首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 5 毫秒
1.
Quantitative concentration-toxicity relationships were determined for the injury of cultured murine cortical neurons by several excitatory amino acid (EAA) agonists. All tested agonists produced concentration-dependent neuronal injury at concentrations between 1 and 1000 microM. With 5 min exposure, glutamate, aspartate, N-methyl-D-aspartate (NMDA), L-homocysteate (HCA), and quisqualate all had similar potencies, destroying half of the neuronal population (LD50) at concentrations of 50-200 microM, and similar efficacies, with 88-92% neuronal loss produced by exposure to high agonist concentrations. Quinolinate and kainate were substantially weaker toxins, producing only 20-30% neuronal loss after 5 min exposure to 3 mM concentrations; with prolonged (24 hr) exposure, 85-95% neuronal loss could be attained. The comparative EAA vulnerability of a specific cortical neuronal subpopulation containing high concentrations of the enzyme, reduced nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d), was also examined. Glutamate had no differential toxicity on these cells, damaging them at all concentrations in proportion to the general population; however, other, more selective, agonists produced strikingly differential injuries. These NADPH-d-containing [NADPH-d(+)]neurons were selectively resistant to damage by low concentrations of the NMDA agonists quinolinate, HCA, aspartate, or NMDA itself. By contrast, NADPH-d(+)neurons were selectively destroyed by concentrations of quisqualate or kainate too low to produce much general neuronal injury. The differential susceptibility of these neurons was not absolute, as high concentrations of all tested agonists produced nonselective neuronal injury. In light of recent evidence that forebrain NADPH-d(+)neurons are selectively spared in Huntington's disease, the present study continues to support the hypothesis that neuronal loss in Huntington's disease might result from excessive NMDA-receptor stimulation by any selective NMDA agonist. Furthermore, the demonstration that the differential susceptibility of NADPH-d(+)neurons is agonist concentration-dependent, rather than absolute, could provide a basis for explaining some existing conflicting experimental data.  相似文献   

2.
G Urca  R Urca 《Brain research》1990,529(1-2):7-15
Despite extensive evidence for the neurotoxic effects of excitatory amino acids (EAA) in the brain little is known about their neurotoxic action in the spinal cord. In this study we attempted to produce differential lesions of spinal neurons by pretreating mice, intrathecally, with high concentrations of the EAA: N-methyl-D-aspartate (NMDA), quisqualate and kainate. Pharmacological, behavioral and histological consequences were examined 1, 3, 7 and, in some cases, 30 days after pretreatment. A single, intrathecal, injection of high concentrations of quisqualate and kainate but not NMDA, resulted in damage to spinal cord neurons. The highest concentrations of these agonists produced, in some animals, a massive, non-selective destruction of neurons within the lumbar spinal cord, accompanied by complete paralysis of the hindlimbs. Pretreatment with lower concentrations of intrathecal kainate or quisqualate produced damage to spinal interneurons, as well as more limited damage to motor neurons. No detectable motor deficit could be detected but a decrease in responsiveness to noxious stimuli was observed. Such damage also manifest as a permanent decrease in the sensitivity of the spinal interneurons, as well as more limited damage to motor neurons. No detectable motor deficit could be detected but a decrease in responsiveness to noxious stimuli was observed. Such damage also manifest as a permanent decrease in the sensitivity of the spinal cord to EAA, as seen from the decrease in biting behavior elicited by intrathecal EAA. The neurotoxic effects of quisqualate were completely blocked by the quisqualate/kainate receptor antagonist glutamylaminomethylsulphonate (GAMS), but not the NMDA antagonist 2-amino-5-phosphovalerate. GAMS attenuated the effects of kainate only partially.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The ability of the noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist MK-801 to prevent neuronal degeneration in the rat striatum and hippocampus caused by intracerebral injection of excitotoxins has been examined. Excitotoxic damage was assessed after 7 d, using histological and biochemical [choline acetyltransferase (ChAT) glutamate decarboxylase (GAD)] measurements. Systemically administered MK-801 was found to protect against neurodegeneration caused by NMDA (200 nmol) and the naturally occurring NMDA receptor agonist quinolinate (120-600 nmol) but not against that induced by kainate (5 nmol) or alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA; 50 nmol), indicating a selectivity for NMDA receptor-mediated neuronal loss. Neurotoxicity caused by NMDA (200 nmol) or quinolinate (200 nmol) was prevented by MK-801 (1-10 mg/kg, i.p.) administered in a single dose after excitotoxin injection. In the striatum, significant protection of cholinergic neurons (assessed by ChAT measurements) was observed when MK-801 was given up to 5 hr after injection of NMDA or quinolinate, whereas protection of GABAergic neurons (assessed by GAD measurements) was obtained up to 2 hr. The results suggest that GABAergic neurons degenerate more rapidly than cholinergic neurons. The competitive NMDA receptor antagonist 3-[(+/-)-2-carboxypiperazin-4-yl]-propyl-1-phosphonate (100 mg/kg, i.p.) gave partial protection of striatal neurons when administered 1 hr after quinolinate injection. In the rat hippocampus, administration of 10 mg/kg MK-801 i.p. 1 hr after quinolinate injection caused almost complete protection of pyramidal and granule neurons, whereas the degeneration of CA3/CA4 pyramidal neurons caused by kainate injection was unaffected. These observations indicate that neurons in rat striatum and hippocampus do not die as an immediate consequence of exposure to high concentrations of NMDA agonists but that a delayed process is involved that requires NMDA receptor activation. In this respect, intracerebral injections of NMDA agonists may mimic the pathological changes that are thought to occur in the brain following periods of cerebral ischemia, where delayed neuronal degeneration occurs.  相似文献   

4.
The neurotoxic actions of kainate and domoate were studied in cultured murine neocortical neurons at various days in culture and found to be developmentally regulated involving three components of neurotoxicity: (1) toxicity via indirect activation of N‐methyl‐d ‐aspartate (NMDA) receptors, (2) toxicity mediated by α‐amino‐3‐hydroxy‐5‐methyl‐4‐isoxazolepropionate (AMPA) receptors, and (3) toxicity that can be mediated by kainate receptors when desensitization of the receptors is blocked. The indirect action at NMDA receptors was discovered because (5R,10S)‐(+)‐5‐methyl‐10,11‐dihydro‐5H‐dibenzo[a,d]cyclohepten‐5,10‐imine (MK‐801), an NMDA receptor antagonist, was able to block part of the toxicity. The activation of NMDA receptors is most likely a secondary effect resulting from glutamate release upon kainate or domoate stimulation. 1‐(4‐Aminophenyl)‐3‐methylcarbamyl‐4‐methyl‐3,4‐dihydro‐7,8‐ethylenedioxy‐5H‐2,3benzodiazepine (GYKI 53655), a selective AMPA receptor antagonist, abolished the remaining toxicity. These results indicated that kainate‐ and domoate‐mediated toxicity involves both the NMDA and the AMPA receptors. Pretreatment of the cultures with concanavalin A to prevent desensitization of kainate receptors led to an increased neurotoxicity upon stimulation with kainate or domoate. In neurons cultured for 12 days in vitro a small but significant neurotoxic effect was observed when stimulated with agonist in the presence of MK‐801 and GYKI 53655. This indicates that the toxicity is produced by kainate receptors in mature cultures. Examining the subunit expression of the kainate receptor subunits GluR6/7 and KA2 did, however, not reveal any major change during development of the cultures. J. Neurosci. Res. 55:208–217, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

5.
The interaction between excitatory amino acids (EAAs) and nerve growth factor (NGF) levels were studied on neostriatal cholinergic neurons during postnatal development. Striatal choline acetyltransferase (ChAT) activity and NGF levels were determined 7 days following EAA injection in 7-, 15-, 21-, 30-, and 50-day-old rats. ChAT activity was decreased 7 days after kainate (KA), quinolinate (QUIN), or quisqualate (QUIS) lesion. The reduction was most pronounced in 30-day-old rats. KA injection produced the greatest decrease in ChAT activity. Conversely, KA did not change NGF levels. QUIN and QUIS increased NGF protein and these effects were maximal with lesions in 21-day-old rats. In order to further characterize the effect of EAAs on NGF levels and ChAT activity, the time-course of the lesion was studied. We used 30-day-old rats as the maximal sensitivity of cholinergic neurons to EAAs was observed at this age. ChAT activity decreased 2 days following QUIN or QUIS injection and 1 day after KA. The EAA agonists also changed NGF levels. QUIN induced an increase in NGF levels 1 day after lesion. This effect was maintained to the last time point examined. In contrast, KA and QUIS induced transient increases in NGF levels that were only detected 2 and 4 days after injection, respectively. To study whether NGF is able to regulate EAA excitotoxicity on striatal cholinergic neurons, we studied ChAT activity 7 days after simultaneous injection of NGF plus QUIN, KA, or QUIS. Intrastriatal injection of exogenous NGF was able to block the decrease in ChAT activity observed following EAA injection alone. In conclusion, our results show that striatal cholinergic neurons have different vulnerabilities to excitotoxicity induced by EAAs during development. ChAT activity was decreased and NGF was increased by EAAs. However, those EAAs (QUIN and QUIS) that increased NGF had less effect on ChAT activity than KA which had little effect on NGF levels, suggesting that an increase in endogenous NGF levels by these agents may decrease their toxicity. This was confirmed by our finding that exogenous NGF protects cholinergic neurons against excitotoxic lesion. The combined results suggest that sensitivity to EAAs and the regulation of NGF may be crucial to the development of striatal cholinergic neurons.  相似文献   

6.
The electrophysiological effects produced by different concentrations of kainic acid (KA) were studied by utilizing intracellular recordings from neostriatal slices. In most of the recorded cells (81%), concentrations of KA ranging between 10 and 300 nM produced reversible and dose-dependent membrane depolarizations. Higher concentrations of this agonist caused larger depolarizations and changes of the membrane properties of the recorded neurons not reversible during the time of recording. In a smaller percentage (19%) of the recorded cells, 10-100 nM KA did not produce significant membrane depolarizations; in these neurons, the depolarizations produced by higher concentrations of KA were small and reversible. The 2 populations of neurons showed similar electrophysiological properties and did not reveal differential sensitivity to quisqualic acid (QUIS; 10-30 microM) or to NMDA (10-30 microM). Tetrodotoxin (TTX; 1 microM) did not reduce the depolarizations produced by KA and by NMDA. Low-calcium, cobalt-containing solutions abolished the effects produced by NMDA, but not the KA-induced depolarizations. Kynurenic acid (500 microM) significantly antagonized the depolarizations produced by KA and reduced the changes of the membrane properties caused by high doses of this agonist. In several neurons, KA induced bicuculline-sensitive synaptic depolarizing potentials. Our findings suggest the presence of 2 subpopulations of neostriatal neurons showing differential postsynaptic sensitivity to KA. The differential sensitivity of neostriatal neurons to KA might influence the responses of these cells to glutamatergic cortical inputs and the degenerative changes observed in neostriatal neurons in some pathological conditions.  相似文献   

7.
Release of [3H]arachidonic acid mediated by excitatory amino acid (EAA) receptors was investigated from prelabelled primary cultures of hippocampal neurons and astroglial cells. Treatment with N-methyl-D-aspartate (NMDA), quisqualate (QA) and kainate resulted in age- and dose-dependent stimulation of [3H]arachidonic acid release. During development, the maximum response for NMDA was observed relatively earlier (at 7 days) than those for QA and kainate (at 14 days) in the hippocampal neuronal cultures. The half maximal effects were obtained at about 15 microM NMDA at all ages studied and about 0.5 microM QA at 14 and 20 days. At optimum concentrations NMDA- and QA-induced releases were additive. Unlike with neurons, treatment with all the 3 EAA receptor agonists, NMDA, QA and kainate, had no significant effect on [3H]arachidonate release in hippocampal astroglial cells. In cultured 14-day-old neurons, the increases in NMDA- and QA-mediated [3H]arachidonic acid release were completely blocked by the NMDA receptor antagonist, 2-amino-5-phosphonovaleric acid, and the ionotropic QA receptor antagonist, 6-cyano-7-nitroquinoxaline-2,3-dione, respectively. But the iontropic QA receptor agonist alpha-amino-3-hydroxy-5-methyl-isoxazole-4- propionic acid (AMPA) had no significant effect on [3H]arachidonate release, indicating that interaction between ionotropic QA and metabolotropic QA receptors may be essential for optimal QA-mediated arachidonic acid release. At physiological concentrations of Mg2+ (1.2 mM), AMPA was found to potentiate NMDA-induced release of [3H]arachidonic acid; the effect appeared to be related to a removal of Mg2+ blockade mediated by mild depolarisation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The pedunculopontine tegmental nucleus (PPTg) has been shown to have cholinergic connections with the thalamus and basal ganglia. The ability of various doses of the excitotoxins (alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) (AMPA), folate, ibotenate, kainate, N-methyl-D-aspartate (NMDA), quinolinate and quisqualate to make lesions in the PPTg was examined, with particular reference to their ability to destroy cholinergic neurons identified using choline acetyltransferase (ChAT) immunohistochemistry. All of the toxins induced convulsive activity on recovery from surgical anesthesia and all except folate made lesions in the PPTg and surrounding structures. The size of the lesions was computed following examination of Cresyl violet stained sections. The largest lesions were made by kainate = AMPA greater than NMDA = ibotenate greater than quisqualate = quinolinate. All of the toxins destroyed cholinergic neurons, higher doses producing greater loss than lower. The ratio of cholinergic cell loss to general neuronal loss (assessed by Cresyl violet staining) was also computed, revealing marked differences between the toxins. Statistical analysis showed that there were significant differences between excitotoxins in terms of this ratio, but these were accounted for by the low dose of quinolinate (24 nmol) producing a significantly greater ratio of damage (12.18:1) than every other toxin. (Next highest ratio: quisqualate 60 nmol, 6.22:1.) Between the other toxins (kainate, AMPA, ibotenate, quisqualate, NMDA and the high dose of quinolinate) there were no statistically significant differences. Intense calcium deposits (stained by Alizarin red) were found frequently and often defined the borders of the lesion. Tyrosine hydroxylase immunohistochemistry revealed axons running below and into the area of lesioned tissue suggesting strongly that fibers were undamaged by the lesions. We conclude that in the PPTg, different excitotoxins make discriminably different lesions, both quantitatively and qualitatively. Unlike excitotoxic lesions in the basal forebrain quinolinate, not quisqualate, made the most selective lesions of cholinergic neurons and, unlike excitotoxic lesions in the septal nuclei, non-myelinated fibers were spared by ibotenate. The implications of these data for research into brainstem mechanisms of Parkinson's disease are discussed.  相似文献   

9.
The nucleus paragigantocellularis (PGi), located in the rostral ventrolateral medulla, is one of two major afferents to the nucleus locus coeruleus (LC). Electrical stimulation of PGi exerts a robust, predominantly excitatory influence on LC neurons that is blocked by intracerebroventricular (i.c.v.) administration of the broad spectrum excitatory amino acid (EAA) antagonists kynurenic acid (KYN) or gamma-D-glutamylglycine (DGG), but not by the selective N-methyl-D-aspartate (NMDA) receptor antagonist 2-amino-7-phosphonoheptanoate (AP7). I.c.v. injection of KYN or DGG also blocked activation of LC neurons evoked by noxious somatosensory stimuli. These results indicate that activation of LC neurons by PGi and noxious stimuli may be mediated by an EAA acting at a non-NMDA receptor in LC. In the present study, microiontophoretic techniques were used to determine the sensitivity of LC neurons in vivo to the selective EAA receptor agonists kainate (KA), NMDA and quisqualate (QUIS). Microinfusion and microiontophoresis were also used to determine whether direct application of KYN, the preferential non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3 dione (CNQX) or the selective NMDA receptor antagonist 2-amino-5-phosphonovalerate (AP5) onto LC neurons blocked excitation elicited by stimulation of PGi or the sciatic nerve. The results demonstrated that individual LC neurons were robustly activated by direct application of KA, NMDA and QUIS. Iontophoretically applied KYN reduced or completely antagonized responses evoked by all 3 agonists. In contrast, iontophoretically applied AP5 strongly attenuated NMDA-evoked excitation, while KA-and QUIS-evoked responses were not affected by this agent. Furthermore, direct application of KYN or the specific non-NMDA receptor antagonist, CNQX, onto LC neurons substantially attenuated or completely blocked synaptic activation produced by PGi or sciatic nerve stimulation in nearly every LC neuron tested. Microinfusion of the selective NMDA receptor antagonist AP5 had no effect on sciatic nerve-evoked responses. These results confirm our hypothesis that activation of LC neurons from PGi is mediated by an EAA operating primarily at a non-NMDA receptor subtype on LC neurons. Furthermore, these findings provide additional support for the hypothesis that this pathway mediates at least some sensory-evoked responses of LC neurons.  相似文献   

10.
There is now convincing evidence that excessive accumulation of the excitatory amino acid glutamate (GLU) in the extracellular space is toxic to central mammalian neurons. However, the role of different GLU receptors in producing this toxicity has not been adequately ascertained. There is also no adequate information about the correlation of free intracellular calcium concentration with eventual excitotoxic death. We have used cultured rat hippocampal neurons to address these issues. Approximately 75% of our neurons died after a 20-min GLU exposure. The potent kainate/quisqualate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione did not significantly ameliorate the GLU toxicity, while the selective noncompetitive N-methyl-D-aspartate (NMDA) antagonist methyl-10,11-dihydro-5-H-dibenzocyclohepten-5,10-imine (MK-801) blocked the GLU toxicity for periods of at least 2 hr. Interestingly, kainate was very toxic to the hippocampal neurons, but this toxicity was markedly attenuated by MK-801. These results suggest that the major toxicity of GLU is mediated by NMDA receptors and that under some conditions kainate toxicity reflects nonspecific opening of NMDA channels. The intracellular calcium concentrations in these neurons at the end of exposure to GLU and kainate (in the presence and absence of different antagonists) correlated poorly with eventual survival. Antagonists that limited the rise in calcium were still ineffective in preventing death. These results confirm earlier observations that stressed the importance of NMDA receptors in mediating GLU toxicity. However, they indicate that the relationship between toxicity and neuronal calcium concentration may be very complicated. An unexpected finding of these experiments was that MK-801, unlike competitive antagonists of GLU, elevated intracellular calcium.  相似文献   

11.
Infrared videomicroscopy and differential interference contrast optics were used to identify medium- and large-sized neurons in striatal slices from young rats. Whole-cell patch-clamp recordings were obtained to compare membrane currents evoked by application of N-methyl-d-aspartate (NMDA) and kainate. Inward currents and current densities induced by NMDA were significantly smaller in large- than in medium-sized striatal neurons. The negative slope conductance for NMDA currents was greater in medium- than in large-sized neurons and more depolarization was required to remove the Mg2+ blockade. In contrast, currents induced by kainate were significantly greater in large-sized neurons whilst current densities were approximately equal in both cell types. Spontaneous excitatory postsynaptic currents occurred frequently in medium-sized neurons but were relatively infrequent in large-sized neurons. Excitatory postsynaptic currents evoked by electrical stimulation were smaller in large- than in medium-sized neurons. A final set of experiments assessed a functional consequence of the differential sensitivity of medium- and large-sized neurons to NMDA. Cell swelling was used to examine changes in somatic area in both neuronal types after prolonged application of NMDA or kainate. NMDA produced a time-dependent increase in somatic area in medium-sized neurons whilst it produced only minimal changes in large interneurons. In contrast, application of kainate produced significant swelling in both medium- and large-sized cells. We hypothesize that reduced sensitivity to NMDA may be due to variations in receptor subunit composition and/or the relative density of receptors in the two cell types. These findings help define the conditions that put neurons at risk for excitotoxic damage in neurological disorders.  相似文献   

12.
We have recently established a rat substantia nigra (SN) slice preparation in which a sensitive index of excitatory amino acid (EAA) toxicity was degeneration of the dendritic arbor of catecholamine neurons labelled by immunostaining for tyrosine hydroxylase (TH). The present study examined the pharmacological characteristics of EAA-induced neurotoxicity. Rats were anesthetised by halothane inhalation and killed, the brain was rapidly removed, and 400-μm-thick SN slices cut in the horizontal plane on a vibratome. Slices were incubated in saline buffer at 35°C for 15 min to 6 h in the presence or absence or absence of kainic acid (KA) orN-methyl- -aspartate (NMDA) in concentrations ranging from 10 to 500 μM. The slices were then fixed and resectioned into 40-μm sections that were coplanar with the parent slice. Dopaminergic SN neurons were labeled using antibody to tyrosine hydroxylase (TH) coupled to diaminobenzidine. A feature of the immunostaining was that it labeled not only the cell body but also the prolific dendritic arborization of SN neurons. Dendritic damage was quantified by counting the proportion of neurons with intact dendrites after treatment with EAA. KA and NMDA caused loss of dendrites that was prevented by CNQX (20 μM) and MK-801 (20 μM), respectively, indicating that activation of either NMDA or non-NMDA receptors produces neurotoxicity. EAA-induced dendritic damage was observed within 2 h of treatment with a low concentration (10 μM) of KA and within 15 min if the concentration was increased to 500 μM. Thus the loss of dendrites occurs rapidly and precedes disintegration of the cell bodies. Furthermore, brief (15 min) exposure to EAA initiated damage in the dendrites which progressed after the EAA was removed from its receptor. The observations are consistent with the postulated role of EAAs in neurodegenerative diseases. Labeling the dendritic arbor provides a sensitive approach to investigating the cellular mechanisms of neurodegeneration of catecholamine neurons.  相似文献   

13.
Brief exposure of rat hippocampal slices to quisqualic acid (QUIS) sensitizes neurons to depolarization by the α-amino-ω-phosphonate excitatory amino acid (EAA) analogues AP4, AP5 and AP6. These phosphonates interact with a novel QUIS-sensitized site. Whereasl-AP4 andd-AP5 cross-react with other EAA receptors,dl-AP6 has been shown to be relatively selective for the QUIS-sensitized site. This specificity ofdl-AP6, in conjuction with the apparent preference of this site forl-isomers, suggested that the hitherto unavailablel-isomer of AP6 would be a potent and specific agonist. We report the resolution of thed- andl-enantiomers of AP6 by fractional crystallization of thel-lysine salt ofdl-AP6. We also report the pharmacological responses of kainate / AMPA, NMDA, lateral perforant pathl-AP4 receptors and the CA1 QUIS-sensitized site tod- andl-AP6, and compare these responses to thed- andl-isomers of AP3, AP4, AP5 and AP7. Thed-isomers of AP4, AP5 and AP6 were 5-, 3- and 14-fold less potent for the QUIS-sensitized site than their respectivel-isomers. Whilel-AP4 andl-AP5 cross-reacted with NMDA andl-AP4 receptors,l-AP6 was found to be highly potent and specific for the QUIS-sensitized site (IC50 = 40 μM). Its IC50 values for kainate / AMPA, NMDA andl-AP4 receptors were > 10, 3 and 0.8 mM, respectively. As with AP4 and AP5, sensitization tol-AP6 was reversed byl-α-aminoadipate.  相似文献   

14.
The neurodegenerative action of the excitatory amino acid neurotransmitter (glutamate) and its exogenous (N-methyl-D-aspartate, kainate) or endogenous (quinolinate) analogues were studied on cultures of dissociated nerve cells from the embryonal mouse hippocampus. The exposure of primary cultures for 3-6 h to these excitotoxins showed that neurons were vulnerable to both glutamate and all tested agonists which induced the swelling and vacuolization of neuronal bodies accompanied by degeneration of their dendrites. This process terminated by complete cell destruction. The neurotoxic effect of glutamate (1 mM) was not suppressed by a competitive NMDA receptor antagonist (D, L-2-amino-5-phosphonovalerate, 0.3 mM) and was only slightly prevented by gamma-D-glutamylglycine (3mM). The protective action of the latter was more evident in the presence of lower glutamate concentration (0.5 mM). The excitotoxic effect of N-methyl-D-aspartate (0.1 mM) or quinolinate (0.5mM) was almost completely blocked by both antagonists. In contrast, D, L-2-amino-5-phosphonovalerate failed to protect hippocampal neurons from damage induced by kainate while partial antagonism of kainate neurotoxicity was observed with gamma-D-glutamylglycine. These finding suggest that glutamate neurotoxicity may be derived, mainly, from the non-NMDA type(s) of glutamate receptor present on hippocampal cell membranes with a low effectiveness to suppress this effect by selective competitive NMDA antagonist. Possible involvement of glutamate receptor(s) in the early dendritic outgrowth of hippocampal neurons and in the process of neuronal "cell death" is discussed.  相似文献   

15.
Excitotoxicitiesof glutamate and NMDA were studied on primary cultures of rat embryonic substantia nigra. The toxicity of the general neuronal population (identified with neuron specific enolase-NSE) was compared with that of dopaminergic neurons (identified with TH antibodies).We have shown that there exists a time-dependent toxicity to glutamate in 9 d old cultures in vitro and exposures as short as 5 min are significantly toxic. By comparing the effects of long time exposures (24 h) to NMDA and glutamate, we can show dose-dependent toxicity ; however NMDA shows a less marked effect, especially at high doses (>500–1000 μM) as opposed to less potent lower doses (<500 μM).In comparison to the general population of NSE-positive mesencephalic neurons, TH-positive neurons seem to exhibit a similar vulnerability to EAA. The fact that TH-positive neurons are only partially protected against glutamate toxicity by the non-competitive NMDA antagonist TCP indicates that they are more susceptible to non-NMDA mediated neurotoxicity than the general neuronal population.  相似文献   

16.
Non-NMDA receptor-mediated neurotoxicity in cortical culture   总被引:16,自引:0,他引:16  
The neurotoxicity of 3 non-NMDA glutamate receptor agonists--kainate, alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionate (AMPA), and quisqualate--was investigated quantitatively in dissociated murine cortical cultures. Five minute exposure to 500 microM kainate, but not AMPA, produced widespread acute neuronal swelling. Kainate-induced swelling was resistant to 2-amino-5-phosphonovalerate (APV) or replacement of extracellular sodium with choline but attenuated by either kynurenate or low concentrations of quisqualate. Unlike NMDA agonists, kainate or AMPA did not produce much late neuronal loss after a 5 min exposure. In contrast, 5 min exposure to 500 microM quisqualate produced both acute neuronal swelling and widespread late neuronal degeneration. This acute swelling was blocked by APV or by replacement of extracellular sodium by choline, consistent with mediation by NMDA receptors; we speculate that high concentrations of quisqualate may directly activate NMDA receptors or induce the release of endogenous glutamate. Quisqualate-induced late neuronal degeneration may be due to another unexpected process: cellular quisqualate uptake and delayed release, converting brief addition into prolonged exposure. Hours after thorough washout of exogenously added quisqualate, micromolar concentrations could be detected in the bathing medium by high performance liquid chromatography. With lengthy exposure (20-24 hr), all 3 non-NMDA agonists were potent neurotoxins, able to destroy neurons with EC50's of about 20 microM for kainate, 4 microM for AMPA, and 1 microM for quisqualate. Kynurenate and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), but not APV or L-glutamate diethyl ester, were effective in attenuating the neuronal degeneration induced by these agonists. CNQX was about 3 times more selective than kynurenate against kainate-induced neuronal injury, but CNQX was still nearly equipotent with APV against NMDA-induced injury. Gamma-D-glutamylaminomethyl sulfonate exhibited partial antagonist specificity for AMPA-induced toxicity.  相似文献   

17.
J Y Koh  D W Choi 《Brain research》1988,446(2):374-378
Cultured striatal neurons containing either NADPH-diaphorase or acetylcholinesterase were more resistant to injury by N-methyl-D-aspartate (NMDA) or quinolinate, than the general striatal neuronal population, although this resistance was not absolute and could be overcome by intense toxic exposure. Neurons containing NADPH-diaphorase, but not neurons containing acetylcholinesterase, also exhibited heightened vulnerability to injury by kainate. Given recent evidence that diaphorase- and cholinesterase-containing striatal neurons are selectively spared in Huntington's disease, our results strengthen the possibility that NMDA receptor-mediated neurotoxicity may participate in the pathogenesis of that disease.  相似文献   

18.
Cell swelling induced by activation of excitatory amino acid receptors is presumably the first step in a toxic cascade that may ultimately lead to cell death. Previously we showed that bath application of N-methyl-d -aspartate (NMDA) or kainate (KA) produces swelling of neostriatal cells. The present experiments examined modulation of NMDA and KA-induced cell swelling by dopamine (DA) and its receptor agonists. Nomarski optics and infra-red videomicroscopy were utilized to visualize neostriatal medium-sized neurons in thick slices from rat pups (12–18 postnatal days). Increase in somatic cross-sectional area served as the indicator of swelling induced by bath application of glutamate receptor agonists. NMDA induced cell swelling in a dose-dependent manner. Activation of DA receptors in the absence of NMDA did not produce swelling. DA and the D1 receptor agonist SKF 38393, increased the magnitude of swelling produced by NMDA. This effect was reduced in the presence of the D1 receptor antagonist, SCH 23390. In contrast, activation of D2 receptors by quinpirole decreased the magnitude of NMDA-induced cell swelling. DA slightly attenuated cell swelling induced by activation of KA receptors. Quinpirole produced a significant concentration-dependent reduction in KA-induced swelling while SKF38393 increased KA-induced swelling, but only at a low concentration of KA. Together, these results provide additional support for the hypothesis that the direction of DA modulation depends on the glutamate receptor subtype, as well as the DA receptor subtype activated. One possible consequence of these observations is that endogenous DA may be an important contributing factor in the mechanisms of cell death in Huntington's disease.  相似文献   

19.
It is known that in vivo excitatory amino acids (EAA) stimulate the hypothalamo-pituitary-adrenal axis. However their site of action is not fully understood. We investigated the possibility of a direct action of EAA on the secretion of the major adrenocorticotropin hormone (ACTH) secretagogue: corticotropin-releasing factor (CRF) from incubated rat hypothalamic slices. N-methyl-D-aspartic acid (NMDA) or L-glutamate (1×10?7 to 1×10?3 M) stimulated in a dose-dependent fashion CRF release. The maximal effect was obtained at a concentration of 1×10?4 M for both drugs. The IC50 was 1.3×10?5 M and 3.3×10?5 M for NMDA and L-glutamate, respectively. Incubation with 2.5×10?4 M D-2-amino-5-phosphonovalerate (a NMDA receptor antagonist) or 2-amino-4-phosphonobutyrate (a metabotropic receptor antagonist) was without significant effect on basal CRF secretion and completely blocked the increase in CRF release induced by 5×10?5 M NMDA or L-glutamate, respectively. Incubation with 1×10?4 M kainate or 0.5×10?4 M AMPA did not change basal CRF secretion. Incubation with 2×10?4 M γ-D-glutamylglycine (a specific antagonist of kainate and AMPA receptor) had no effect under basal conditions or during exposure to kainate or AMPA. Our data demonstrate that EAA could stimulate directly CRF secretion, by an action through NMDA and metabotropic receptors, but not kainate or AMPA receptors. These findings may be relevant to the regulation of the hypothalamo-pituitary adrenal axis, both under basal conditions and during exposure to stress.  相似文献   

20.
The pharmacological properties of the interaction between the excitatory amino acid (EAA) analogs kainate and N-methyl-D-aspartate (NMDA) have been examined on the isolated rat retinal ganglion cell preparation. In addition, we have studied the effects on this interaction of 2 noncompetitive NMDA antagonists, the dissociative anesthetic phencyclidine (PCP) and the anticonvulsant MK-801. Electrophysiological measurements were performed with the whole-cell patch-clamp technique on cultured ganglion cells that had been back-labeled with a fluorescent dye. Whereas only 69% of the cells showed responses to NMDA (in the absence of extracellular Mg2+), every ganglion cell responded to kainate under the same conditions. When a given cell was voltage-clamped at -60 mV, the large inward currents elicited by 125 microM kainate generally exceeded the responses evoked by 200 microM NMDA, when present, by 1 or 2 orders of magnitude. There was a poor correlation between the magnitudes of the currents produced by both agonists for the population of cells tested. Furthermore, NMDA proved to be an antagonist for the kainate receptor binding site. Without influencing the kainate-activated currents, PCP (75 microM) and MK-801 (20 microM) completely and reversibly blocked the responses evoked by NMDA (200 microM), independent of the membrane holding potential. The degree of block produced by a submaximal concentration of either antagonist was accentuated by increasing the concentration of NMDA. The independence of NMDA and kainate currents was examined. In the presence of NMDA and PCP (or MK-801), kainate-induced responses were comparable in amplitude to those generated by the application of kainate and NMDA together. Thus, kainate continued to produce an increase in membrane conductance at a time when NMDA-activated currents were blocked by either antagonist. The NMDA antagonism of kainate-induced currents was shown to be constant and independent of PCP or MK-801. Our results suggest that the 2 EAA analogs might not share a common ionophore, but rather activate separate receptor-ion channel complexes in rat retinal ganglion cell membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号