首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The unfolded protein response (UPR) is an evolutionarily conserved mechanism by which all eukaryotic cells adapt to the accumulation of unfolded proteins in the endoplasmic reticulum (ER). Inositol-requiring kinase 1 (IRE1) and PKR-related ER kinase (PERK) are two type I transmembrane ER-localized protein kinase receptors that signal the UPR through a process that involves homodimerization and autophosphorylation. To elucidate the molecular basis of the ER transmembrane signaling event, we determined the x-ray crystal structure of the luminal domain of human IRE1alpha. The monomer of the luminal domain comprises a unique fold of a triangular assembly of beta-sheet clusters. Structural analysis identified an extensive dimerization interface stabilized by hydrogen bonds and hydrophobic interactions. Dimerization creates an MHC-like groove at the interface. However, because this groove is too narrow for peptide binding and the purified luminal domain forms high-affinity dimers in vitro, peptide binding to this groove is not required for dimerization. Consistent with our structural observations, mutations that disrupt the dimerization interface produced IRE1alpha molecules that failed to either dimerize or activate the UPR upon ER stress. In addition, mutations in a structurally homologous region within PERK also prevented dimerization. Our structural, biochemical, and functional studies in vivo altogether demonstrate that IRE1 and PERK have conserved a common molecular interface necessary and sufficient for dimerization and UPR signaling.  相似文献   

4.
In pancreatic β-cells, the endoplasmic reticulum (ER) is the crucial site for insulin biosynthesis, as this is where the protein-folding machinery for secretory proteins is localized. Perturbations to ER function of the β-cell, such as a high demand for insulin secretion, can lead to an imbalance in protein homeostasis and lead to ER stress. This stress can be mitigated by an adaptive, cellular response, the unfolded protein response (UPR). UPR activation is vital to the survival of β-cells, as these cells represent one of the most susceptible tissues for ER stress, due to their highly secretory function. However, in some cases, this response is not sufficient to relieve stress, leading to apoptosis and contributing to the pathogenesis of diabetes. Recent evidence shows that ER stress plays a significant role in both type 1 and type 2 diabetes. In this review, we outline the mechanisms of ER stress-mediated β-cell death and focus on the role of ER stress in various forms of diabetes, particularly a genetic form of diabetes called Wolfram syndrome.  相似文献   

5.
Endoplasmic reticulum (ER) stress sensors use a related luminal domain to monitor the unfolded protein load and convey the signal to downstream effectors, signaling an unfolded protein response (UPR) that maintains compartment-specific protein folding homeostasis. Surprisingly, perturbation of cellular lipid composition also activates the UPR, with important consequences in obesity and diabetes. However, it is unclear if direct sensing of the lipid perturbation contributes to UPR activation. We found that mutant mammalian ER stress sensors, IRE1α and PERK, lacking their luminal unfolded protein stress-sensing domain, nonetheless retained responsiveness to increased lipid saturation. Lipid saturation-mediated activation in cells required an ER-spanning transmembrane domain and was positively regulated in vitro by acyl-chain saturation in reconstituted liposomes. These observations suggest that direct sensing of the lipid composition of the ER membrane contributes to the UPR.  相似文献   

6.
Endoplasmic reticulum stress in liver disease   总被引:1,自引:0,他引:1  
  相似文献   

7.
The accumulation of unfolded proteins in the endoplasmic reticulum (ER) triggers the unfolded protein response (UPR)-signaling pathway. The UPR coordinates the induction of ER chaperones with decreased protein synthesis and growth arrest in the G(1) phase of the cell cycle. Three ER transmembrane protein kinases (Ire1alpha, Ire1beta, and PERK) have been implicated as proximal effectors of the mammalian UPR. We now demonstrate that activation of PERK signals the loss of cyclin D1 during the UPR, culminating in cell-cycle arrest. Overexpression of wild-type PERK inhibited cyclin D1 synthesis in the absence of ER stress, thereby inducing a G(1) phase arrest. PERK expression was associated with increased phosphorylation of the translation elongation initiation factor 2alpha (eIF2alpha), an event previously shown to block cyclin D1 translation. Conversely, a truncated form of PERK lacking its kinase domain acted as a dominant negative when overexpressed in cells, attenuating both cyclin D1 loss and cell-cycle arrest during the UPR without compromising induction of ER chaperones. These data demonstrate that PERK serves as a critical effector of UPR-induced growth arrest, linking stress in the ER to control of cell-cycle progression.  相似文献   

8.
Pancreatic β-cell dysfunction is central to the pathogenesis of type 2 diabetes, and the loss of functional β-cell mass in type 2 diabetes is at least in part secondary to increased β-cell apoptosis. Accumulating evidence suggests that endoplasmic reticulum (ER) stress is present in β-cells in type 2 diabetes. Free fatty acids (FFAs) cause ER stress and are putative mediators of β-cell dysfunction and death. In this review, we discuss the molecular mechanisms underlying ER stress induced by saturated and unsaturated FFAs. Oleate and palmitate trigger ER stress through ER Ca(2+) depletion and build-up of unfolded proteins in the secretory pathway. Saturated and unsaturated FFAs elicit a differential signal transduction in the three branches of the ER stress response, resulting in different survival/apoptosis outcomes. The protection of β-cells against FFAs through the interference with ER stress signalling has opened novel therapeutic perspectives for type 2 diabetes. Chemical chaperones, salubrinal and glucagon-like peptide-1 (GLP-1) analogues have been used to protect β-cells from lipotoxic ER stress. Importantly, the pro- and antiapoptotic effects of these compounds are cell and context dependent.  相似文献   

9.
The endoplasmic reticulum (ER)-resident protein kinase/endoribonuclease inositol-requiring enzyme 1 (IRE1) is activated through transautophosphorylation in response to protein folding overload in the ER lumen and maintains ER homeostasis by triggering a key branch of the unfolded protein response. Here we show that mammalian IRE1α in liver cells is also phosphorylated by a kinase other than itself in response to metabolic stimuli. Glucagon-stimulated protein kinase PKA, which in turn phosphorylated IRE1α at Ser(724), a highly conserved site within the kinase activation domain. Blocking Ser(724) phosphorylation impaired the ability of IRE1α to augment the up-regulation by glucagon signaling of the expression of gluconeogenic genes. Moreover, hepatic IRE1α was highly phosphorylated at Ser(724) by PKA in mice with obesity, and silencing hepatic IRE1α markedly reduced hyperglycemia and glucose intolerance. Hence, these results suggest that IRE1α integrates signals from both the ER lumen and the cytoplasm in the liver and is coupled to the glucagon signaling in the regulation of glucose metabolism.  相似文献   

10.
11.
β-Cell death is an important pathogenic component of both type 1 and type 2 diabetes. Recent findings indicate that cell signalling pathways emanating from the endoplasmic reticulum (ER) play an important role in the regulation of β-cell death during the progression of diabetes. Homeostasis within the ER must be maintained to produce properly folded secretory proteins, such as insulin, in response to the body's need for them. However, the sensitive protein-folding environment in the ER can be perturbed by genetic and environmental factors leading to ER stress. To counteract ER stress, β-cells activate cell signalling pathways termed the unfolded protein response (UPR). The UPR functions as a binary switch between life and death, regulating both survival and death effectors. The outcome of this switch depends on the nature of the ER stress condition, the regulation of UPR activation and the expression and activation of survival and death components. This review discusses the mechanisms and the components in this switch and highlights the roles of this UPR's balancing act between life and death in β-cells.  相似文献   

12.
Accumulation of misfolded proteins in the endoplasmic reticulum (ER) triggers the unfolded protein response (UPR), an intracellular signaling pathway that adjusts the protein folding capacity of the ER according to need. If homeostasis in the ER protein folding environment cannot be reestablished, cells commit to apoptosis. The ER-resident transmembrane kinase-endoribonuclease inositol-requiring enzyme 1 (IRE1) is the best characterized UPR signal transduction molecule. In yeast, Ire1 oligomerizes upon activation in response to an accumulation of misfolded proteins in the ER. Here we show that the salient mechanistic features of IRE1 activation are conserved: mammalian IRE1 oligomerizes in the ER membrane and oligomerization correlates with the onset of IRE1 phosphorylation and RNase activity. Moreover, the kinase/RNase module of human IRE1 activates cooperatively in vitro, indicating that formation of oligomers larger than four IRE1 molecules takes place upon activation. High-order IRE1 oligomerization thus emerges as a conserved mechanism of IRE1 signaling. IRE1 signaling attenuates after prolonged ER stress. IRE1 then enters a refractive state even if ER stress remains unmitigated. Attenuation includes dissolution of IRE1 clusters, IRE1 dephosphorylation, and decline in endoribonuclease activity. Thus IRE1 activity is governed by a timer that may be important in switching the UPR from the initially cytoprotective phase to the apoptotic mode.  相似文献   

13.
14.
Unfolded protein response (UPR) is a stress response to increased levels of unfolded proteins in the endoplasmic reticulum (ER). To deal with this stress, all eukaryotic cells share a well-conserved strategy--the upregulation of chaperons and proteases to facilitate protein folding and to degrade the misfolded proteins. For metazoans, however, an additional and seemingly redundant strategy has been evolved--translation attenuation (TA) of proteins targeted to the ER via the protein kinase PERK pathway. PERK is essential in secretory cells, such as the pancreatic β-cells, but not in non-secretory cell types. We have recently developed a mathematical model of UPR, focusing on the interplay and synergy between the TA arm and the conserved Ire1 arm of the UPR. The model showed that the TA mechanism is beneficial in highly fluctuating environment, for example, in the case where the ER stress changes frequently. Under highly variable levels of ER stress, tight regulation of the ER load by TA avoids excess amount of chaperons and proteases being produced. The model also showed that TA is of greater importance when there is a large flux of proteins through the ER. In this study, we further expand our model to investigate different types of ER stress and different temporal profiles of the stress. We found that TA is more desirable in dealing with the translation stress, for example, prolonged stimulation of proinsulin biosynthesis, than the chemical stress.  相似文献   

15.
16.
17.
18.
19.
20.
Increased levels of unfolded proteins in the endoplasmic reticulum (ER) of all eukaryotes trigger the unfolded protein response (UPR). Lower eukaryotes solely use an ancient UPR mechanism, whereby they up-regulate ER-resident chaperones and other enzymatic activities to augment protein folding and enhance degradation of misfolded proteins. Metazoans have evolved an additional mechanism through which they attenuate translation of secretory pathway proteins by activating the ER protein kinase PERK. In mammalian professional secretory cells such as insulin-producing pancreatic β-cells, PERK is highly abundant and crucial for proper functioning of the secretory pathway. Through a modeling approach, we propose explanations for why a translation attenuation (TA) mechanism may be critical for β-cells, but is less important in nonsecretory cells and unnecessary in lower eukaryotes such as yeast. We compared the performance of a model UPR, both with and without a TA mechanism, by monitoring 2 variables: (i) the maximal increase in ER unfolded proteins during a response, and (ii) the accumulation of chaperones between 2 consecutive pulses of stress. We found that a TA mechanism is important for minimizing these 2 variables when the ER is repeatedly subjected to transient unfolded protein stresses and when it sustains a large flux of secretory pathway proteins which are both conditions encountered physiologically by pancreatic β-cells. Low expression of PERK in nonsecretory cells, and its absence in yeast, can be rationalized by lower trafficking of secretory proteins through their ERs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号