caused by mutations in the survival motor neuron gene (SMN1). While it has been shown that the SMN protein is involved in spliceosome biogenesis and pre-mRNA splicing, there is increasing evidence indicating that SMN may also perform important functions in the nucleolus. We demonstrate here through the use of a previously characterized polyclonal anti-SMN antibody, abSMN, that the SMN protein shows a striking colocalization with the nucleolar protein, fibrillarin, in both nucleoli and Cajal bodies/gems of primary neurons. Immunoblot analysis with antifibrillarin and two different anti-SMN antibodies reveals that SMN and fibrillarin also cofractionate in the insoluble protein fraction of cultured cell lysates. Immunoprecipitation experiments using whole cell extracts of HeLa cells and cultured neurons revealed that abSMN coprecipitated small amounts of the U3 small nucleolar RNA (snoRNA) previously shown to be associated with fibrillarin in vivo. These studies raise the possibility that SMN may serve a function in rRNA maturation/ribosome synthesis similar to its role in spliceosome biogenesis.  相似文献   

19.
We analyzed protein fractions extracted from the spinal cord of the motor neuron degeneration (Mnd) mouse, a mutant that exhibits progressive degeneration of lower spinal motor neurons, by one- and two-dimensional polyacrylamide gel electrophoresis (PAGE) after solubilization of the tissue with medium containing sodium dodecyl sulfate (SDS)-urea during growth of the animal, in comparison with those of age-matched controls (C57BL/6). Several protein spots were detected around a region of pI 5.6–6.0 and molecular mass of 35–50 kDa in Mnd spinal cord tissue on the two-dimensional PAGE separation profile with Coomassie brilliant blue staining, while only a few spots around the same region were found in the control spinal cord. These spots were all immunoreactive with an antibody against glial fibrillary acidic protein (GFAP), a cytoskeleton filamentous protein specific to astroglial cells. The protein spot with molecular mass of 50 kDa showed immunoreactivity with anti-GFAP antibody, had a blocked amino-terminus, and is assumed to be intact GFAP. Several protein spots with slightly smaller molecular masses of 35 to 48 kDa lacked the head domain of the GFAP molecule as a result of cleavage at the 29th and 56th residues from the amino terminus. In Mnd spinal cord tissue, the densities of the immunoreactive GFAP bands with smaller molecular masses increased with development, and became dominant at the time of the appearance of behavioral paralytic gait around 6 to 7 months of age. These results suggest that the increased GFAPs devoid of head domains are related to the degenerative loss of motor neurons in the Mnd spinal cord. Histopathological and GFAP immunohistochemical examination of Mnd spinal cord preparation demonstrated progressive degenerative loss of motor neurons, and considerable increases in number of GFAP-stained astrocytes in the ventral horn at 7 to 9 months of age. These processes of degenerative loss of motor neurons and proliferation of reactive astrocytes with increased levels of fragmented GFAP in the Mnd spinal cord during development seem to be characteristic and preceded the deterioration of motor activities in this animal model of amyotrophic lateral sclerosis.  相似文献   

20.
The earliest horseradish peroxidase (HRP) neuronal labeling (the fastest retrograde transport) was determined by histochemical techniques at various intervals after intramuscular HRP injection in wobbler mice and normal littermates. In the clinically impaired forelimb system, the retrograde transport rate was 150-170 mm/day in wobbler mice and 170-230 mm/day in controls. However, there was no statistical difference between the two groups. The neuronal HRP accumulation at the early intervals was significantly less in wobbler mice than controls, suggesting that the amount of HRP transport was diminished in each axon. For the clinically intact hindlimb nerves, the rate was normal in wobbler mice, but the amount of neuronal HRP was significantly increased. Retrograde axonal transport appeared to be affected in a differential fashion, depending on the extent of disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号