首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 15 毫秒
1.
Most existing wavelet-based image denoising techniques are developed for additive white Gaussian noise. In applications to speckle reduction in medical ultrasound (US) images, the traditional approach is first to perform the logarithmic transform (homomorphic processing) to convert the multiplicative speckle noise model to an additive one, and then the wavelet filtering is performed on the log-transformed image, followed by an exponential operation. However, this non-linear operation leads to biased estimation of the signal and increases the computational complexity of the filtering method. To overcome these drawbacks, an efficient, non-homomorphic technique for speckle reduction in medical US images is proposed. The method relies on the true characterisation of the marginal statistics of the signal and speckle wavelet coefficients. The speckle component was modelled using the generalised Nakagami distribution, which is versatile enough to model the speckle statistics under various scattering conditions of interest in medical US images. By combining this speckle model with the generalised Gaussian signal first, the Bayesian shrinkage functions were derived using the maximum a posteriori (MAP) criterion. The resulting Bayesian processor used the local image statistics to achieve soft-adaptation from homogeneous to highly heterogeneous areas. Finally, the results showed that the proposed method, named GNDShrink, yielded a signal-to-noise ratio (SNR) gain of 0.42 dB over the best state-of-the-art despeckling method reported in the literature, 1.73 dB over the Lee filter and 1.31 dB over the Kaun filter at an input SNR of 12.0 dB, when tested on a US image. Further, the visual comparison of despeckled US images indicated that the new method suppressed the speckle noise well, while preserving the texture and organ surfaces.  相似文献   

2.
This article discusses an adaptive filtering technique for reducing speckle using second order statistics of the speckle pattern in ultrasound medical images. Several region-based adaptive filter techniques have been developed for speckle noise suppression, but there are no specific criteria for selecting the region growing size in the post processing of the filter. The size appropriate for one local region may not be appropriate for other regions. Selection of the correct region size involves a trade-off between speckle reduction and edge preservation. Generally, a large region size is used to smooth speckle and a small size to preserve the edges into an image. In this paper, a smoothing procedure combines the first order statistics of speckle for the homogeneity test and second order statistics for selection of filters and desired region growth. Grey level co-occurrence matrix (GLCM) is calculated for every region during the region contraction and region growing for second order statistics. Further, these GLCM features determine the appropriate filter for the region smoothing. The performance of this approach is compared with the aggressive region-growing filter (ARGF) using edge preservation and speckle reduction tests. The processed image results show that the proposed method effectively reduces speckle noise and preserves edge details.  相似文献   

3.
This paper proposes some modifications to the state-of-the-art Set Partitioning In Hierarchical Trees (SPIHT) image coder based on statistical analysis of the wavelet coefficients across various subbands and scales, in a medical ultrasound (US) image. The original SPIHT algorithm codes all the subbands with same precision irrespective of their significance, whereas the modified algorithm processes significant subbands with more precision and ignores the least significant subbands. The statistical analysis shows that most of the image energy in ultrasound images lies in the coefficients of vertical detail subbands while diagonal subbands contribute negligibly towards total image energy. Based on these statistical observations, this work presents a new modified SPIHT algorithm, which codes the vertical subbands with more precision while neglecting the diagonal subbands. This modification speeds up the coding/decoding process as well as improving the quality of the reconstructed medical image at low bit rates. The experimental results show that the proposed method outperforms the original SPIHT on average by 1.4 dB at the matching bit rates when tested on a series of medical ultrasound images. Further, the proposed algorithm needs 33% less memory as compared to the original SPIHT algorithm.  相似文献   

4.
目的 斑点噪声是超声图像中存在的固有问题,而在眼科高频超声这种更为精细的超声检查中,有效地抑制斑点噪声能提高图像的质量,有助于临床医生对病情的判别.方法 提出了一种新的基于拉普拉斯(Laplacian)金字塔的多尺度斑点去噪方法.采用Laplacian金字塔,从斑点噪声中分离出临床图像特征,根据每层子带图像不同尺度及特点,从小尺度到大尺度,首先采用改进后的八方向各向异性斑点去噪(SRAD)去除图像斑点,然后增强图像的边缘、细节及对比度等方面.该方法与传统的SRAD滤波及相干增强滤波(CEDIF)进行对比,采用等效视数及算法的时间耗费对实验结果进行量化评估.结果 与传统SRAD滤波及CEDIF滤波方法相比,基于Laplacian金字塔的多尺度各向异性斑点去噪方法均高于前两种方法(1.172 3 vs 1.122 3、0.929 3及0.864 0 vs 1.396 0、1.468 3).结论 本研究提出的基于Laplacian金字塔的多尺度各向异性斑点去噪方法在更有效地去除图像斑点噪声的同时,能很好地保存图像边缘及图像细节等.  相似文献   

5.
Image quality is important when evaluating ultrasound images of the carotid for the assessment of the degree of atherosclerotic disease, or when transferring images through a telemedicine channel, and/or in other image processing tasks. The objective of this study was to investigate the usefulness of image quality evaluation based on image quality metrics and visual perception, in ultrasound imaging of the carotid artery after normalization and speckle reduction filtering. Image quality was evaluated based on statistical and texture features, image quality evaluation metrics, and visual perception evaluation made by two experts. These were computed on 80 longitudinal ultrasound images of the carotid bifurcation recorded from two different ultrasound scanners, the HDI ATL-3000 and the HDI ATL-5000 scanner, before (NF) and after (DS) speckle reduction filtering, after normalization (N), and after normalization and speckle reduction filtering (NDS). The results of this study showed that: (1) the normalized speckle reduction, NDS, images were rated visually better on both scanners; (2) the NDS images showed better statistical and texture analysis results on both scanners; (3) better image quality evaluation results were obtained between the original (NF) and normalized (N) images, i.e. NF–N, for both scanners, followed by the NF–DS images for the ATL HDI-5000 scanner and the NF–DS on the HDI ATL-3000 scanner; (4) the ATL HDI-5000 scanner images have considerable higher entropy than the ATL HDI-3000 scanner and thus more information content. However, based on the visual evaluation by the two experts, both scanners were rated similarly. The above findings are also in agreement with the visual perception evaluation, carried out by the two vascular experts. The results of this study showed that ultrasound image normalization and speckle reduction filtering are important preprocessing steps favoring image quality, and should be further investigated.  相似文献   

6.
Convenient and non-invasive ultrasonography has become an essential tool for diagnosing fetal abnormalities. However, the noisy and blurry nature of sonographic data poses a challenge. To improve object visualization, we first develop a modified diffusion filter that utilizes the local standard deviation and edge of local-average-difference to define an adaptive edge stopping function in diffusion filtering. The proposed method overcomes the drawbacks of traditional diffusion filters and shows good results in comparative experiments. Moreover, we propose a novel light absorbing function to remove large regions of interface artifacts. An advanced imaging mode, called texture-based rendering, is employed to provide more realistic rendering. Experimental results show that the proposed methods enhance final image quality in 3D fetal sonograms.  相似文献   

7.
This paper presents a new advanced automatic edge delineation model for the detection and diagnosis of prostate cancer on transrectal ultrasound (TRUS) images. The proposed model is to improve prostate boundary detection system by modifying a set of preprocessing algorithms including tree-structured nonlinear filter (TSF), directional wavelet transforms (DWT) and tree-structured wavelet transform (TSWT). The model consists of a preprocessing module and a segmentation module. The preprocessing module is implemented for noise suppression, image smoothing and boundary enhancement. The active contours model is used in the segmentation module for prostate boundary detection in two-dimensional (2D) TRUS images. Experimental results show that the addition of the preprocessing module improves the accuracy and sensitivity of the segmentation module, compared to the implementation of the segmentation module alone. It is believed that the proposed automatic boundary detection module for the TRUS images is a promising approach, which provides an efficient and robust detection and diagnosis strategy and acts as "second opinion" for the physician's interpretation of prostate cancer.  相似文献   

8.
基于小波的医学超声图像斑点噪声抑制方法   总被引:2,自引:1,他引:2  
斑点噪声是超声图像中固有的噪声。本文提出了一种新的去除斑点噪声的方法,这种方法结合中值滤波和多尺度非线性小波软阈值的优点,首先把原网像进行对数转换,然后把对数转换后的图像进行中值滤波处理,从而把转换后的图像分成两部分,对每一部分进行小波分析,假设小波系数服从广义高斯分布(GGD),利用小波系数的统计特性估计出各个部分各个尺度的阈值,最后用软阈值方法对上述两部分分别去噪。实验结果表明,本文提出的方法在有效去除斑点噪声方面,优于中值滤波,维纳滤波和多尺度非线性阈值算法(MSSNT-A)。  相似文献   

9.
There are a number of different quantitative models that can be used in a medical diagnostic decision support system including parametric methods (linear discriminant analysis or logistic regression), nonparametric models (k nearest neighbor or kernel density) and several neural network models. The complexity of the diagnostic task is thought to be one of the prime determinants of model selection. Unfortunately, there is no theory available to guide model selection. This paper illustrates the use of combined neural network models to guide model selection for diagnosis of ophthalmic and internal carotid arterial disorders. The ophthalmic and internal carotid arterial Doppler signals were decomposed into time-frequency representations using discrete wavelet transform and statistical features were calculated to depict their distribution. The first-level networks were implemented for the diagnosis of ophthalmic and internal carotid arterial disorders using the statistical features as inputs. To improve diagnostic accuracy, the second-level networks were trained using the outputs of the first-level networks as input data. The combined neural network models achieved accuracy rates which were higher than that of the stand-alone neural network models.  相似文献   

10.
This paper presented the assessment of feature extraction methods used in automated diagnosis of arterial diseases. Since classification is more accurate when the pattern is simplified through representation by important features, feature extraction and selection play an important role in classifying systems such as neural networks. Different feature extraction methods were used to obtain feature vectors from ophthalmic and internal carotid arterial Doppler signals. In addition to this, the problem of selecting relevant features among the features available for the purpose of classification of Doppler signals was dealt with. Multilayer perceptron neural networks (MLPNNs) with different inputs (feature vectors) were used for diagnosis of ophthalmic and internal carotid arterial diseases. The assessment of feature extraction methods was performed by taking into consideration of performances of the MLPNNs. The performances of the MLPNNs were evaluated by the convergence rates (number of training epochs) and the total classification accuracies. Finally, some conclusions were drawn concerning the efficiency of discrete wavelet transform as a feature extraction method used for the diagnosis of ophthalmic and internal carotid arterial diseases.  相似文献   

11.
Mixture of experts (ME) is a modular neural network architecture for supervised learning. This paper illustrates the use of ME network structure to guide modelling Doppler ultrasound blood flow signals. Expectation-Maximization (EM) algorithm was used for training the ME so that the learning process is decoupled in a manner that fits well with the modular structure. The ophthalmic and internal carotid arterial Doppler signals were decomposed into time-frequency representations using discrete wavelet transform and statistical features were calculated to depict their distribution. The ME network structures were implemented for diagnosis of ophthalmic and internal carotid arterial disorders using the statistical features as inputs. To improve diagnostic accuracy, the outputs of expert networks were combined by a gating network simultaneously trained in order to stochastically select the expert that is performing the best at solving the problem. The ME network structure achieved accuracy rates which were higher than that of the stand-alone neural network models.  相似文献   

12.
Telemedicine, among other things, involves storage and transmission of medical images, popularly known as teleradiology. Due to constraints on bandwidth and storage capacity, a medical image may be needed to be compressed before transmission/storage. Among various compression techniques, transform-based techniques that convert an image in spatial domain into the data in spectral domain are very effective. Discrete cosine transform (DCT) is possibly the most popular transform used in compression of images in standards like Joint Photographic Experts Group (JPEG). In DCT-based compression the image is split into smaller blocks for computational simplicity. The blocks are classified on the basis of information content to maximize compression ratio without sacrificing diagnostic information. The present paper presents a technique along with computational algorithm for classification of blocks on the basis of an adaptive threshold value of variance. The adaptive approach makes the classification technique applicable across the board to all medical images. Its efficacy is demonstrated by applying it to CT, X-ray and ultrasound images and by comparing the results against the JPEG in terms of various objective quality indices.  相似文献   

13.
Abstract

This paper presents an advanced approach for foetal brain abnormalities diagnostic by integrating significant biometric features in the identification process. In foetal anomaly diagnosis, manual evaluation of foetal behaviour in ultrasound images is a subjective, slow and error-prone task, especially in the preliminary treatment phases. The effectiveness of this appearance is strictly subject to the attention and the experience of gynaecologists. In this case, automatic methods of image analysis offer the possibility of obtaining a homogeneous, objective and above all fast diagnosis of the foetal head in order to identify pregnancy behaviour. Indeed, we propose a computerised diagnostic method based on morphological characteristics and a supervised classification method to categorise subjects into two groups: normal and affected cases. The presented method is validated on a real integrated microcephaly and dolichocephaly cases. The studied database contains the same gestational age of both normal and abnormal foetuses. The results show that the use of a support vector machine (SVM) classifier is an effective way to enhance recognition and detection for rapid and accurate foetal head diagnostic.  相似文献   

14.
The utilization of parallel imaging permits increased MR acquisition speed and efficiency; however, parallel MRI usually leads to a deterioration in the signal-to-noise ratio when compared with otherwise equivalent unaccelerated acquisitions. At high accelerations, the parallel image reconstruction matrix tends to become dominated by one principal component. This has been utilized to enable substantial reductions in g-factor-related noise. A previously published technique achieved noise reductions via a computationally intensive search for multiples of the dominant singular vector which, when subtracted from the image, minimized joint entropy between the accelerated image and a reference image. We describe a simple algorithm that can accomplish similar results without a time-consuming search. Significant reductions in g-factor-related noise were achieved using this new algorithm with in vivo acquisitions at 1.5 T with an eight-element array.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号