首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Background: Basic data are lacking regarding the efficacy and mechanisms of action of corticosteroids in neuropathic pain. Because recent studies indicate that spinal glial activation mediates the pathologic pain states, the authors sought to determine the effects of systemic and intrathecal methylprednisolone on the development and maintenance of neuropathic pain and spinal glial activation in a rat model.

Methods: Rats were anesthetized, and L5 and L6 spinal nerves were tightly ligated. Then, continuous infusion of systemic (4 mg [middle dot] kg-1 [middle dot] day-1) or intrathecal (80 [mu]g [middle dot] kg-1 [middle dot] day-1) methylprednisolone or saline was started. Mechanical allodynia and thermal hyperalgesia were evaluated on days 4 and 7 postoperatively with von Frey and Hargreaves tests, respectively. Spinal astrocytic activation was evaluated with glial fibrillary acidic protein immunoreactivity on day 7. In other groups of rats, continuous 3-day treatment with intrathecal methylprednisolone or saline was started 7 days after spinal nerve ligation, when neuropathic pain had already developed. Behavioral tests and immunostaining were performed up to 3 weeks after the treatment.

Results: Spinal nerve ligation induced mechanical allodynia and thermal hyperalgesia on days 4 and 7 postoperatively. Glial fibrillary acidic protein immunoreactivity was remarkably enhanced on day 7. Both systemic and intrathecal methylprednisolone inhibited the development of neuropathic pain states and glial activation. Three-day treatment with intrathecal methylprednisolone reversed existing neuropathic pain state and glial activation up to 3 weeks after the treatment.  相似文献   


2.
BACKGROUND: Lines of evidence have indicated that cyclooxygenase 2 plays a role in the pathophysiology of neuropathic pain. However, the site and mechanism of its action are still unclear. Spinal glia has also been reported to mediate pathologic pain states. The authors evaluated the effect of continuous intrathecal or systemic cyclooxygenase-2 inhibitor on the development and maintenance of neuropathic pain and glial activation in a spinal nerve ligation model of rats. METHODS: Continuous intrathecal infusion of meloxicam (32 or 320 mug . kg . day) or saline was started immediately after L5-L6 spinal nerve ligation. Mechanical allodynia and thermal hyperalgesia were evaluated on days 4 and 7 postoperatively. Spinal astrocytic activation was evaluated with glial fibrially acidic protein immunoreactivity on day 7. In other groups of rats, continuous intrathecal meloxicam was started 7 days after spinal nerve ligation, and effects on established neuropathic pain and glial activation were evaluated. Last, effects of continuous systemic meloxicam (16 mg . kg . day) on existing neuropathic pain and glial activation were examined. RESULTS: Intrathecal meloxicam prevented the development of mechanical allodynia and thermal hyperalgesia induced by spinal nerve ligation. It also inhibited spinal glial activation responses. In contrast, when started 7 days after the nerve ligation, intrathecal meloxicam did not reverse established neuropathic pain and glial activation. Systemic meloxicam started 7 days after ligation partially reversed neuropathic behaviors but not glial activation. CONCLUSIONS: Spinal cyclooxygenase 2 mediates the development but not the maintenance of neuropathic pain and glial activation in rats. Peripheral cyclooxygenase 2 plays a part in the maintenance of neuropathic pain.  相似文献   

3.
BACKGROUND: Basic data are lacking regarding the efficacy and mechanisms of action of corticosteroids in neuropathic pain. Because recent studies indicate that spinal glial activation mediates the pathologic pain states, the authors sought to determine the effects of systemic and intrathecal methylprednisolone on the development and maintenance of neuropathic pain and spinal glial activation in a rat model. METHODS: Rats were anesthetized, and L5 and L6 spinal nerves were tightly ligated. Then, continuous infusion of systemic (4 mg x kg(-1) x day(-1)) or intrathecal (80 microg x kg(-1) x day(-1)) methylprednisolone or saline was started. Mechanical allodynia and thermal hyperalgesia were evaluated on days 4 and 7 postoperatively with von Frey and Hargreaves tests, respectively. Spinal astrocytic activation was evaluated with glial fibrillary acidic protein immunoreactivity on day 7. In other groups of rats, continuous 3-day treatment with intrathecal methylprednisolone or saline was started 7 days after spinal nerve ligation, when neuropathic pain had already developed. Behavioral tests and immunostaining were performed up to 3 weeks after the treatment. RESULTS: Spinal nerve ligation induced mechanical allodynia and thermal hyperalgesia on days 4 and 7 postoperatively. Glial fibrillary acidic protein immunoreactivity was remarkably enhanced on day 7. Both systemic and intrathecal methylprednisolone inhibited the development of neuropathic pain states and glial activation. Three-day treatment with intrathecal methylprednisolone reversed existing neuropathic pain state and glial activation up to 3 weeks after the treatment. CONCLUSION:: Systemic and intrathecal methylprednisolone inhibited spinal glial activation and the development and maintenance of a neuropathic pain state in a rat model of spinal nerve ligation.  相似文献   

4.
BACKGROUND AND OBJECTIVES: Minocycline is a second-generation tetracycline with multiple biological effects, including inhibition of microglial activation. Recently, microglial activation has been implicated in the development of nerve injury-induced neuropathic pain. In this study, the authors examined the effects of continuous intrathecal minocycline on the development of neuropathic pain and microglial activation induced by L5/6 spinal-nerve ligation in rats. METHODS: Under isoflurane anesthesia, male Sprague-Dawley rats (200-250 g) received right L5/6 spinal-nerve ligation and intrathecal catheters connected to an infusion pump. Intrathecal saline or minocycline (2 and 6 microg/h) was given continuously after surgery for 7 days (n = 8 per group). The rat right hind paw withdrawal threshold to von Frey filament stimuli and withdrawal latency to radiant heat were determined before surgery and on days 1 to 7 after surgery. Spinal microglial activation was evaluated with OX-42 immunoreactivity on day 7 after surgery. RESULTS: Spinal-nerve ligation induced mechanical allodynia and thermal hyperalgesia on the affected hind paw of saline-treated rats. Intrathecal minocycline (2 and 6 microg/h) prevented the development of mechanical allodynia and thermal hyperalgesia induced by nerve ligation. It also inhibited nerve ligation-induced microglial activation, as evidenced by decreased OX-42 staining. No obvious histopathologic change was noted after intrathecal minocycline (6 microg/h) infusion. CONCLUSIONS: In this study, the authors demonstrate the preventive effect of continuous intrathecal minocycline on the development of nociceptive behaviors induced by L5/6 spinal-nerve ligation in rats. Further studies are required to examine if continuous intrathecal minocycline could be used safely in the clinical setting.  相似文献   

5.
Suzuki T  Li YH  Mashimo T 《Anesthesia and analgesia》2005,101(3):793-9, table of contents
Although Neurotropin(R) (NTP) has been used clinically as an analgesic in Japan for many years, its effect on neuropathic pain in animal models has not been examined in detail. Its main effect has been indicated to be activation of the descending monoaminergic pain inhibitory systems. To study the effect of NTP on neuropathic pain, we subjected mice to spinal nerve ligation. NTP inhibited both tactile allodynia and mechanical and thermal hyperalgesia in a dose-dependent manner. When the effect of NTP was examined after depletion of monoamines in the spinal cord by intrathecal neurotoxins, the antiallodynic and antihyperalgesic effects were still observed after serotonergic denervation, but not after noradrenergic denervation. In addition, intracerebroventricular NTP increased withdrawal threshold and latency although intrathecal or local administration of NTP did not. These results suggest that the antiallodynic and antihyperalgesic effect of NTP on neuropathic pain induced by spinal nerve ligation is mediated principally through the action at supraspinal sites and through activation of spinal noradrenergic systems, possibly via the descending inhibitory pathway.  相似文献   

6.
Background: The efficacy of opioids for neuropathic pain remains controversial. The effects of morphine on pain behavior were investigated in two animal models of neuropathic pain: the spared nerve injury (SNI) model and the spinal nerve ligation (SNL) model.

Methods: Nerve injuries were created in rats either by tight ligation and section of the left tibial and common peroneal nerves (SNI) or by unilateral ligation of L5 and L6 spinal nerves (SNL). Paw withdrawal threshold to mechanical stimuli was measured using the up-down method in the hairy and glabrous skin territories of the sural nerve for SNI rats or in the mid-plantar paw of SNL rats.

Results: Before SNI, the median paw withdrawal thresholds in hairy and glabrous skin were similar (26 g [25%, 75% quartiles: 26, 26 g]). The paw withdrawal threshold decreased after SNI in both hairy and glabrous skin (P < 0.001). Thirty days after the SNI, the threshold in hairy skin (0.3 g) was significantly lower than in glabrous skin (1.9 g; P < 0.001). In blinded experiments, both subcutaneous and intrathecal morphine (0.1-10 [mu]g) dose-dependently attenuated mechanical allodynia induced by SNI measured in the hairy skin, an effect that was naloxone reversible. The ED50 for the intrathecal morphine was 0.52 [mu]g (95% confidence interval, 0.31-0.90 [mu]g). Morphine (1 [mu]g intrathecal) attenuated SNI-induced mechanical allodynia in glabrous skin with potency similar to that in hairy skin. In SNL rats, morphine (30 [mu]g intrathecal) almost completely reversed the SNL-induced mechanical allodynia.  相似文献   


7.
Malan TP  Mata HP  Porreca F 《Anesthesiology》2002,96(5):1161-1167
BACKGROUND: This study tests the hypothesis that loss of spinal activity of gamma-aminobutyric acid (GABA) contributes to the allodynia and hyperalgesia observed after peripheral nerve injury. METHODS: Intrathecal catheters were implanted in male Sprague-Dawley rats. Antinociception was assessed by measuring withdrawal latency to immersion of the tail in a 52 degrees C water bath. Nerve injury was produced by ligation of the L5 and L6 spinal nerves. Testing was performed 4-14 days after spinal nerve ligation, when tactile allodynia and thermal hyperalgesia were established. Tactile allodynia was quantitated using the threshold to withdrawal of the hind paw on probing with von Frey filaments. Thermal hyperalgesia was quantitated using the latency to withdrawal of the hind paw from radiant heat. Motor function was tested using a rotarod apparatus. RESULTS: Spinal administration of the GABAA receptor antagonist bicuculline or the GABAB receptor antagonist phaclofen produced tactile allodynia and thermal hyperalgesia in normal rats. The GABAB receptor agonist baclofen, administered spinally, produced antinociception in the tail-flick test, whereas the GABAA receptor agonist isoguvacine did not. Isoguvacine and baclofen each reversed tactile allodynia and thermal hyperalgesia produced by spinal nerve ligation. Baclofen but not isoguvacine prolonged thermal withdrawal latency in nerve-injured rats beyond preoperative values. Baclofen but not isoguvacine impaired motor function. CONCLUSIONS: Pharmacologic inhibition of intrinsic GABA tone in normal rats resulted in tactile allodynia and thermal hyperalgesia, consistent with the hypothesis being tested. Exogenous administration of GABA agonists reversed spinal nerve ligation-induced allodynia and hyperalgesia, also consistent with this hypothesis. Isoguvacine produced specific antihyperalgesic and antiallodynic effects, whereas assessment of the effects of baclofen was complicated by motor dysfunction. Spinal GABAA agonists may provide a specific therapy for neuropathic pain.  相似文献   

8.
Background: Systemic lidocaine and other local anesthetics reduce hypersensitivity states induced by both acute inflammation and peripheral nerve injury in animals and produce analgesia in some patients with chronic pain. The mechanisms underlying the antiallodynic effect of systemic lidocaine are unclear, although most focus is on peripheral mechanisms. Central mechanisms, particularly at the spinal dorsal horn level, are less known. In this study, the authors aimed to determine whether intrathecal lidocaine has an antiallodynic effect on established mechanical allodynia in two well-characterized neuropathic pain rat models: partial sciatic nerve ligation (PSNL) and spinal nerve ligation (SNL).

Methods: Lidocaine (100-300 [mu]g) was intrathecally injected in PSNL and SNL rats. The withdrawal threshold of both hind paws in response to mechanical stimulation was measured using a series of calibrated von Frey filaments.

Results: This single injection reduced ongoing tactile allodynia in PSNL and SNL rats. The antiallodynic effect of intrathecal lidocaine lasted longer in PSNL (> 3 days) than in SNL rats (< 3 days). Intraperitoneal lidocaine (300 [mu]g) had no effect on tactile allodynia in PSNL rats. In SNL rats, prior intrathecal lidocaine (200 and 300 [mu]g) potentiated the antiallodynic effect of intrathecal ketorolac, a nonselective cyclooxygenase inhibitor. Intrathecal ketorolac alone had no antiallodynic effect on SNL rats. However, prior intrathecal lidocaine (100 [mu]g) failed to potentiate the antiallodynic effect of intrathecal ketorolac.  相似文献   


9.
Background: This study tests the hypothesis that loss of spinal activity of [gamma]-aminobutyric acid (GABA) contributes to the allodynia and hyperalgesia observed after peripheral nerve injury.

Methods: Intrathecal catheters were implanted in male Sprague-Dawley rats. Antinociception was assessed by measuring withdrawal latency to immersion of the tail in a 52[degrees]C water bath. Nerve injury was produced by ligation of the L5 and L6 spinal nerves. Testing was performed 4-14 days after spinal nerve ligation, when tactile allodynia and thermal hyperalgesia were established. Tactile allodynia was quantitated using the threshold to withdrawal of the hind paw on probing with von Frey filaments. Thermal hyperalgesia was quantitated using the latency to withdrawal of the hind paw from radiant heat. Motor function was tested using a rotarod apparatus.

Results: Spinal administration of the GABAA receptor antagonist bicuculline or the GABAB receptor antagonist phaclofen produced tactile allodynia and thermal hyperalgesia in normal rats. The GABAB receptor agonist baclofen, administered spinally, produced antinociception in the tail-flick test, whereas the GABAA receptor agonist isoguvacine did not. Isoguvacine and baclofen each reversed tactile allodynia and thermal hyperalgesia produced by spinal nerve ligation. Baclofen but not isoguvacine prolonged thermal withdrawal latency in nerve-injured rats beyond preoperative values. Baclofen but not isoguvacine impaired motor function.  相似文献   


10.
Background: Intrathecally administered [alpha]2-adrenoceptor agonists produce effective antinociception, but sedation is an important adverse effect. Radolmidine is a novel [alpha]2-adrenoceptor agonist with a different pharmacokinetic profile compared with the well-researched dexmedetomidine. This study determined the antinociceptive and sedative effects of radolmidine in different models of acute and chronic pain. Dexmedetomidine and saline served as controls.

Methods: Male Sprague-Dawley rats were studied in acute pain (tail flick), carrageenan inflammation, and the spinal nerve ligation model of neuropathic pain. Mechanical allodynia was assessed with von Frey filaments, cold allodynia with the acetone test, and thermal hyperalgesia with the paw flick test. Locomotor activity-vigilance was assessed in a dark field. Dexmedetomidine and radolmidine were administered intrathecally in doses of 0.25 [mu]g, 2.5 [mu]g, 5 [mu]g, and 10 [mu]g.

Results: In the tail flick test, radolmidine showed a dose-dependent antinociceptive effect, being equipotent compared with dexmedetomidine. In carrageenan inflammation, intrathecal doses of 2.5 [mu]g or 5 [mu]g of dexmedetomidine/radolmidine produced significant antinociception compared with saline (P < 0.01). The two drugs were equianalgesic. In the neuropathic pain model, an intrathecal dose of 5 [mu]g dexmedetomidine-radolmidine had a significant antiallodynic effect compared with saline (P < 0.01). The two drugs were equipotent. Intrathecal administration of both dexmedetomidine and radolmidine dose dependently decreased spontaneous locomotor acitivity-vigilance, but this effect was significantly smaller after intrathecal administration of radolmidine than after intrathecal dexmedetomidine.  相似文献   


11.
BACKGROUND AND OBJECTIVES: Ketamine is an N-Methyl-D-Aspartate (NMDA) receptor antagonist, which has been found to effectively treat somatic and neuropathic pain. This study examines the effect (on neuropathic pain) of preemptive ketamine using different routes of administration (intrathecal versus intraperitoneal). METHODS: The Institutional Animal Care and Use Committee approved the study. Thirty male Sprague-Dawley rats (250-275 g) were divided into three treatment groups [intrathecal saline/intraperitoneal saline or Control (CTL), intrathecal ketamine/intraperitoneal saline (ITK), and intrathecal saline/intraperitoneal ketamine (IPK)] prior to undergoing surgery to induce neuropathic pain by tight ligation of the left L5 and L6 spinal nerves. All drugs were given 15 minutes before nerve ligation. The ITK group received intrathecal ketamine (0.5% solution, 1 mg/kg), the IPK group received intraperitoneal ketamine (0.5% solution, 1 mg/kg), saline was given in equal volume (approximately 0.05 mL). Mechanical allodynia, cold allodynia, and ongoing pain behaviors indicative of neuropathic pain were assessed on postoperative days 1, 3, 7, and 14 using validated methods. RESULTS: Compared with the CTL group, the ITK group showed a state of decreased mechanical allodynia, cold allodynia, and ongoing pain as revealed by the von Frey hair, acetone, and cold plate testing, respectively. Further, this decrease was sustained for at least 2 weeks. The IPK group showed intermediate results between the CTL and ITK. CONCLUSIONS: Neuropathic pain behaviors were significantly reduced for at least 2 weeks after intrathecal ketamine was preemptively administered to animals undergoing surgery to induce neuropathic pain. The mechanism of action is thought to be prevention of spinal cord sensitization.  相似文献   

12.
Zhao C  Tall JM  Meyer RA  Raja SN 《Anesthesiology》2004,100(4):905-911
BACKGROUND: The efficacy of opioids for neuropathic pain remains controversial. The effects of morphine on pain behavior were investigated in two animal models of neuropathic pain: the spared nerve injury (SNI) model and the spinal nerve ligation (SNL) model. METHODS: Nerve injuries were created in rats either by tight ligation and section of the left tibial and common peroneal nerves (SNI) or by unilateral ligation of L5 and L6 spinal nerves (SNL). Paw withdrawal threshold to mechanical stimuli was measured using the up-down method in the hairy and glabrous skin territories of the sural nerve for SNI rats or in the mid-plantar paw of SNL rats. RESULTS: Before SNI, the median paw withdrawal thresholds in hairy and glabrous skin were similar (26 g [25%, 75% quartiles: 26, 26 g]). The paw withdrawal threshold decreased after SNI in both hairy and glabrous skin (P < 0.001). Thirty days after the SNI, the threshold in hairy skin (0.3 g) was significantly lower than in glabrous skin (1.9 g; P < 0.001). In blinded experiments, both subcutaneous and intrathecal morphine (0.1-10 microg) dose-dependently attenuated mechanical allodynia induced by SNI measured in the hairy skin, an effect that was naloxone reversible. The ED50 for the intrathecal morphine was 0.52 microg (95% confidence interval, 0.31-0.90 microg). Morphine (1 microg intrathecal) attenuated SNI-induced mechanical allodynia in glabrous skin with potency similar to that in hairy skin. In SNL rats, morphine (30 microg intrathecal) almost completely reversed the SNL-induced mechanical allodynia. CONCLUSIONS: (1) SNI-induced mechanical allodynia is characterized by a lower paw withdrawal threshold in hairy versus glabrous skin; (2) systemic and intrathecal morphine reverse SNI-induced mechanical allodynia in a dose-dependent fashion; and (3) intrathecal morphine also reverses SNL-induced mechanical allodynia. These results suggest that intrathecal opioids are likely to be effective in the treatment of neuropathic pain.  相似文献   

13.
Background: Clonidine can effectively reduce pain and/or hypersensitivity. However, the antihypersensitivity effects of clonidine topically applied in cream (CC) have not been investigated. The authors evaluated effects of topical application of CC on pain behaviors and spinal Fos-like immunoreactivity in rats with hypersensitivity.

Methods: Clonidine (30, 100, and 300 [mu]g/g) was prepared in a cream base. In rat models of neuropathic pain, inflammatory pain, and postoperative pain, the authors evaluated effects of CC (0.1 g), topically applied onto the plantar surface of the injured or uninjured paw, on thermal hyperalgesia and mechanical allodynia to von Frey filaments. The authors also evaluated effects of CC on lumbar spinal Fos-like immunoreactivity.

Results: In neuropathic rats, CC applied onto the injured paw reduced thermal hyperalgesia and mechanical allodynia dose dependently, whereas CC applied onto the uninjured paw had no effect. The antihypersensitivity effects of CC were antagonized by intraperitoneal yohimbine (10 mg/kg). Further, CC reduced Fos-like immunoreactivity in neuropathic rats. In contrast, CC in a single dose had no effects on hyperalgesia, allodynia, or Fos-like immunoreactivity in rats with inflammatory or postoperative pain. In rats with postoperative pain, CC repeatedly applied for 6 days reduced thermal hyperalgesia, but not mechanical allodynia, in the postoperative days, whereas it had no effects on hyperalgesia or allodynia in those with inflammatory pain.  相似文献   


14.
Adenosine and adenosine analogs decrease pain-like behavior in animal models of both acute nociceptive and neuropathic pain via adenosine receptor activation at spinal and/or supraspinal levels. This open study is the first in a series of intrathecal (IT) adenosine administration studied for the evaluation of efficacy and side effects in 14 patients. All had chronic neuropathic pain with tactile hyperalgesia and/or allodynia primarily of traumatic origin. The effects of IT adenosine (500 microg [n = 9] or 1000 microg [n = 5]) were evaluated. Approximate areas of tactile pain were mapped. Spontaneous and evoked pain (visual analog scale score 0-100) and tactile pain thresholds were assessed before and 60 min after injection. The injection caused transient pain (<60 min) in the lumbar region in five patients. There were no other side effects. Spontaneous and evoked pain was reduced (median score from 65 to 24 [P<0.01] and from 71 to 12 [P<0.01], respectively) in parallel with increased tactile pain thresholds in allodynic areas. Areas of tactile hyperalgesia/allodynia were reduced (median reduction 90%; P<0.001). Twelve patients experienced pain relief (median 24 h). We conclude that IT adenosine transiently causes lumbar pain in a subgroup of patients and may reduce various aspects of chronic neuropathic pain. IMPLICATIONS: This is the first series of patients with chronic neuropathic pain in which tolerability to spinal adenosine administration has been evaluated. A subset of patients reported transient low back pain as the only side effect. Spontaneous and evoked pain intensity decreased in most patients, an effect lasting for a median of 24 h.  相似文献   

15.
BACKGROUND: Prostaglandins, synthesized in the spinal cord in response to noxious stimuli, are known to facilitate nociceptive transmission, raising questions about their role in neuropathic pain. The current study tested the hypothesis that spinal nerve ligation-induced allodynia is composed of an early prostaglandin-dependent phase, the disruption of which prevents allodynia. METHODS: Male Sprague-Dawley rats, fitted with intrathecal drug delivery or microdialysis catheters, underwent left L5-L6 spinal nerve ligation or sham surgery. Paw withdrawal threshold, brush-evoked behavior, and the concentration of prostaglandin E2 (PGE2) in spinal cerebrospinal fluid ([PGE2]dialysate) were determined for up to 24 days. PGE2-evoked glutamate release from spinal slices was also determined. RESULTS: Paw withdrawal threshold decreased from at least 15 g (control) to less than 4 g, beginning 1 day after ligation. Brushing the affected hind paw evoked nociceptive-like behavior and increased [PGE2]dialysate (up to 257 +/- 62% of baseline). There was no detectable change in basal [PGE2]dialysate from preligation values. The EC50 of PGE2-evoked glutamate release (2.4 x 10-11 M, control) was significantly decreased in affected spinal segments of allodynic rats (8.9 x 10-15 M). Treatment with intrathecal S(+)-ibuprofen or SC-560, beginning 2 h after ligation, prevented the decrease in paw withdrawal threshold, the brush-evoked increase in [PGE2]dialysate, and the change in EC50 of PGE2-evoked glutamate release. R(-)-ibuprofen or SC-236 had no effect. CONCLUSIONS: The results of this study provide solid evidence that spinal prostaglandins, synthesized by cyclooxygenase-1 in the first 4-8 h after ligation, are critical in the pathogenesis of prostaglandin-dependent and prostaglandin-independent allodynia and that their early pharmacologic disruption affords protection against this neuropathic state in the rat.  相似文献   

16.
BACKGROUND: Clonidine can effectively reduce pain and/or hypersensitivity. However, the antihypersensitivity effects of clonidine topically applied in cream (CC) have not been investigated. The authors evaluated effects of topical application of CC on pain behaviors and spinal Fos-like immunoreactivity in rats with hypersensitivity. METHODS: Clonidine (30, 100, and 300 microg/g) was prepared in a cream base. In rat models of neuropathic pain, inflammatory pain, and postoperative pain, the authors evaluated effects of CC (0.1 g), topically applied onto the plantar surface of the injured or uninjured paw, on thermal hyperalgesia and mechanical allodynia to von Frey filaments. The authors also evaluated effects of CC on lumbar spinal Fos-like immunoreactivity. RESULTS: In neuropathic rats, CC applied onto the injured paw reduced thermal hyperalgesia and mechanical allodynia dose dependently, whereas CC applied onto the uninjured paw had no effect. The antihypersensitivity effects of CC were antagonized by intraperitoneal yohimbine (10 mg/kg). Further, CC reduced Fos-like immunoreactivity in neuropathic rats. In contrast, CC in a single dose had no effects on hyperalgesia, allodynia, or Fos-like immunoreactivity in rats with inflammatory or postoperative pain. In rats with postoperative pain, CC repeatedly applied for 6 days reduced thermal hyperalgesia, but not mechanical allodynia, in the postoperative days, whereas it had no effects on hyperalgesia or allodynia in those with inflammatory pain. CONCLUSIONS: Topical CC in concentrations examined significantly reduced hypersensitivity and lumbar spinal Fos-like immunoreactivity in rats with neuropathic pain, probably through activation of peripherally located alpha2 adrenoceptors. However, CC was only partially effective and totally ineffective in rats with postoperative pain and inflammatory pain, respectively.  相似文献   

17.
Background: Mice lacking the [mu]-opioid receptor gene have been used to characterize the role of [mu]-opioid receptors in nociception and the analgesic actions of opioid agonists. In this study, the authors determined the role of [mu]-opioid receptors in neuropathic pain behaviors and the effectiveness of [mu]- and [kappa]-opioid receptor agonists on this behavior in mice.

Methods: The authors studied the behavioral responses of [mu]-opioid receptor knockout and wild-type mice to thermal and mechanical stimuli before and after neuropathic pain induced by unilateral ligation and section of the L5 spinal nerve. Response to mechanical stimuli was evaluated by determining the frequency of hind paw withdrawal to repetitive stimulation using a series of von Frey monofilaments. Thermal hyperalgesia was assessed by determining the paw withdrawal latencies to radiant heat and frequency of hind paw withdrawal to cooling stimuli. The effects of systemic morphine, the [kappa]-opioid agonist U50488H, and naloxone on responses to mechanical and thermal stimuli were also studied in spinal nerve-injured mice.

Results: After spinal nerve injury, wild-type mice developed increased responsiveness to mechanical, heat, and cooling stimuli ipsilateral to nerve injury. [mu]-Opioid receptor knockout mice not only had more prominent mechanical allodynia in the nerve-injured paw, but also expressed contralateral allodynia to mechanical stimuli. Hyperalgesia to thermal stimuli was similar between [mu]-opioid knockout and wild-type animals. Morphine decreased mechanical allodynia dose dependently (3-30 mg/kg subcutaneous) in wild-type mice-an effect that was attenuated in the heterozygous mice and absent in the homozygous [mu]-opioid knockout mice. The [kappa]-opioid agonist U50488H (3-10 mg/kg subcutaneous) attenuated mechanical allodynia in wild-type, heterozygous, and homozygous [mu]-opioid mice. Naloxone in wild-type mice resulted in enhanced ipsilateral and contralateral allodynia to mechanical stimuli that resembled the pain behavior observed in [mu]-opioid receptor knockout mice.  相似文献   


18.

Purpose

There is evidence that cyclic adenosine monophosphate (cAMP) transduction is involved in nociceptive processing. We previously showed that intrathecal injection of an adenylate cyclase inhibitor attenuated tactile allodynia caused by partial sciatic nerve ligation (PSNL) in rats. The present study investigates the pre-emptive effects of spinal cAMP transduction on nociceptive processing in a chronic neuropathic pain model.

Methods

Intrathecal catheterization and PSNL were performed in male Sprague-Dawley rats. Nociceptive responses to mechanical and thermal stimuli were evaluated at the hindpaw at 2 hr and at 3, 7, and 14 days after PSNL. The pre-emptive effects of the intrathecal adenylate cyclase inhibitor, SQ22536 (0.7 μmol · L?1, 30 min before or after nerve ligation) were assessed. Also, the spatial and temporal expression profiles and immunoreactivity in the spinal cord of the cAMP response element binding protein (CREB) and its phosphorylated proteins (CREB-IR and p-CREB-IR) were analyzed.

Results

Compared with the rats treated with the vehicle, allodynia and hyperalgesia were significantly attenuated at 1–3 days by the intrathecal injection of SQ22536 performed either before or after ligation. The expression of CREB was significantly higher after ligation (P < 0.05), but differences were not observed between groups. Intrathecal injection of SQ22536, either before or after ligation, partially reduced p-CREB-IR protein expression in comparison with the vehicle control, especially after the first 3 days (P < 0.05).

Conclusion

Our results show a possible association between the increase in p-CREB and PSNL-induced neuropathic pain. However, a pre-emptive effect of adenylate cyclase inhibitor administered before surgery was not observed.  相似文献   

19.
Hashizume H  DeLeo JA  Colburn RW  Weinstein JN 《Spine》2000,25(10):1206-1217
STUDY DESIGN: This study was designed to examine the behaviorial immunohistochemical changes of spinal glial cells and spinal Interleukin (IL)-1beta expression after various nerve root injuries used as models of lumbar radiculopathy. OBJECTIVES: In order to better understand the role of central inflammation in the pathophysiologic mechanisms that give rise to pain associated with lumbar radiculopathy, this research studied the relationship between pain-related behavior associated with spinal glial activation and IL-1beta expression generated by three types of nerve root injury: loose ligation with chromic gut, loose ligation with silk, and tight ligation with silk. SUMMARY OF BACKGROUND DATA: An animal model of lumbar radiculopathy originally described by Kawakami and Weinstein involved loose ligation of unilateral L4-L6 nerve roots with chromic gut. Characterization and establishment of such an animal model of low back pain enables further investigation of the nature of the pathophysiologic mechanisms associated with lumbar radiculopathy in humans. METHODS: Seventy-three rats were divided into four treatment groups. Chromic group (n = 25): The L5 nerve roots (dorsal and ventral) were exposed by hemilaminectomy and loosely ligated with chromic gut. Tight silk group (n = 18): The exposed L5 nerve roots were tightly ligated extradurally with 5-0 silk suture. Loose silk group (n = 15): two loose ligatures of 5-0 silk were placed around the exposed L5 nerve roots. Sham group (n = 15): the rats were subjected to laminectomy alone for exposing nerve roots. Following surgery, thermal hyperalgesia and mechanical allodynia was assessed time-dependently up to 42 days post operatively. At 1, 3, 7, 14, and 42 days postoperatively, the rats in each group were perfused with fixative. The L5 spinal cord segments was harvested and cryosectioned for glial and cytokine immunohistochemistry. RESULTS: In the chromic and the tight silk group, an immediate and sustained mechanical allodynia was observed in the ipsilateral hind paw up to 35 days postoperatively. The loose silk group also showed an immediate mechanical allodynia that subsided by 14 days postoperatively. Sham-treated animals exhibited mild mechanicalallodynia for the initial 7 days after the surgery. Thermalhyperalgesia was evident in the three primary treatment groups, but not in the sham-treated rats. OX-42 expression was elevated in the gray matter of the L5 spinal section by 3 days in the chromic, the tight silk, and the loose silk groups as compared to the sham group. Astrocytic activation increased over time in all groups except the sham group. There was no direct correlation between degree of microglial response and severity of pain behaviors. In contrast, astrocytic activation demonstrated a direct relationship with the elevation of mechanical allodynia for the first 7 days. In addition, spinal IL-1beta protein expression was increased bilaterally in the superficial layer of the dorsal horn and cell nuclei of the ventral horns in the ligature treated groups as compared with the sham group. CONCLUSION: Direct mechanical and/or chemical injury to lumbar roots in the rat gives rise to pain behavior suggestive of lumbar radiculopathy. The finding that glial activation and enhanced IL-1beta expression are observed in the spinal cord after root injury supports a central, neuroimmune component in the generation of lumbar radiculopathy. A further understanding of the immunologic consequences of root injury may lead to further development and the novel use of selective cytokine-inflammatory inhibitors for the treatment of low back pain associated with radiculopathy.  相似文献   

20.
Ma W  Du W  Eisenach JC 《Anesthesiology》2003,98(1):203-208
BACKGROUND: Systemic lidocaine and other local anesthetics reduce hypersensitivity states induced by both acute inflammation and peripheral nerve injury in animals and produce analgesia in some patients with chronic pain. The mechanisms underlying the antiallodynic effect of systemic lidocaine are unclear, although most focus is on peripheral mechanisms. Central mechanisms, particularly at the spinal dorsal horn level, are less known. In this study, the authors aimed to determine whether intrathecal lidocaine has an antiallodynic effect on established mechanical allodynia in two well-characterized neuropathic pain rat models: partial sciatic nerve ligation (PSNL) and spinal nerve ligation (SNL). METHODS: Lidocaine (100-300 micro g) was intrathecally injected in PSNL and SNL rats. The withdrawal threshold of both hind paws in response to mechanical stimulation was measured using a series of calibrated von Frey filaments. RESULTS: This single injection reduced ongoing tactile allodynia in PSNL and SNL rats. The antiallodynic effect of intrathecal lidocaine lasted longer in PSNL (> 3 days) than in SNL rats (< 3 days). Intraperitoneal lidocaine (300 micro g) had no effect on tactile allodynia in PSNL rats. In SNL rats, prior intrathecal lidocaine (200 and 300 micro g) potentiated the antiallodynic effect of intrathecal ketorolac, a nonselective cyclooxygenase inhibitor. Intrathecal ketorolac alone had no antiallodynic effect on SNL rats. However, prior intrathecal lidocaine (100 micro g) failed to potentiate the antiallodynic effect of intrathecal ketorolac. CONCLUSION: The authors' data suggest that intrathecal lidocaine possibly suppressed the hyperexcitability of the dorsal horn neurons and likely interacted with eicosanoid systems in the spinal dorsal horn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号