首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To characterize heat-shock proteins (HSPs) of the 70-kDa family in the crayfish medial giant axon (MGA), we analyzed axoplasmic proteins separately from proteins of the glial sheath. Several different molecular weight isoforms of constitutive HSP 70s that were detected on immunoblots were approximately 1–3% of the total protein in the axoplasm of MGAs. To investigate inducible HSPs, MGAs were heat shocked in vitro or in vivo, then the axon was bathed in radiolabeled amino acid for 4 hours. After either heat-shock treatment, protein synthesis in the glial sheath was decreased compared with that of control axons, and newly synthesized proteins of 72 kDa, 84 kDa, and 87 kDa appeared in both the axoplasm and the sheath. Because these radiolabeled proteins were present in MGAs only after heat-shock treatments, we interpreted the newly synthesized proteins of 72 kDa, 84 kDa, and 87 kDa to be inducible HSPs. Furthermore, the 72-kDa radiolabeled band in heat-shocked axoplasm and glial sheath samples comigrated with a band possessing HSP 70 immunoreactivity. The amount of heat-induced proteins in axoplasm samples was greater after a 2-hour heat shock than after a 1-hour heat shock. These data indicate that MGA axoplasm contains relatively high levels of constitutive HSP 70s and that, after heat shock, MGA axoplasm obtains inducible HSPs of 72 kDa, 84 kDa, and 87 kDa from the glial sheath. These constitutive and inducible HSPs may help MGAs maintain essential structures and functions following acute heat shock. J. Comp. Neurol. 396:1–11, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

2.
Axon-glia transfer of a protein and a carbohydrate   总被引:1,自引:0,他引:1  
We have investigated the transfer of a fluorescent protein, the fluorescein isothiocyanate derivative of bovine serum albumin (FITC-BSA), and a fluorescent carbohydrate, FITC-dextran, from the crayfish medial giant axon (MGA) to the periaxonal glial cells. The dialyzed tracer was injected into one of the two MGAs, and, after a transfer period of 15-60 min, the tissue was fixed for histological examination of fluorescence distribution. With each tracer, the periaxonal sheath of the injected MGA was specifically labeled. Similar results were obtained with several different fixatives. During the transfer period, there was no appreciable change in the resting potential or conducted action potential of the MGA or in the resting potentials of the adaxonal glial cells. Polyacrylamide gel electrophoresis indicated that the axoplasmic and sheath fluorescence was produced by the intact tracers. These results suggest that "foreign" macromolecules can be exchanged from crayfish axons to glia under physiological conditions. Such transfers may indicate a substantial intercellular traffic of molecules or a means whereby neurons can eliminate waste materials.  相似文献   

3.
The transfer of newly synthesized proteins from the glial sheath into the axon is a well-documented process for the squid giant axon. In this study, we used a novel approach to separate the transferred glial proteins (TGPs) from the endogenous axoplasmic proteins of the squid giant axon. Axoplasm, containing radiolabelled TGPs, was extruded as a cylinder and immersed in an intracellular buffer. After 1–30 min, the TGPs were enriched in the intracellular buffer, because they were eluted from the axoplasm into the intracellular buffer much faster than the endogenous axoplasmic proteins. Most of the TGPs enriched in the intracellular buffer did not pellet when centrifuged at 24,000 g for 20 min and were susceptible to protease digestion without the addition of Triton X-100. Additionally, transmission electron microscopic autoradiography of intact axons, containing radiolabelled TGPs, suggested that most TGPs were not associated with vesicular organelles within the axon. We conclude that most of the TGPs are not contained within vesicles in the axoplasm of the squid giant axon, as would be expected if the mechanism of glia-to-axon transfer were conventional exocytosisendocytosis or microphagocytosis. © 1995 Wiley-Liss, Inc.  相似文献   

4.
Heat shock-like protein is transferred from glia to axon   总被引:1,自引:0,他引:1  
Glia-axon protein transfer was examined in the squid giant axon. Proteins synthesized by the glial sheath surrounding the axon were labeled with [3H]leucine. Raising the temperature of the incubation medium from 20 °C to 30 °C increased the synthesis of glial proteins that resembled heat-shock proteins. These proteins were among the group known to be transferred into the axon12,18. Thus, glia provide the axon with proteins that may be involved in the reaction totrauma.  相似文献   

5.
The significance of the protein metabolism in crayfish peripheral nerve was studied in relation the ability of crayfish motor axons to survive for over 200 days following axotomy. In contrast to frog peripheral nerves, the crayfish nerves appear to more closely resemble ganglia in their profiles of synthesis expressed on sodium dodecyl sulfate (SDS) gels, and have higher incorporation rates of [3H]leucine into protein than ganglia. Since anisomycin inhibits over 95% of protein synthesis in crayfish peripheral nerve, it was concluded that this local protein synthesis was dependent upon a eukaryotic ribosomal mechanism. Radioautography of isolated nerves reveals newly synthesized proteins in glial sheaths, and also within the axoplasm of large motor fibers. Based upon the data available at present, a hypothesis that the glia surrounding the axons are responsible for the local protein synthesis, and that some of these newly synthesized proteins are transported into the axon, is presented. Transection of crayfish peripheral nerves proximal to the neuron cell bodies produced a more than two-fold increase in [3H]leucine incorporation, but no significant changes in labeling profiles of the proteins on SDS gels. The data suggest that while an active local protein synthesis may be necessary for the maintenance of several crayfish motor axons, it is not a sufficient condition.  相似文献   

6.
Medial giant (MGA) and lateral giant (LGA) axons of crayfish were doubly cut in order to selectively isolate axonal segments from perikaryal and transsynaptic sources of trophic input. Isolated MGA segments remained morphologically intact for over 43 days, whereas isolated LGA segments usually degenerated within one week. The glial sheaths around isolated MGA segments had significantly increased in thickness within one week, but severed LGA segments showed no increase in sheath thickness at any time after lesioning. These data suggest that cells of the surrounding glial sheath can provide trophic support to isolated MGA segments but not to isolated LGA segments. Extent of glial hypertrophy seems dependent upon specific spatiotemporal parameters.The diameters of isolated MGA segments decreased more rapidly than the diameters of singly cut MGA segments. These data suggest that the MGA also receives some trophic support from pre- or postsynaptic sources. Conversely, some singly cut LGA segments completely degenerated within one week, whereas other singly cut LGA segments remained intact for at least 43 days after lesioning. Such results suggest that the LGA receives a significant trophic input from pre- or postsynaptic structures.  相似文献   

7.
Medial giant (MGA) and lateral giant (LGA) axons of crayfish were doubly cut in order to selectively isolate axonal segments from perikaryal and transsynaptic sources of trophic input. Isolated MGA segments remained morphologically intact for over 43 days, whereas isolated LGA segments usually degenerated within one week. The glial sheaths around isolated MGA segments had significantly increased in thickness within one week, but severed LGA segments showed no increase in sheath thickness at any time after lesioning. These data suggest that cells of the surrounding glial sheath can provide trophic support to isolated MGA segments but not to isolated LGA segments. Extent of glial hypertrophy seems dependent upon specific spatiotemporal parameters.The diameters of isolated MGA segments decreased more rapidly than the diameters of singly cut MGA segments. These data suggest that the MGA also receives some trophic support from pre- or postsynaptic sources. Conversely, some singly cut LGA segments completely degenerated within one week, whereas other singly cut LGA segments remained intact for at least 43 days after lesioning. Such results suggest that the LGA receives a significant trophic input from pre- or postsynaptic structures.  相似文献   

8.
Severed distal segments of nerve axons (anucleate axons) have now been reported to survive for weeks to years in representative organisms from most phyla, including the vertebrates. Among invertebrates (especially crustaceans), such long-term survival might involve transfer of proteins from adjacent intact cells to anucleate axons. In lower vertebrates and mammals, long-term survival of anucleate axons is more likely attributed to a slow turnover of axonal proteins and/or a lack of phagocytosis by macrophages or other cell types. Invertebrate anucleate axons that exhibit long-term survival are often reactivated by neurites that have grown from proximal nucleate segments. In mammals, induction of long-term survival in anucleate axons might allow more time to use artificial mechanisms to repair nerve axons by fusing the two severed halves with polyethylene glycol, a technique recently developed to fuse severed halves of myelinated axons in earthworms.  相似文献   

9.
The presence of active systems of protein synthesis in axons and nerve endings raises the question of the cellular origin of the corresponding RNAs. Our present experiments demonstrate that, besides a possible derivation from neuronal cell bodies, axoplasmic RNAs originate in periaxonal glial cells and presynaptic RNAs derive from nearby cells, presumably glial cells. Indeed, in perfused squid giant axons, delivery of newly synthesized RNA to the axon perfusate is strongly stimulated by axonal depolarization or agonists of glial glutamate and acetylcholine receptors. Likewise, incubation of squid optic lobe slices with [3H]uridine leads to a marked accumulation of [3H]RNA in the large synaptosomes derived from the nerve terminals of retinal photoreceptor neurons. As the cell bodies of these neurons lie outside the optic lobe, the data demonstrate that presynaptic RNA is locally synthesized, presumably by perisynaptic glial cells. Overall, our results support the view that axons and presynaptic regions are endowed with local systems of gene expression which may prove essential for the maintenance and plasticity of these extrasomatic neuronal domains.  相似文献   

10.
It is now well established that the distal structural/functional domains of the neuron contain 2a diverse population of mRNAs that program the local synthesis of protein. However, there is still a paucity of information on the composition and function of these mRNA populations in the adult nervous system. To generate empirically, hypotheses regarding the function of the local protein synthetic system, we have compared the mRNAs present in the squid giant axon and its parental cell bodies using differential mRNA display as an unbiased screen. The results of this screen facilitated the identification of 31 mRNAs that encoded cytoskeletal proteins, translation factors, ribosomal proteins, molecular motors, metabolic enzymes, nuclear-encoded mitochondrial mRNAs, and a molecular chaperone. Results of cell fractionation and RT-PCR analyses established that several of these mRNAs were present in polysomes present in the presynaptic nerve terminal of photoreceptor neurons, indicating that these mRNAs were being actively translated. Findings derived from in vitro transfection studies established that these isolated nerve terminals had the ability to translate a heterologous reporter mRNA. Based upon these data, it is hypothesized that the local protein synthetic system plays an important role in the maintenance/remodelling of the cytoarchitecture of the axon and nerve terminal, maintenance of the axon transport and mRNA translation systems, as well as contributing to the viability and function of the local mitochondria.  相似文献   

11.
T A Viancour 《Brain research》1990,535(2):245-254
The flux of organelles moving by fast axonal transport in distal segments of severed crayfish medial giant axons (MGAs) and lateral giant axons (LGAs) was measured for survival times of up to 35 days (MGAs) or 60 days (LGAs). The response to transection occurred in 4 phases: (1) Organelle fluxes remained nearly normal for the first 24 h. (2) Fluxes then declined continuously until day 6 or 7. (3) A rebound toward normal levels lasted until day 21 (MGAs) or longer (LGAs). (4) During the final phase, fluxes declined either to zero (MGAs) or plateaued at a level which was a significant percentage of normal flux (LGAs). Changes in anterograde and retrograde flux were identical. The distribution of various size classes of translocating vesicles in distal segments of these axons was normal until day 4, with small and medium size, rapidly moving vesicles predominating. Afterwards, larger, slower vesicles predominated. During long-term survival, the axons remained physiologically intact, and cytoskeletons appeared to be normal, retaining intact microtubules which remained normally oriented with positive ends pointing distally. The evidence suggests that the two initial phases of the response to transection represent clearance from distal segments of organelle traffic which normally moves between axon and cell body. The rebound phase may be trauma induced, possibly a transient phase of cytoplasmic degeneration resulting from the loss of trophic support from the cell body. Differences between LGAs and MGAs with respect to organelle flux during prolonged survival, i.e. during the 4th phase of the response to transection, are consistent with different mechanisms of long-term survival which have been proposed for these axons.  相似文献   

12.
Severe mechanical nerve injury such as axotomy can lead to neuron degeneration and death of surrounding glial cells. We showed that axotomy not only mechanically injures glial cells at the cutting location, but also induces necrosis or apoptosis of satellite glial cells remote from the transection site. Therefore, axon integrity is necessary for survival of surrounding glial cells. We used the crayfish stretch receptor that consists of a single mechanoreceptor neuron enveloped by satellite glial cells as a simple, but informative model object in the study of the role of various signaling proteins in axotomy-induced death of remote glial cells. After axon transection, stretch receptors were isolated and incubated in saline in the presence or without specific inhibitors of various signaling proteins. Inhibition of MEK1/2, p38, Akt, GSK-3β and mTOR increased axotomy-induced apoptosis of remote glial cells, whereas inhibition of ERK1/2 and GSK-3β enhanced necrosis. This suggests the involvement of these signaling proteins in protective, antiapoptotic and antinecrotic processes in the remote satellite glia surrounding the axotomized mechanoreceptor neuron.  相似文献   

13.
GAP-43 is a neuronal protein whose synthesis is elevated during developmental and regenerative axon growth. We propose that one consequence of this increased synthesis may be the delivery of calmodulin-like proteins to the distal portions of the growing axon at an increased velocity; this is because calmodulin, which is transported slowly in mature intact axons, can bind to GAP-43, which is transported rapidly. The release of calmodulin from GAP-43 would be regulated by phosphorylation by protein kinase C. Such a rapid carrier function could be important for allowing certain recently synthesized slowly transported proteins to reach the moving growth cone in time to support its function. This hypothetical carrier mechanism is consistent with the phosphorylation pattern, calmodulin binding, transport velocity, and growth-association of GAP-43, and suggests an explanation for the specific importance of newly synthesized GAP-43 in supporting axon growth.  相似文献   

14.
Active polysomes in the axoplasm of the squid giant axon   总被引:2,自引:0,他引:2  
Axons and axon terminals are widely believed to lack the capacity to synthesize proteins, relying instead on the delivery of proteins made in the perikaryon. In agreement with this view, axoplasmic proteins synthesized by the isolated giant axon of the squid are believed to derive entirely from periaxonal glial cells. However, squid axoplasm is known to contain the requisite components of an extra-mitochondrial protein synthetic system, including protein factors, tRNAs, rRNAs, and a heterogeneous family of mRNAs. Hence, the giant axon could, in principle, maintain an endogenous protein synthetic capacity. Here, we report that the squid giant axon also contains active polysomes and mRNA, which hybridizes to a riboprobe encoding murine neurofilament protein. Taken together, these findings provide direct evidence that proteins (including the putative neuron-specific neurofilament protein) are also synthesized de novo in the axonal compartment.  相似文献   

15.
Glial polypeptides transferred into the squid giant axon   总被引:4,自引:0,他引:4  
M. Tytell  R.J. Lasek   《Brain research》1984,324(2):223-232
The proteins synthesized by the glial sheath of an isolated segment of squid giant axon and by the cell bodies of the giant axon in the isolated stellate ganglion were labeled by incubation in the presence of [3H]leucine. The axoplasm, which contained labeled proteins transferred from the glial sheath, was separated from the sheath by mechanical extrusion. The labeled proteins in the axoplasm, the empty sheath and the stellate ganglion were analyzed and compared by one- and two-dimensional polyacrylamide gel electrophoresis. Over 80 glial polypeptides were found to be selectively transferred into the axoplasm and many of these were distinct from stellate ganglion polypeptides which presumably could be supplied to the axon via axonal transport. Three of the more highly labeled transferred glial polypeptides (TGPs) were actin, a fodrin-like polypeptide and a polypeptide we have named traversin. Our observations, considered in the context of other reports, suggest that the squid axon receives a large number of polypeptides from its surrounding glia either by phagocytozing glial cell process that project into it or via cytoplasmic channels between adaxonal glia and the axon. These TGPs may help the axon survive unfavorable conditions.  相似文献   

16.
Because radioactive precursors can be injected directly into the cell body or axon of R2, a giant, identified neuron of the Aplysia abdominal ganglion, it was possible to show that glycolipid is synthesized in the cell body, inserted into membranes along with glycoprotein, and then exported into the axon within organelles that are moved by fast axonal transport. After intrasomatic injection of N-[3H]-acetyl-D-galactosamine, five major 3H-glycolipids were identified using thin layer polysilicic acid glass fiber chromatography. At least two of the lipids are negatively charged. Analysis of 32P-labeled lipid from the abdominal ganglion revealed the presence of 2-aminoethylphosphonate, indicating that these polar substances are sphingophosphonoglycolipids. The major 3H-glycolipids synthesized in R2 are similar to a family of phospholipids isolated from the skin of A. kurodai, previously characterized by Araki et al. (Araki, S., Y. Komai, and M. Satake (1980) Biochem J. 87: 503-510). Since sialic acid is absent in Aplysia as in other invertebrates, these polar glycolipids may function like gangliosides in vertebrates. The polar 3H-glycolipids are synthesized and incorporated into intracytoplasmic membranes solely in the cell body. Direct injection of the labeled sugar into the axon revealed no local synthesis or exchange of glycolipid. Moreover, there was no indication for transfer from glial cells into axoplasm. Although the incorporation of N-[3H]-acetyl-D-galactosamine into glycolipid is not affected by anisomycin, an effective inhibitor of protein synthesis, the export into the axon of membranes containing the newly synthesized lipid is completely blocked by the drug.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Monoclonal antibodies to squid neurofilament (aNFP) and intermediate filament (aIFA) proteins were used as probes for the biochemical and immunocytochemical analyses of neurofilament structure and distribution in the squid giant axon and stellate ganglion. On Western blots the aNFP antibody stained exclusively the 220 kDa and high-molecular-weight (HMW) components of neurofilaments in the giant axon, whereas the aIFA antibody primarily labeled the 60 kDa protein in the giant axon and the 60 and 65 kDa proteins in the stellate ganglion. Dephosphorylation of axoplasmic proteins by alkaline phosphatase resulted in a decrease in the molecular weights of both the 220 kDa and HMW neurofilament proteins and a concomitant loss of reactivity with the aNFP antibody on Western blots. This indicated that the aNFP antibody is specific for a phosphorylated epitope in the neurofilament. Increased dephosphorylation of the 220 kDa protein led to an enhanced immunostaining of the resultant 190 kDa polypeptide by the aIFA antibody, suggesting that the phosphorylated epitope may mask the conserved epitope recognized by aIFA. Light and electron microscopic immunocytochemical studies show intense labeling by the aNFP antibody in the giant axon. In contrast, the aIFA antibody labeled the glial cells around the giant axon intensely, while labeling of the giant axon itself was considerably less than that with the aNFP antibody. Since the 60 kDa protein in axoplasm is intensely stained by the aIFA antibody on Western blots, the relatively low amounts of labeling seen on semithin and thin sections of the giant axon by this antibody may be due to the masking of the 60 kDa protein by in situ fixed axoplasmic proteins. However, the aIFA antibody intensely labeled glial cells within the stellate ganglion and "islands" of filaments and nuclear membranes within ganglion cells. No reactivity for either antibody was seen in synapses. The aNFP antibody specifically labeled "beadlike" portions and cross-bridges on the axonal neurofilaments, suggesting that these components consist of the 220 kDa and HMW proteins. In contrast, the aIFA antibody labeled relatively smooth filaments in ganglion and glial cells. These data suggest that the 65 kDa protein represents the squid glial filament protein and that the 60 kDa protein found in axoplasm represents the low-molecular-weight subunit in the axonal neurofilament. The latter appears to be formed and/or organized in "islands" of filaments within ganglion cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
Neuroblastoma (N2A) cells were found to develop axon-like neurite extensions when grown in the presence of triiodothyronine (T3), while C6 cells (of glial origin) did not. Analysis of radiolabelled protein synthesis showed that, in N2A only, T3 increased the synthesis of a polypeptide corresponding in electrophoretic mobility to the microtubule-associated protein MAP 1B. Immunoblotting of total cell proteins with a monoclonal antibody confirmed that this polypeptide was immunologically related to MAP 1B. Further studies using indirect immunofluorescence with monoclonal antibodies against both tubulin and MAP 1B showed that both antigens were present in neurites. Taken together, these results suggest that T3 may control maturation of neural tissue via effects on the microtubule-associated proteins in cells of neuronal origin.  相似文献   

19.
We report the first successful axon reconnection in the earthworm (Lumbricus terrestris) medial giant axon (MGA) by electric fields generated by electrical pulses of 10-100 microseconds duration and 80-200 V amplitude. Reconnection was documented by light and electron microscopy, and by transport of Lucifer yellow dye across the reconnected MGA segments. Direct repair of a severed nerve axon promises the advantages of preserving axon viability and distal connections.  相似文献   

20.
The axonal transport, metabolism, and transcellular transfer of uridine, adenosine, putrescine, and spermidine have been examined in intact and regenerating optic nerves of goldfish. Following intraocular injection of labeled nucleosides, axonal transport was determined by comparing left-right differences in tectal radioactivity, and transcellular transfer was indicated by light autoradiographic analysis. The results demonstrated axonal transport, transcellular transfer, and periaxonal cell utilization of both nucleosides in intact axons and severalfold increases of all of these processes in regenerating axons. Experiments in which the metabolism of the nucleosides was studied resulted in data which suggested that uridine and adenosine, when delivered to the tectum by axonal transport, are protected from degradation and thus are relatively more available for periaxonal cell utilization than nucleosides reaching these cells via the blood. In intact axons, the majority of the nonmetabolized radioactivity was present as UMP, UDP, and UTP following [3H]uridine injections, whereas the majority of the radioactivity following [3H]adenosine injections was present as adenosine, with the phosphorylated derivatives constituting a smaller proportion. During nerve regeneration, the relative proportion of nucleosides to nucleotides was reversed, with uridine being the principal labeled compound in the first case, and AMP, ADP, and ATP being the major labeled compounds in the latter case. The nucleosides also were found to be different from each other in that adenosine, but not uridine, can be taken up by optic axons and transported retrogradely from the tectum to retinal ganglion cell bodies in the eye. Following intraocular injection of [3H]spermidine, radioactivity was transported to the optic tectum and transferred to tectal cells in the vicinity of the regenerating axons. Following [3H]putrescine injections, silver grains were found over periaxonal glia, but preliminary findings suggest that they are not present over tectal neurons nor over radial glial cells in the periependymal layers. Analysis of tectal radioactivity showed in each case that it was composed primarily of the injected compounds. These studies indicate that, following axonal transport, the polyamines do not remain within regenerating axons but are transferred to cells surrounding the axon. On the basis of these and previous findings, we speculate that the axonal transport and transcellular transfer of uridine, adenosine, polyamines, and perhaps other small molecules are means of communication between axons and periaxonal cells; that the axon can affect RNA and protein synthesis in periaxonal cells by regulating the availability of these small molecules; and that, during nerve regeneration, the increased metabolic needs of periaxonal cells are met by an increased axonal supply of precursors (adenosine and uridine) and other molecules (polyamines) critical for protein synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号