首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
CD4+ and CD8+ mature T cells arise from CD4+CD8+ precursors in the thymus. During this process, cells expressing T-cell receptors (TCRs) reactive with self major histocompatibility complex (MHC) class I or II molecules are positively selected to the CD8 or CD4 lineage, respectively. It is controversial whether lineage commitment of CD4+CD8+ thymocytes is controlled directly by TCR specificity for MHC (instructional model) or, alternatively, by processes that operate independently of TCR specificity (stochastic model). We show here that CD4+CD8+ thymocytes bearing a MHC class I-restricted transgenic TCR can be subject to two alternative developmental fates. One population of CD4+CD8+ cells is positively selected by MHC class I molecules to the CD8 lineage as expected, whereas the other CD4+CD8+ population rearranges endogenous TCR genes and is positively selected by MHC class II molecules to the CD4 lineage. Blocking TCR-MHC class II interactions in vivo does not interfere with the generation of CD4+CD8+ cells expressing endogenous TCRs but does prevent their subsequent maturation to CD4+ cells. These data support a version of the stochastic model in which CD4+CD8+ thymocytes are precommitted to the CD4 or CD8 lineage independently of TCR specificity for MHC and prior to positive selection.  相似文献   

2.
CD8+CD25+ cells, which expressed high levels of Foxp3, glucocorticoid-induced tumor necrosis factor receptor (GITR), CCR8, tumor necrosis factor receptor 2 (TNFR2), and cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) mRNAs, were identified in the fibrous septa and medullary areas of human thymus. Activated CD8+CD25+ thymocytes did not produce cytokines, but most of them expressed surface CTLA-4 and transforming growth factor beta1 (TGF-beta1). Like CD4+CD25+, CD8+CD25+ thymocytes suppressed the proliferation of autologous CD25-T cells via a contact-dependent mechanism. The suppressive activity of CD8+CD25+ thymocytes was abrogated by a mixture of anti-CTLA-4 and anti-TGF-beta1 antibodies and it was mediated by their ability to inhibit the expression of the interleukin 2 receptor alpha chain on target T cells. These results demonstrate the existence of a subset of human CD8+CD25+ thymocytes sharing phenotype, functional features, and mechanism of action with CD4+CD25+ T regulatory cells.  相似文献   

3.
We describe a novel approach to assay the ability of particular gene products to signal transitions in lymphocyte differentiation in vivo. The method involves transfection of test expression constructs into RAG-1-deficient embryonic stem cells, which are subsequently assayed by the RAG-2-deficient blastocyst complementation approach. We have used this method to demonstrate that expression of activated Ras in CD4-8- (double negative, DN) prothymocytes in vivo induces their differentiation into small CD4+8+ (double positive, DP) cortical thymocytes with accompanying expansion to normal thymocyte numbers. However, activated Ras expression in DP cells does not cause proliferation or maturation to CD4+8- or CD4-8+ (single positive) thymocytes. Therefore, signaling through Ras is sufficient for promoting differentiation of DN to DP cells, but further differentiation requires the activity of additional signaling pathways.  相似文献   

4.
Antigen-induced activation of T cells can be specifically inhibited by antigen analogs that have been termed T-cell receptor peptide antagonists. These antagonists appear to act by inducing the formation of nonstimulatory or partially stimulatory complexes between T-cell receptors and the major histocompatibility complex molecules presenting the peptides. Herein, we have investigated the effect of T-cell receptor peptide antagonists on thymocyte negative selection. First, peptide antagonists were identified for the cytochrome c-specific T-cell clone AD10. These peptides were then tested for their ability to induce negative selection in an in vitro model system using thymocytes from mice transgenic for the AD10 T-cell receptor. Though unable to induce mature T-cell activation, the T-cell receptor peptide antagonists induced deletion of CD4+ CD8+ thymocytes. These results suggest that negative selection of CD4+ CD8+ thymocytes can be induced by T-cell receptor interactions of a lower affinity than those required for mature T-cell activation.  相似文献   

5.
p59fyn is an Src family nonreceptor tyrosine kinase that has been suggested to play an important role in T-cell development and function. p125FAK is a unique nonreceptor tyrosine kinase and has been known to respond to integrin-extracellular matrix interactions. To examine their roles in thymocytes, heterozygous fak mutation was introduced into homozygous Fyn deficiency. The double mutation, but neither Fyn deficiency nor FAK heterozygosity alone, displayed impaired development of CD4+CD8+ thymocytes with atrophy of the thymic cortex, suggesting a unique cooperation between p59fyn and p125FAK in CD4+CD8+ T-cell development.  相似文献   

6.
During thymic selection of the developing T-cell repertoire, the fate of individual CD4+CD8+ thymocytes is determined by the specificity of the T-cell antigen receptors (TCRs) they express. Paradoxically, most CD4+CD8+ thymocytes express few TCR molecules, and those they express are essentially incapable of transducing intracellular signals as measured by intracellular calcium mobilization. However, both TCR number and calcium-signaling capability are significantly induced in CD4+CD8+ thymocytes when the cells are released from intrathymic inhibitory signals that are mediated by their CD4 molecules. Here, the response to ligand engagement of TCR on "induced" CD4+CD8+ thymocytes that have been released from CD4-mediated inhibition was examined and was found to result in internalization of surface TCR complexes and rephosphorylation of zeta chains of the TCR complex. In addition, a proportion of induced CD4+CD8+ thymocytes were found to fragment their DNA upon ligand engagement. Thus, this study describes early events in immature CD4+CD8+ thymocytes resulting from TCR-mediated signals.  相似文献   

7.
T Lapidot  Y Faktorowich  I Lubin  Y Reisner 《Blood》1992,80(9):2406-2411
Transplantation of T-cell-depleted C57BL/6-Nu/Nu ("nude") bone marrow (BM) into C3H/HeJ recipients, conditioned with 8 Gy total body irradiation plus chemotherapy with the myeloablative drug dimethyl myleran, resulted in poor hematopoietic reconstitution 14 days posttransplant, compared with transplantation with T-cell-depleted BM from normal C57BL/6 donors. Hematopoietic reconstitution of "nude" BM could be improved by the addition of (C57BL/6xC3H/HeJ)F1 thymocytes void of graft-versus-host activity. Enhancement of BM allografting by thymocytes is sensitive to low radiation doses (> or = 5.0 Gy) and can be achieved by transplanting the BM 24 hours before the administration of thymocytes. Fractionation of F1 thymocytes by differential agglutination with peanut agglutinin (PNA) and by fluorescence activated cell sorting showed that this hematopoietic enhancing activity is enriched in the unagglutinated (PNA-) thymocyte fraction and is mediated by PNA- CD8+ and not by PNA- CD4+ thymocytes.  相似文献   

8.
The T-cell antigen receptor (TCR) is a complex of at least six different proteins (alpha, beta, gamma, delta, epsilon, and zeta) that is assembled in the endoplasmic reticulum (ER) and transported to the cell surface. Unlike mature T cells, most immature CD4+CD8+ thymocytes retain within the ER and degrade greater than 90% of some of the TCR components they synthesize, resulting in low surface expression of TCR complexes. The few surface TCR complexes that most immature CD4+CD8+ thymocytes do express are only marginally capable of transducing signals mobilizing intracellular calcium. The inverse relationship with TCR expression and function suggested that phosphorylated zeta (P-zeta) molecules might function in CD4+CD8+ thymocytes either as an ER retention signal for newly synthesized TCR complexes or as a negative regulatory modification of TCR complexes present on the cell surface. The present study sought to evaluate these two possibilities by determining the subcellular location of TCR complexes containing P-zeta chains. We found that, unlike unmodified zeta chains, all P-zeta chains in CD4+CD8+ thymocytes existed in assembled TCR complexes and that all TCR complexes containing P-zeta molecules had undergone carbohydrate processing events indicative of transit through the Golgi apparatus. These results demonstrate that P-zeta chains are exclusively associated with mature TCR complexes, excluding the possibility that P-zeta serves as an ER retention signal in immature thymocytes. Although we could not directly determine the representation of P-zeta chains among surface TCR complexes, we found that 60-70% of surface TCR complexes on immature CD4+CD8+ thymocytes were associated with tyrosine-phosphorylated protein(s) and that this percentage was inversely correlated with their signaling competence. These results support the concept that tyrosine phosphorylation serves as a negative regulatory modification of certain TCR-associated proteins.  相似文献   

9.
GLUT1, the major glucose transporter in peripheral T lymphocytes, is induced upon T cell receptor activation. However, the role of GLUT1 during human thymocyte differentiation remains to be evaluated. Our identification of GLUT1 as the human T lymphotrophic virus (HTLV) receptor has enabled us to use tagged HTLV-receptor-binding domain fusion proteins to specifically monitor surface GLUT1 expression. Here, we identify a unique subset of CD4+ CD8+ double-positive (DP) thymocytes, based on their GLUT1 surface expression. Whereas these cells express variable levels of CD8, they express uniformly high levels of CD4. Glucose uptake was 7-fold higher in CD4(hi) DP thymocytes than in CD4(lo) DP thymocytes (P = 0.0002). Further analyses indicated that these GLUT1+ thymocytes are early post-beta-selection, as demonstrated by low levels of T cell receptor (TCR)alphabeta and CD3. This population of immature GLUT1+ DP cells is rapidly cycling and can be further distinguished by specific expression of the transferrin receptor. Importantly, the CXCR4 chemokine receptor is expressed at 15-fold higher levels on GLUT1+ DP thymocytes, as compared with the DP GLUT1- subset, and the former cells show enhanced chemotaxis to the CXCR4 ligand CXCL12. Thus, during human thymopoiesis, GLUT1 is up-regulated after beta-selection, and these immature DP cells constitute a population with distinct metabolic and chemotactic properties.  相似文献   

10.
Immature precursor cells are induced in the thymus to express clonotypic T-cell antigen receptors (TCRs) and to differentiate into mature T cells. Perhaps the least understood event which occurs during intrathymic development is the positive selection of immature CD4+CD8+ thymocytes for differentiation into mature CD4+ and CD8+ T cells based on the TCR specificity individual thymocytes express. TCR expression by CD4+CD8+ thymocytes is quantitatively regulated by CD4-mediated activation of p56lck protein-tyrosine kinase whose activity can in turn be regulated by the membrane-bound protein-tyrosine-phosphatase CD45. Here we show that antibody engagement of CD45 external domains enhances Lck tyrosine kinase activity in CD4+CD8+ thymocytes, inhibits TCR expression, and inhibits differentiation of immature CD4+CD8+ thymocytes into mature T cells. Thus, engagement of the external domains of CD45 tyrosine phosphatase can regulate the ability of immature CD4+CD8+ thymocytes to undergo positive selection, suggesting an important regulatory role for intrathymic ligands that are capable of engaging CD45 within the thymus.  相似文献   

11.
The newly generated single-positive (SP) thymocytes undergo further maturation in the thymic medulla before their emigration to the periphery. The present study was undertaken to validate a developmental program we proposed for CD4SP medullary thymocytes and to explore the mechanisms regulating this process. During mouse ontogeny, the emergence of different subsets of CD4SP thymocytes followed a strict temporal order from SP1 to SP4. Parallel to the transition in surface phenotype, a steady increase in function was observed. As further evidence, purified SP1 cells were able to sequentially give rise to SP2, SP3, and SP4 cells in intrathymic adoptive transfer and in culture. Notably, the development of CD4SP cells in the medulla seemed to be critically dependent on a functionally intact medullary epithelial cell compartment because Relb and Aire deficiency were found to cause severe blockage at the transition from SP3 to SP4. Taken together, this work establishes an ontogenetically and functionally relevant maturation program for CD4SP thymocytes. Precise dissection of this program should facilitate further inquiry into the molecular mechanisms governing normal thymocyte development and its disturbance in pathological conditions.  相似文献   

12.
The ATM (ataxia telangiectasia mutated) protein plays a central role in sensing and responding to DNA double-strand breaks. Lymphoid cells are unique in undergoing physiologic double-strand breaks in the processes of Ig class switch recombination and T or B cell receptor V(D)J recombination, and a role for ATM in these processes has been suggested by clinical observations in ataxia telangiectasia patients as well as in engineered mice with mutations in the Atm gene. We demonstrate here a defect in thymocyte maturation in ATM-deficient mice that is associated with decreased efficiency in V-J rearrangement of the endogenous T cell receptor (TCR)alpha locus, accompanied by increased frequency of unresolved TCR Jalpha coding end breaks. We also demonstrate that a functionally rearranged TCRalphabeta transgene is sufficient to restore thymocyte maturation, whereas increased thymocyte survival by bcl-2 cannot improve TCRalpha recombination and T cell development. These data indicate a direct role for ATM in TCR gene recombination in vivo that is critical for surface TCR expression in CD4(+)CD8(+) cells and for efficient thymocyte selection. We propose a unified model for the two major clinical characteristics of ATM deficiency, defective T cell maturation and increased genomic instability, frequently affecting the TCRalpha locus. In the absence of ATM, delayed TCRalpha coding joint formation results both in a reduction of alphabeta TCR-expressing immature cells, leading to inefficient thymocyte selection, and in accumulation of unstable open chromosomal DNA breaks, predisposing to TCRalpha locus-associated chromosomal abnormalities.  相似文献   

13.

Objectives

High-fat diet (HFD) feeding in mice is characterized by accumulation of αβ T cells in adipose tissue. However, the contribution of αβ T cells to obesity-induced inflammation of skeletal muscle, a major organ of glucose uptake, is unknown. This study was undertaken to evaluate the effect of αβ T cells on insulin sensitivity and inflammatory state of skeletal muscle and adipose tissue in obesity. Furthermore, we investigated whether CD4+IFNγ+ (TH1) cells are involved in skeletal muscle and adipose tissue metabolic dysfunction that accompanies obesity.

Methods

Mice lacking αβ T cells (T cell receptor beta chain-deficient [TCRb−/−] mice) were fed HFD for 12 weeks. Obesity-induced skeletal muscle and adipose tissue inflammation was assessed by flow cytometry and quantitative RT-PCR. To investigate the effect of TH1 cells on skeletal muscle and adipose tissue inflammation and metabolic functions, we injected 5 × 105 TH1 cells or PBS weekly over 12 weeks into HFD-fed TCRb−/− mice. We also cultured C2C12 myofibers and 3T3-L1 adipocytes with TH1-conditioned medium.

Results

We showed that similar to adipose tissue, skeletal muscle of obese mice have higher αβ T cell content, including TH1 cells. TCRb−/− mice were protected against obesity-induced hyperglycemia and insulin resistance. We also demonstrated suppressed macrophage infiltration and reduced inflammatory cytokine expression in skeletal muscle and adipose tissue of TCRb−/− mice on HFD compared to wild-type obese controls. Adoptive transfer of TH1 cells into HFD-fed TCRb−/− mice resulted in increased skeletal muscle and adipose tissue inflammation and impaired glucose metabolism. TH1 cells directly impaired functions of C2C12 myotubes and 3T3-L1 adipocytes in vitro.

Conclusions

We conclude that reduced adipose tissue and skeletal muscle inflammation in obese TCRb−/− mice is partially attributable to the absence of TH1 cells. Our results suggest an important role of TH1 cells in regulating inflammation and insulin resistance in obesity.  相似文献   

14.
Maraver A  Tadokoro CE  Badura ML  Shen J  Serrano M  Lafaille JJ 《Blood》2007,110(9):3218-3225
Many studies have positioned Notch signaling at various critical junctions during T-cell development. There is, however, debate regarding the role of Notch in the CD4 versus CD8 lineage commitment. Because there are 4 Notch receptors and RBP-Jkappa-independent Notch signaling has been reported, we decided to eliminate gamma-secretase activity once its activity is required for all forms of Notch signaling. T-cell-specific elimination of gamma-secretase was carried out by crossing presenilin-1 (PS1) floxed mice with CD4-Cre mice and PS2 KO mice, generating PS KO mice. Thymic CD4+CD8+ double-positive (DP) cells from these mice were strikingly resistant to apoptosis by anti-CD3 treatment in vivo and expressed more Bcl-X(L) than control thymocytes, and deletion of only one allele of Bcl-X(L) gene restored wild-type levels of sensitivity to apoptosis. In addition, these PS KO animals displayed a significant decrease in the number of CD8+ T cells in the periphery, and these cells had higher level of phosphorylated p38 than cells from control littermates. Our results show that ablation of presenilins results in deficiency of CD8 cells in the periphery and a dramatic change in the physiology of thymocytes, bringing to our attention the potential side effects of presenilin inhibitors in ongoing clinical trials.  相似文献   

15.
The intracellular fate of newly synthesized T-cell receptor (TCR) chains was compared in CD4+CD8+ (double positive; DP) thymocytes and in CD4+CD8- or CD4-CD8+ (single positive; SP) thymocytes. Purified DP and SP thymocytes from normal adult mice were analyzed by pulse-chase metabolic labeling and immunoprecipitation with specific anti-TCR antibodies. Biosynthesis of invariant chains (CD3 gamma, -delta, -epsilon, and zeta) was comparable between DP and SP thymocytes, whereas DP thymocytes synthesized TCR alpha and TCR beta chains at lower and higher levels than SP thymocytes, respectively. These newly synthesized TCR chains were degraded at different rates in SP thymocytes based on their sensitivities for degradation as previously reported: TCR alpha, TCR beta, CD3 gamma, and CD3 delta chains were rapidly degraded and CD3 epsilon and zeta chains were stable. Although the degradation rates of clonotypic and invariant CD3 chains were similar in DP and SP thymocytes, the zeta subunit was rapidly degraded in DP thymocytes (t1/2, approximately 1.5 hr). Degradation of zeta was inhibited by NH4Cl, implicating lysosomes as the site of degradation. Comparison of TCR subunit assembly in DP and SP thymocytes demonstrated that, despite the same relative rate of formation of TCR complexes in a pulse period (30 min), complete complexes were unstable and degraded during the subsequent 6 hr of chase in DP thymocytes. This contrasted with the stability and a progressive increase in the levels of completely assembled complexes in SP thymocytes. Thus, these results demonstrate that a unique posttranslational regulation operates in the formation of TCR complexes in DP thymocytes and that lack of stability of complete TCR complexes is a crucial mechanism that may account for the limited surface TCR expression on this thymocyte subset.  相似文献   

16.
Several lines of evidence argue in favour of an involvement of T cells in the pathogenesis of Wegener's granulomatosis (WG). These include the presence of highly specific IgG autoantibodies to proteinase 3, perivascular T-cell infiltrates and elevated amounts of soluble interleukin-2 (IL-2) receptors in patient's serum. In order to further address this question we evaluated by double immunoflourescence and flow cytometry the expression of several cell surface molecules associated with T-cell activation. As compared to healthy controls (n=15), the CD4+ subset was significantly diminished, while the percentage of CD8+ T cells was elevated in WG patients (n=24). Within the CD4+ T-cell subset we found a highly significant increase in activation/memory markers (CD25, CD29, HLA-DR). Within the CD8+ T-cell subset the expression of CD11b, CD29 and CD57 was significantly elevated, while the expression of VD28 was reduced. The use of 10 V-, 1 V-and 1 V-specific monoclonal reagents failed to reveal any significant bias in the peripheral T-cell receptor V-gene repertoire of WG patients. There was also no correlation between T-cell activation markers and laboratory parameters [C-reactive protein (CRP), ESR], disease duration or therapy. A significant correlation was found only for the degree of organ involvement and the increase in CD4+ T cells coexpressing HLA-DR, as well as the increase in CD57 expression on CD8+ T cells. In conclusion, both CD4+ and CD8+ T-cell subsets were activated in WG. Cytotoxic CD8+ CD57+ CD11b+ CD28 T cells may directly contribute to damage of vascular endothelium.  相似文献   

17.
Persistent expansions of CD4+ CD8+ peripheral blood T cells   总被引:1,自引:2,他引:1  
Sala  P; Tonutti  E; Feruglio  C; Florian  F; Colombatti  A 《Blood》1993,82(5):1546-1552
CD4+ CD8+ cells are present during T cell differentiation in the thymus. Less than 2% of normal T cells that coexpress CD4 and CD8 also are released in the circulation and are present in the peripheral blood. In this study, nine individuals are described that manifested persistent expansions (11% to 43%) of circulating CD4+ CD8+ T cells that in three cases had large granular lymphocyte (LGL) morphology in the absence of either lymphocytosis or overt lymphoproliferative disorders. Southern blot hybridization of enriched CD4+ CD8+ cells with T-cell receptor beta (TCR beta) and TCR gamma probes showed that most cases had the 12-kb Eco RI germinal band deleted or of decreased intensity. In several individuals new TCR beta-specific bands of different intensity and distinct from case to case suggested either monoclonal or oligoclonal and polyclonal expansions. Immunophenotypic analysis showed that in 7 out of 9 cases the CD4+ CD8+ T cells presented with CD8 dim expression. Furthermore, all the CD4+ CD8+ cells did not express many of the known activation antigens (low or absent CD25, CD38, CD71, HLA-DR), whereas they expressed high levels of CD2, CD29, CD56, and CD57. In addition, the CD4+ CD8+ cells of 5 out of 9 subjects coexpressed CD45RA and CD45RO suggesting that these cells might be "frozen" in an intermediate state between naive and memory T cells. In conclusion, the present CD4+ CD8+ cases fall within a larger spectrum of disorders ranging from apparently normal to reactive or proliferative situations and encompassing cells with LGL morphology or LGL-associated antigens expression either in the presence or in the absence of absolute lymphocytosis that deserve careful follow-up investigations.  相似文献   

18.
19.
CD25+CD4+ T cells contribute to the control of memory CD8+ T cells   总被引:2,自引:0,他引:2       下载免费PDF全文
Previously we demonstrated that IL-15 and IL-2 control the number of memory CD8+ T cells in mice. IL-15 induces, and IL-2 suppresses the division of these cells. Here we show that CD25+CD4+ regulatory T cells play an important role in the IL-2-mediated control of memory phenotype CD8+ T cell number. In animals, the numbers of CD25+CD4+ T cells were inversely correlated with the numbers of memory phenotype CD8+ T cells with age. Treatment with anti-IL-2 caused CD25+CD4+ T cells to disappear and, concurrently, increased the numbers of memory phenotype CD8+ T cells. This increase in the numbers of CD8+ memory phenotype T cells was not manifest in animals lacking CD4+ cells. Importantly, adoptive transfer of CD25+CD4+ T cells significantly reduced division of memory phenotype CD8+ T cells. Thus, we conclude that CD25+CD4+ T cells are involved in the IL-2-mediated inhibition of memory CD8+ T cell division and that IL-2 controls memory phenotype CD8+ T cell numbers at least in part through maintenance of the CD25+CD4+ T cell population.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号