首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sorbitol-fermenting (SF) Shiga toxin (Stx)-producing Escherichia coli (STEC) O157:H- strains are emerging as causes of hemorrhagic colitis and the hemolytic-uremic syndrome in Europe. Using subtractive hybridization between SF STEC O157:H- strain 493/89 and STEC O157:H7 strain EDL933, three different fragments, of approximately 700 bp in length, were identified. Each demonstrated > 99% homology to genes encoding the enterohemorrhagic E. coli factor for adherence (efa1) and lymphostatin (lifA). Therefore, a cosmid library was constructed from SF STEC O157:H- strain 493/89, and one clone containing these fragments was sequenced. This sequencing demonstrated a 9669-bp open reading frame (ORF) that had 99.9% sequence homology to efa1 of STEC O111:H- strain E45035 and to lifA of an enteropathogenic E. coli O127:H6 strain E2348/69. In STEC O157:H7 strain EDL933, only small (ca. 3 kb) initial and terminal fragments of this ORF are present. PCR analysis with primers complementary to the efa1/lifA sequence of strain 493/89 indicated that the complete sequence is present in each of 10 SF STEC O157:H- isolates but in none of 10 STEC O157:H7 strains investigated. The presence of the complete efa1/lifA also in both tested E. coli O55:H7 strains supports the hypothesis that SF STEC O157:H- are phylogenetically closer to the proposed E. coli O55:H7 ancestor than STEC O157:H7. Our data demonstrate the presence of a potential virulence gene in SF STEC O157:H- that is only rudimentarily present in STEC O157:H7.  相似文献   

2.
The large virulence plasmid pSFO157 of sorbitol-fermenting E. coli O157:H(-) strain 3072/96 has a size of 121,239bp and contains 96 open reading frames >50bp. It is therefore 29,162bp larger (ca. 32%) than plasmid pO157 of E. coli O157:H7 strain EDL933. Major differences between the plasmids are the absence of katP, espP, and toxB in pSFO157 and, instead of these, the presence of the sfp fimbriae gene cluster and a large part of an F-plasmid transfer region, the latter accounting for most of the additional DNA. The differences in the order of the genes and their composition, as well as the presence of a number of replication-associated genes and mobile genetic elements suggests that the large E. coli O157 virulence plasmids have a complex evolutionary origin.  相似文献   

3.
A total of 66 (98.5%) of 67 enterohemorrhagic Escherichia coli (EHEC) O157:H7 strains had increased potassium tellurite (Te) MICs (32 to 1,024 microg/ml), grew on Te-containing media, and possessed Te resistance (ter) genes, whereas 83 (96.5%) of 86 sorbitol-fermenting (SF) EHEC O157:NM strains had Te MICs of 相似文献   

4.
We compared a collection of sorbitol-fermenting (SF) Escherichia coli O157:H- strains with SF E. coli O157:H45 and non-SF E. coli O157:H7 and E. coli O157:H- strains by pulsed-field gel electrophoresis. The SF E. coli O157:H- strains had identical or closely related XbaI patterns that differed markedly from those for the other E. coli O157 strains. Plasmid content and the presence of Shiga-like toxin-converting phages were determined for the SF E. coli O157:H- strains, indicating that these strains harbor a single 90-kb plasmid. They are lysogenized by toxin-converting phages and harbor the eae gene. Nonmotile E. coli O157 strains were observed to adhere more efficiently to HEp-2 cells than the motile strains. From their phenotypic and genotypic features, the SF E. coli O157:H- strains may well represent a new clone with non-SF E. coli O157:H7 pathogenic characteristics.  相似文献   

5.
Sorbitol-fermenting (SF) enterohemorrhagic Escherichia coli (EHEC) O157:H(-) have emerged as important causes of diarrheal diseases and the hemolytic-uremic syndrome in Germany. In this study, we characterized a 32-kb fragment of the plasmid of SF EHEC O157:H(-), pSFO157, which differs markedly from plasmid pO157 of classical non-sorbitol-fermenting EHEC O157:H7. We found a cluster of six genes, termed sfpA, sfpH, sfpC, sfpD, sfpJ, and sfpG, which mediate mannose-resistant hemagglutination and the expression of fimbriae. sfp genes are similar to the pap genes, encoding P-fimbriae of uropathogenic E. coli, but the sfp cluster lacks homologues of genes encoding subunits of a tip fibrillum as well as regulatory genes. The major pilin, SfpA, despite its similarity to PapA, does not cluster together with known PapA alleles in a phylogenetic tree but is structurally related to the PmpA pilin of Proteus mirabilis. The putative adhesin gene sfpG, responsible for the hemagglutination phenotype, shows significant homology neither to papG nor to other known sequences. Sfp fimbriae are 3 to 5 nm in diameter, in contrast to P-fimbriae, which are 7 nm in diameter. PCR analyses showed that the sfp gene cluster is a characteristic of SF EHEC O157:H(-) strains and is not present in other EHEC isolates, diarrheagenic E. coli, or other Enterobacteriaceae. The sfp gene cluster is flanked by two blocks of insertion sequences and an origin of plasmid replication, indicating that horizontal gene transfer may have contributed to the presence of Sfp fimbriae in SF EHEC O157:H(-).  相似文献   

6.
We identified a cytolethal distending toxin (cdt) gene cluster in 87, 6, and 0% of sorbitol-fermenting (SF) enterohemorrhagic Escherichia coli (EHEC) O157:H(-), EHEC O157:H7, and E. coli O55:H7/H(-) strains, respectively. The toxin was expressed by the wild-type EHEC O157 strains and by a cdt-containing cosmid from a library of SF EHEC O157:H(-) strain 493/89. The cdt flanks in strain 493/89 were homologous to bacteriophages P2 and lambda. Our data demonstrate that cdt, encoding a potential virulence factor, is present in the EHEC O157 complex and suggest that cdt may have been acquired by phage transduction.  相似文献   

7.
Non-sorbitol-fermenting (NSF) Escherichia coli O157:H7 is the primary Shiga toxin-producing E. coli (STEC) serotype associated with human infection. Since 1988, sorbitol-fermenting (SF) STEC O157:NM strains have emerged and have been associated with a higher incidence of progression to hemolytic-uremic syndrome (HUS) than NSF STEC O157:H7. This study investigated bacterial factors that may account for the increased pathogenic potential of SF STEC O157:NM. While no evidence of toxin or toxin expression differences between the two O157 groups was found, the SF STEC O157:NM strains adhered at significantly higher levels to a human colonic cell line. Under the conditions tested, curli were shown to be the main factor responsible for the increased adherence to Caco-2 cells. Notably, 52 of 66 (79%) European SF STEC O157:NM strains tested bound Congo red at 37οC and this correlated with curli expression. In a subset of strains, curli expression was due to increased expression from the csgBAC promoter that was not always a consequence of increased csgD expression. The capacity of SF STEC O157:NM strains to express curli at 37οC may have relevance to the epidemiology of human infections as curliated strains could promote higher levels of colonization and inflammation in the human intestine. In turn, this could lead to increased toxin exposure and an increased likelihood of progression to HUS.  相似文献   

8.
9.
10.
The virulence plasmid of Escherichia coli O157 strain EDL933 carries a 10-kb putative virulence gene designated toxB. Little is known about the distribution of this gene among E. coli O157 strains or its presence in other enterohemorrhagic E. coli (EHEC) and enteropathogenic E. coli (EPEC) strains. We developed PCR and hybridization tools for the detection of the entire toxB sequence and investigated its presence in a collection of EHEC O157 strains and other EHEC and EPEC strains belonging to different serogroups and isolated from different sources. The EHEC O157 strains reacted with all of the PCR primers and probes used, thus indicating the presence of a complete toxB gene regardless of the human or bovine origin of the isolates. Similar positive reactions were observed for about 50% of the EHEC O26 strains tested and a few other EHEC and EPEC strains. However, the size of the DNA fragments hybridizing with the toxB probes differed from that of the positive fragments from EHEC O157, suggesting a polymorphism in the toxB genes present in the different E. coli serogroups. Moreover, several EHEC and EPEC strains belonging to different serogroups reacted with only some of the genetic tools used, suggesting either the existence of major variants of toxB or the presence of fragments of the gene. Southern blotting analysis showed that toxB sequences were located on large plasmids in EHEC and EPEC O26 as well.  相似文献   

11.
《Research in microbiology》2017,168(3):188-193
As major food-borne pathogens worldwide, Escherichia coli are capable of toxin production directly causing severe human disease. However, routine methods are incapable of detecting viable but non-culturable (VBNC) bacteria in food products and raw materials, leading to false-negative identification. In this study, VBNC E. coli O157 strains were acquired after cryopreservation at −20 °C, with and without freeze-thawing; morphology was observed to be of shorter rod-shape, and toxin expression remained at relatively high levels. PMA-PCR assay for VBNC detection was also validated. Therefore, these results suggest that VBNC E. coli O157 strains may represent a strong threat to public health and food safety.  相似文献   

12.
Shiga-like toxin-producing Escherichia coli strains of serogroup O157 were identified in 26 of 104 patients with hemolytic-uremic syndrome and in 18 of 668 patients with diarrhea. All strains were identified by colony hybridization with DNA probes complementary to Shiga-like toxin I and Shiga-like toxin II gene sequences and characterized by biochemical tests and serotyping. Seventeen of these 44 patients had E. coli O157 strains which were unusual because they fermented sorbitol within 24 h of incubation and were positive for beta-glucuronidase activity. Culture filtrates of these sorbitol-fermenting strains were highly toxic to Vero cells in culture. Serological tests and DNA analysis performed by restriction endonuclease digestion of B-subunit toxin genes revealed that all 17 isolates produced Shiga-like toxin II. Although by using molecular probes we established a high frequency of sorbitol-fermenting E. coli O157 strains in the patients we examined, further studies on the prevalence of such isolates in other areas of endemic disease are clearly warranted.  相似文献   

13.
14.
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 and enteropathogenic E. coli (EPEC) trigger actin polymerization at the site of bacterial adhesion by inducing different signaling pathways. Actin assembly by EPEC requires tyrosine phosphorylation of Tir, which subsequently binds the host adaptor protein Nck. In contrast, Tir(EHEC O157) is not tyrosine phosphorylated and instead of Nck utilizes the bacterially encoded Tir-cytoskeleton coupling protein (TccP)/EspF(U), which mimics the function of Nck. tccP is carried on prophage CP-933U/Sp14 (TccP). Typical isolates of EHEC O157:H7 harbor a pseudo-tccP gene that is carried on prophage CP-933 M/Sp4 (tccP2). Here we report that atypical, beta-glucuronidase-positive and sorbitol-fermenting, strains of EHEC O157 harbor intact tccP and tccP2 genes, both of which are secreted by the LEE-encoded type III secretion system. Non-O157 EHEC strains, including O26, O103, O111, and O145, are typically tccP negative and translocate a Tir protein that encompasses an Nck binding site. Unexpectedly, we found that most clinical non-O157 EHEC isolates carry a functional tccP2 gene that encodes a secreted protein that can complement an EHEC O157:H7 DeltatccP mutant. Using discriminatory, allele-specific PCR, we have demonstrated that over 90% of tccP2-positive non-O157 EHEC strains contain a Tir protein that can be tyrosine phosphorylated. These results suggest that the TccP pathway can be used by both O157 and non-O157 EHEC and that non-O157 EHEC can also trigger actin polymerization via the Nck pathway.  相似文献   

15.
Adherence of enterohemorrhagic Escherichia coli (EHEC) to the intestinal epithelium is critical for initiation of a bacterial infection. An in vitro infection study previously indicated that EHEC bacteria initially adhere diffusely and then proliferate to develop MC, a process that is mediated by various secreted proteins, such as EspA, EspB, EspD, Tir, and intimin, as well as other putative adherence factors. In the present study, we investigated the role of a large 93-kb plasmid (pO157) in the adherence of O157:H7 (O157Sakai) and found the toxB gene to be involved in the full adherence phenotype. A pO157-cured strain of O157Sakai (O157Cu) developed microcolonies on Caco-2 cells; however, the number of microcolonies was lower than that of O157Sakai, as were the production and secretion levels of EspA, EspB, and Tir. Introduction of a mini-pO157 plasmid (pIC37) composed of the toxB and ori regions restored full adherence capacity to O157Cu, including production and secretion of the proteins. In contrast, introduction of a pO157 mutant possessing toxB::Km into O157Cu could not restore the full adherence phenotype. Expression of truncated versions of His-tagged ToxB also promoted EspB production and/or secretion by O157Cu. These results suggest that ToxB contributes to the adherence of EHEC to epithelial cells through promotion of the production and/or secretion of type III secreted proteins.  相似文献   

16.
Enterohemorrhagic Escherichia coli (EHEC) O157 strains belong to two closely related major groups, which are differentiated by their sorbitol fermentation phenotypes. Here we studied the conservation of urease genes and their expression in sorbitol-fermenting (SF) and non-SF EHEC O157 isolates. PCR targeting ure genes (ureA, -B, -C, -D, -E, -F, and -G) demonstrated that each of these genes was present in 58 of 59 EHEC O157:H7 isolates. In contrast, none of 82 SF EHEC O157:NM (nonmotile) isolates contained any of the ure genes. Hence, the absence of the urease genes distinguishes SF EHEC O157:NM strains from EHEC O157:H7, but this absence demonstrates that the urease genes are not useful genetic targets for the detection of EHEC strains, because SF EHEC O157:NM strains are missed by such a strategy. When examined for urease activity on Christensen agar and in the API 20E system, only one O157:H7 strain displayed urease activity and produced elevated levels of ammonia, which was subsequently confirmed by ammonia electrode measurement. Because the ure genes were absent from each of nine strains of E. coli O55:H7, the proposed progenitor of EHEC O157, we hypothesize that EHEC O157:H7 diverged from the evolutionary pathway at an early stage and then acquired the O islands carrying the ure gene cluster.  相似文献   

17.
Escherichia coli of the serotype O157:H7 has recently been isolated in human fecal specimens in association with sporadic cases and outbreaks of hemorrhagic colitis and with the hemolytic uremic syndrome. The aim of this study was to characterize the flagellin protein subunit constituents of flagellar filaments from E. coli O157:H7 strain CL-56. Flagellin isolated from a reference Salmonella enteritidis strain was used for comparison. Flagella were dissociated by incubation of bacteria under acidic conditions, centrifugation, and differential ammonium sulfate precipitation. Reconstituted flagellar filaments were demonstrated by three complementary methods: transmission electron microscopy, antigenic reactivity with H7 antiserum by a dot blot immunoassay, and immunogold localization of antiserum raised to the purified antigen to intact flagella on whole E. coli O157:H7. On sodium dodecyl sulfate-polyacrylamide gels flagellin proteins from E. coli O157:H7 demonstrated an apparent Mr of 66,000. The isoelectric point of E. coli O157:H7 flagellin was 5.42. By immunoblotting, H7 flagellin proteins were shown to be immunogenic. They induced a systemic immune response both in rabbits challenged with whole bacteria and in a human previously infected with E. coli O157:H7.  相似文献   

18.
A hemolytic determinant of enterohemorrhagic Escherichia coli O157:H7 is encoded on a 90-kbp plasmid (pO157). This enterohemorrhagic E. coli toxin (Ehx) is a newly described RTX cytotoxin. The prototype RTX toxin is the E. coli hemolysin (Hly) associated with extraintestinal E. coli infections. We expressed Ehx from E. coli K-12 strains harboring either pSK3, a pO157 derivative marked with Tn801 unlinked to Ehx, or a recombinant plasmid containing an 11.9-kbp subclone (pEO40) of pSK3. The Ehx activities and antibody reactivities were compared with those of Hly. Little Ehx was secreted extracellularly from the strain harboring pSK3; however, when the Hly transport genes hlyBD were supplied in trans, both intracellular and extracellular levels of Ehx were enhanced more than 15-fold. The strain harboring pEO40 secreted at least 140-fold more Ehx than did the strain harboring pSK3, and neither intracellular nor extracellular levels were significantly enhanced by the addition of hlyBD in trans. Polyclonal anti-HlyA antiserum and several anti-HlyA monoclonal antibodies, including the monoclonal antibody A10, which is panreactive for nearly all RTX toxins, reacted with EhxA antigen by immunoblot analysis. In hemolysis and 51Cr release assays, Ehx demonstrated similar efficiencies in lysis of BL-3 cells (cells from a bovine lymphoma cell line) and sheep and human erythrocytes. Surprisingly, it demonstrated very little activity against two human lymphoma cell lines. In contrast, Hly lysed all five cell types tested, each to a greater extent than that demonstrated by comparable amounts of Ehx. As with other RTX toxins, Ehx activity was calcium dependent and heat labile.  相似文献   

19.
The mechanisms underlying the adherence of Escherichia coli O157:H7 and other enterohemorrhagic E. coli (EHEC) strains to intestinal epithelial cells are poorly understood. We have identified a chromosomal region (designated lpfABCC'DE) in EHEC O157:H7 containing six putative open reading frames that was found to be closely related to the long polar (LP) fimbria operon (lpf) of Salmonella enterica serovar Typhimurium, both in gene order and in conservation of the deduced amino acid sequences. We show that lpfABCC'DE is organized as an operon and that its expression is induced during the exponential growth phase. The lpf genes from EHEC strain EDL933 were introduced into a nonfimbriated (Fim(-)) E. coli K-12 strain, and the transformed strain produced fimbriae as visualized by electron microscopy and adhered to tissue culture cells. Anti-LpfA antiserum recognized a ca. 16-kDa LpfA protein when expressed under regulation of the T7 promoter system. The antiserum also cross-reacted with the LP fimbriae in immunogold electron microscopy and Western blot experiments. Isogenic E. coli O157:H7 lpf mutants derived from strains 86-24 and AGT300 showed slight reductions in adherence to tissue culture cells and formed fewer microcolonies compared with their wild-type parent strains. The adherence and microcolony formation phenotypes were restored when the lpf operon was introduced on a plasmid. We propose that LP fimbriae participate in the interaction of E. coli O157:H7 with eukaryotic cells by assisting in microcolony formation.  相似文献   

20.
Enterohemorrhagic Escherichia coli (EHEC) are a cause of bloody diarrhea, hemorrhagic colitis (HC) and the potentially fatal hemolytic uremic syndrome (HUS). While O157:H7 is the dominant EHEC serotype, non-O157 EHEC have emerged as serious causes of disease. In Germany, the most important non-O157 O-serogroups causing one third of EHEC infections, including diarrhea as well as HUS, are O26, O103, O111 and O145. Interestingly, we identified EHEC O-serogroups O26 and O111 in one single sequence type complex, STC29, that also harbours atypical enteropathogenic E. coli (aEPEC). aEPEC differ from typical EHEC merely in the absence of stx-genes. These findings inspired us to unravel a putative microevolutionary scenario of these non-O157 EHEC by whole genome analyses.Analysis of single nucleotide polymorphisms (SNPs) of the maximum common genome (MCG) of 20 aEPEC (11 human/ 9 bovine) and 79 EHEC (42 human/ 36 bovine/ 1 food source) of STC29 identified three distinct clusters: Cluster 1 harboured strains of O-serogroup O111, the central Cluster 2 harboured only O26 aEPEC strains, while the more heterogeneous Cluster 3 contained both EHEC and aEPEC strains of O-serogroup O26. Further combined analyses of accessory virulence associated genes (VAGs) and insertion sites for mobile genetic elements suggested a parallel evolution of the MCG and the acquisition of virulence genes. The resulting microevolutionary model suggests the development of two distinct EHEC lineages from one common aEPEC ancestor of ST29 by lysogenic conversion with stx-converting bacteriophages, independent of the host species the strains had been isolated from.In conclusion, our cumulative data indicate that EHEC of O-serogroups O26 and O111 of STC29 originate from a common aEPEC ancestor and are bona fide zoonotic agents. The role of aEPEC in the emergence of O26 and O111 EHEC should be considered for infection control measures to prevent possible lysogenic conversion with stx-converting bacteriophages as major vehicle driving the emergence of EHEC lineages with direct Public Health consequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号