首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Incubation of encapsulated cryptococci with monoclonal antibodies (MAbs) specific for glucuronoxylomannan (GXM), the major capsular polysaccharide of Cryptococcus neoformans, produces two distinct capsular quellung-type reactions termed rim and puffy. The type of capsular reaction that occurs is determined by the epitope specificity of the MAb and the serotype of the yeast cell. Several biological activities, including opsonic activity, complement activation, and protective efficacy, are associated with the type of capsular reaction produced by a MAb. The goal of this study was to examine the reactivities of two families of anti-GXM MAbs with serotype A and D capsular polysaccharides in several immunochemical assays, including agglutination, immunofluorescence, quantitative precipitation, and enzyme-linked immunosorbent assay, in an effort to identify serological assays that are predictive of the capsular quellung reaction. The results showed that the type of capsular reaction (rim versus puffy) is a qualitative assessment of antibody-capsule interaction that cannot be predicted on the basis of a serological assay. The results further showed that antibody reactivity demonstrated in one serological assay is not necessarily predictive of results in another assay, particularly in cases where one assay examines antibody-capsule interactions, e.g., agglutination, and another assay examines interaction of antibody with soluble GXM. Taken together, the results suggest caution in interpretation of immunochemical assays for anti-GXM antibodies and recommend the use of multiple assays formats when studying anticryptococcal antibodies.  相似文献   

2.
Monoclonal antibodies (MAbs) reactive with glucuronoxylomannan (GXM), the major capsular polysaccharide of the yeast Cryptococcus neoformans, produce distinct capsular reactions when viewed by differential interference contrast microscopy. These reactions depend on the epitope specificity of the antibody. Opsonic activities of immunoglobulin G1 (IgG1) MAbs that produce patterns termed rim and puffy were examined. Rim-pattern MAbs are reactive with an epitope shared by GXM serotypes A, B, C, and D. Puffy-pattern MAbs are reactive only with serotypes A and D. In phagocytosis assays, using serotype A cells and resident murine peritoneal macrophages, rim-pattern MAbs were markedly more opsonic than puffy-pattern MAbs. F(ab')(2) fragments of rim-pattern MAbs were synergistic with heat-labile factors in normal human serum for opsonization of the yeast. F(ab')(2) fragments of puffy-pattern MAbs were also synergistic with normal serum in opsonization but at a much lower level than fragments of rim-pattern MAbs. Normal serum alone was not opsonic. F(ab')(2) fragments of rim-pattern MAbs, but not puffy-pattern MAbs, stimulated phagocytosis of encapsulated cryptococci in the absence of serum. This serum-independent opsonic action of F(ab')(2) fragments was abrogated by pretreatment of macrophages with purified GXM, suggesting the involvement of a phagocyte GXM receptor. The results indicate that (i) there are multiple mechanisms by which anticapsular IgG MAbs facilitate phagocytosis of encapsulated cryptococci, (ii) some anti-GXM antibodies are opsonic in an Fc-independent manner, and (iii) opsonic activity correlates with the capsular reaction and occurs in an epitope-specific manner.  相似文献   

3.
Immunoassay for detection of glucuronoxylomannan (GXM), the major capsular polysaccharide of Cryptococcus neoformans, is an important tool for diagnosis of cryptococcosis. However, immunoassays that are based solely or in part on detection with polyclonal antibodies may show serotype bias in detection of GXM, particularly limited sensitivity for serotype C. In this study, we describe detection of GXM in an antigen capture sandwich enzyme-linked immunosorbent assay (ELISA) that used a cocktail of two monoclonal antibodies (MAbs). MAb F12D2 was previously produced by immunization with GXM that had been treated to remove O-acetyl groups, a major source of serotype specificity. MAb F12D2 has a high degree of reactivity with GXM of serotypes A, B, C, and D, but the reactivity with serotype D was less than was found with other MAbs. MAb 339 is highly reactive with GXM of serotypes A and D. Use of a combination of the two MAbs produced an immunoassay that had the best properties of both MAbs, including good reactivity with serotype C, which is an emerging threat in sub-Saharan Africa. These results suggest that next-generation immunoassays for diagnosis of cryptococcosis may be formulated by (i) use of immunization and hybridoma screening strategies that are designed to prospectively meet the needs of immunoassay performance and (ii) careful selection of MAbs that span the expected polysaccharide serotypes in the subject patient population.  相似文献   

4.
Cryptococcus neoformans is surrounded by an antiphagocytic polysaccharide capsule whose primary constituent is glucuronoxylomannan (GXM). Three prominent structural features of GXM are single xylosyl and glucuronosyl side chains and O acetylation of the mannose backbone. Isogenic pairs of O-acetyl-positive and O-acetyl-negative strains (cas1 Delta) as well as xylose-positive and xylose-negative strains (uxs1 Delta) of serotype D have been reported. The cas1 Delta strains were hypervirulent, and the uxs1 Delta strains were avirulent. The goal of this study was to examine the effects of the cas1 Delta and uxs1 Delta mutations on the following: (i) binding of anti-GXM monoclonal antibodies (MAbs) in capsular quellung reactions, (ii) activation of the complement system and binding of C3, (iii) phagocytosis by neutrophils, and (iv) clearance of GXM in vivo. The results showed that loss of O acetylation produced dramatic changes in the reactivities of five of seven anti-GXM MAbs. In contrast, loss of xylosylation produced a substantive alteration in the binding behavior of only one MAb. O-acetyl-negative strains showed no alteration in activation and binding of C3 from normal serum. Xylose-negative strains exhibited accelerated kinetics for C3 deposition. Loss of O acetylation or xylosylation had no effect on phagocytosis of serum-opsonized yeast cells by human neutrophils. Finally, loss of O acetylation or xylosylation altered the kinetics for clearance of GXM from serum and accumulation of GXM in the liver and spleen. These results show that O acetylation and/or xylosylation are important for binding of anti-GXM MAbs, for complement activation, and for tissue accumulation of GXM but do not impact phagocytosis by neutrophils.  相似文献   

5.
Bacillus anthracis is surrounded by a polypeptide capsule composed of poly-gamma-d-glutamic acid (gammaDPGA). In a previous study, we reported that a monoclonal antibody (MAb F26G3) reactive with the capsular polypeptide is protective in a murine model of pulmonary anthrax. The present study examined a library of six MAbs generated from mice immunized with gammaDPGA. Evaluation of MAb binding to the capsule by a capsular "quellung" type reaction showed a striking diversity in capsular effects. Most MAbs produced a rim type reaction that was characterized by a sharp increase followed directly by a decrease in refractive index at the capsular edge. Some MAbs produced a second capsular reaction well beneath the capsular edge, suggesting complexity in capsular architecture. Binding of MAbs to soluble gammaDPGA was assessed by a fluorescence perturbation assay in which a change in the MAb intrinsic fluorescence produced by ligand binding was used as a reporter for antigen-antibody interaction. The MAbs differed considerably in the complexity of the binding curves. MAbs producing rim type capsule reactions typically produced the more complex binding isotherms. Finally, the protective activity of the MAbs was compared in a murine model of pulmonary anthrax. One MAb was markedly less protective than the remaining five MAbs. Characteristics of the more protective MAbs included a relatively high affinity, an immunoglobulin G3 isotype, and a complex binding isotherm in the fluorescence perturbation assay. Given the relatively monotonous structure of gammaDPGA, the results demonstrate a striking diversity in the antigen binding behavior of gammaDPGA antibodies.  相似文献   

6.
The Cryptococcus neoformans capsular polysaccharide glucuronoxylomannan (GXM) has been conjugated to tetanus toxoid (GXM-TT) as an investigational vaccine. GXM-TT elicits antibodies that are protective in C. neoformans-infected mice. In an effort to characterize the fine specificity and molecular structure of human GXM-TT-elicited antibodies, we generated two GXM monoclonal antibodies (MAbs) from peripheral blood lymphocytes of a volunteer GXM-TT recipient and studied serum GXM antibody idiotype expression in 10 additional vaccinees. The MAbs, 2E9 and 3B6, are the immunoglobulin M(lambda) isotype and bind capsular polysaccharides of C. neoformans serotypes other than the serotype A that was used for immunization. Neither antibody competes with murine GXM MAbs for antigen binding, suggesting that the human MAbs recognize a different epitope. The B-cell superantigen staphylococcal protein A binds both MAbs, and human immunodeficiency virus gp120 binds 2E9. MAb nucleic acid sequence analysis revealed that both antibodies use an identical V lambda 1a-J lambda genetic element with different, somatically mutated, members of the VH3 gene family and different DH and JH gene elements. The gene elements used by both MAbs occur in fetal B-lymphocyte repertoires, autoantibodies, and other polysaccharide antibodies. Post-GXM-TT vaccination GXM antibodies from 10 additional vaccinees expressed a shared idiotype defined by rabbit antiserum raised against MAb 2E9. Our data suggest that the human GXM antibody response is restricted and raise questions regarding the importance of specific variable-region elements and superantigens in the generation of human antibody responses to encapsulated pathogens.  相似文献   

7.
The features of protective murine antibodies to the Cryptococcus neoformans capsular polysaccharide glucuronoxylomannan (GXM) have been rigorously investigated; however, the characteristics of protective human antibodies to GXM have not been defined. We produced monoclonal antibodies (MAbs) from XenoMouse mice (transgenic mice that express human immunoglobulin M [IgM], IgG2, and kappa) which were immunized with a C. neoformans serotype D strain 24067 GXM-diphtheria toxoid conjugate. This study reports the specificity and efficacy of three human IgM MAbs, G14, G15, and G19, generated from these mice. Each MAb was specific for GXM, but G14 and G19 had different specificity based on their binding to serotype A strain H99 and SB4 GXMs, to which G15 did not bind. Nucleic acid sequence analysis revealed that G15 uses V(H)3-64 in the germ line configuration. G14 and G19 use V(H)6-1, which has somatic mutations. All of the MAbs use V kappa DPK22/A27. Studies of MAb efficacy in BALB/c mice showed that administration of 0.1 mg, but not 1 or 0.01 mg, of G15 prolonged survival against lethal C. neoformans strain 24067 challenge, whereas G14 and G19 were not protective at any dose. This panel of MAbs illustrates that serotype D GXM has epitopes that elicit human antibodies that can be either protective or nonprotective. Our findings suggest that V(H) gene use may influence GXM specificity and efficacy, and they provide insights into the possible contribution that V(H) gene use may have in resistance and susceptibility to cryptococcosis.  相似文献   

8.
Cryptococcus neoformans causes meningitis in 6 to 8% of individuals with AIDS. Recently, immunotherapeutic modalities including antibody therapy have been proposed for the treatment of cryptococcal meningitis in AIDS patients. This is a rational approach because existing antifungal agents fail to eradicate the infection in the setting of profound immunosuppression. Both murine and human antibodies elicited by the investigational cryptococcal capsular polysaccharide vaccine glucuronoxylomannan-tetanus toxoid (GXM-TT) have been shown to be biologically functional in different model systems. The human immunoglobulin M (lambda) GXM monoclonal antibody (MAb) 2E9 expresses idiotypes that are also found in naturally occurring anti-GXM antibodies and opsonic GXM-TT sera. However, the specificity of human anti-GXM antibodies and their possible role in protection against cryptococcosis are not known. In an effort to discover epitopes that are recognized by human anti-GXM antibodies, we screened a random decapeptide phage display library with the human anti-GXM MAb 2E9. An enzyme-linked immunosorbent assay (ELISA)-based screening method led to the selection of phages with peptide inserts that bound 2E9 and inhibited 2E9-GXM binding. Analysis of the amino acid sequences of these phages revealed an increased frequency of combinations of QTGLD residues. Inhibition ELISAs demonstrated that phages with QTG/TL/D motifs inhibited 2E9-GXM binding better than phages with different motifs. A peptide synthesized from one of the inhibitory phages, peptide 13 (GMDGT QLDRW), inhibited GXM binding to solid-phase 2E9 and 2E9 binding to solid-phase GXM. Peptide 13 also inhibited the GXM binding of GXM-TT immune sera and naturally occurring serum antibodies from human immunodeficiency virus (HIV)-negative, but not HIV-positive, individuals. Taken together, our data indicate that the peptide epitopes selected by 2E9 mimic GXM epitopes and that peptide 13 may be a mimotope of a GXM epitope that is recognized by human anti-GXM antibodies.  相似文献   

9.
Antibodies to the Cryptococcus neoformans capsular glucuronoxylomannan (GXM) form the basis of two potential therapeutic intervention strategies, i.e., conjugate vaccines and passive antibody therapy. To better understand the molecular basis of the antibody response, the heavy- and light-chain immunoglobulin variable region (VH and VL, respectively) sequences of seven monoclonal antibodies (MAbs) to GXM were determined. Rabbit anti-idiotypic serum was made to the previously characterized murine MAb 2H1 and used to study MAb 2H1 idiotype expression in other GXM-binding MAbs and immune sera. MAb E1 originated from a C3H/HeJ mouse immunized with C. neoformans serotype A polysaccharide. MAbs 471, 1255, 339, 3C2, 386, and 302 originated from BALB/c mice immunized with polysaccharide of serotypes A, A, B, C, D, and D, respectively, conjugated to sheep erythrocytes. In the E1, VH uses V11 from the T15 gene family and JH3 and has a D segment of three amino acids, and the VL uses a VKSer-like gene family element and JK5. In MAbs 471 and 3C2, the VH uses VH7183-like gene family elements and JH2 and has D segments of seven amino acids, and the VL uses VK5.1 and JK1. In MAbs 1255 and 339, the VH uses VH10-like gene elements and JH4 and has six codon D segments, and the VL uses a VK21-like gene element and JK5. In MAbs 302 and 386, respectively, the VH uses VHGAM-like gene elements and JH2 and JH3 and has six and four codon D segments, and VL uses VK4/5-like gene elements and JK1.VH usage, MAb 2H1 idiotype expression, and fine specificity mapping define a minimum of three GXM epitopes which elicit protective antibodies. The results confirm that the antibody response is highly restricted, suggest a close relationship between molecular structure and serological properties, and provide insight into protein structural motifs important for GXM binding.  相似文献   

10.
Cryptococcus neoformans is surrounded by a capsular polysaccharide. There are at least four known serotypes of the polysaccharide. The objective of this study was to produce monoclonal antibodies (MAbs) that could be used to study the distribution of epitopes among the serotypes of C. neoformans. BALB/c mice were immunized with cryptococcal polysaccharides of serotype A or D that were coupled to sheep erythrocytes. Splenocytes were isolated, and hybridomas secreting MAbs specific for cryptococcal polysaccharides were isolated. Two hybridomas, designated MAbs 439 and 1255, were produced from mice immunized with serotype A polysaccharide. One hybridoma, designated MAb 302, was produced from mice immunized with serotype D polysaccharide. All three antibodies were of the immunoglobulin G1 isotype. MAb 302 showed a specificity for serotypes A and D in Ouchterlony diffusion, agglutination, and opsonophagocytosis assays. MAb 1255 was reactive with polysaccharides and cells of serotypes A, B, and D. MAb 439 was reactive with polysaccharides and cells of serotypes A, B, C, and D. The reactivity of these MAbs closely matched the distribution of epitopes among cryptococcal polysaccharides predicted in previous studies of polyclonal antibodies reactive with cryptococcal polysaccharides. The ability to produce a MAb against an epitope shared by all four serotypes may have value for the detection of cryptococcal antigens in body fluids.  相似文献   

11.
The encapsulated yeast Cryptococcus neoformans is a significant cause of meningitis and death in patients with AIDS. Some murine monoclonal antibodies (MAbs) against the glucuronoxylomannan (GXM) component of the C. neoformans capsular polysaccharide can prolong the lives of infected mice, while others have no effect or can even shorten survival. To date, no one has systematically compared the efficacies of antibodies with the same variable regions and different human constant regions with their unique combination of effector functions in providing protection against murine C. neoformans infection. In the present study, we examined the efficacies of anti-GXM MAbs of the four human immunoglobulin G (IgG) subclasses, which have identical variable regions but differ in their capacities to bind the three types of Fc receptors for IgG (FcgammaR), their abilities to activate complement, and their half-lives. IgG2 and IgG4 anti-GXM prolonged the lives of infected BALB/c mice, IgG3 anti-GXM did not affect animal survival, while mice treated with IgG1 anti-GXM died earlier than mice treated with phosphate-buffered saline or irrelevant isotype-matched MAbs. All MAbs decreased serum GXM in infected animals. Effector pathways traditionally believed to be important in defense against microbes, such as opsonophagocytosis and complement binding, negatively correlated with antibody efficacy. It is generally accepted that human IgG1 has the most favorable combination of effector functions for therapeutic use against infections. Therefore, our findings have significant implications for humanization of the mouse IgG1 currently in clinical trials for cryptococcal meningitis and for the design of antibody therapeutics to treat other infectious diseases as well.  相似文献   

12.
Monoclonal antibodies (MAbs) against Pasteurella multocida serotype D were obtained by fusion of spleen cells from BALB/c mice immunized with outer membrane proteins (OMPs) with SP2/0-Ag 14 murine myeloma cells. Desirable MAbs were selected by enzyme-linked immunosorbent assay (ELISA) with OMP as the antigen. MAbs MT1 and MT2 identified two different proteins (H [heavy] and W [weak]), each with a molecular mass of 32 kDa, in Western blots (immunoblots). Treatment of the OMPs with proteolytic enzymes and sodium periodate indicated that the binding sites of MAbs MT1 and MT2 are of protein and glycoprotein natures, respectively. The epitopes reactive with MAbs were surface exposed, as visualized by immunoelectron microscopy. Among field isolates of P. multocida serotype D, two distinct OMP patterns were recognized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and these patterns were designated types I and II. In both the ELISA and the Western blot, MAb MT1 recognized only type I isolates, whereas MAb MT2 recognized both type I and II isolates. Neither MAb MT1 nor MAb MT2 reacted with either reference strains of capsular serotypes A, B, E, and F or field isolates of capsular serotype A of P. multocida. This is the first report of MAbs identifying the serotype D-specific OMP of P. multocida.  相似文献   

13.
Many pneumococcal capsular polysaccharides (PSs) are similar in structure, and a pneumococcal antibody often binds to all of the PSs with a similar structure. Yet, these cross-reactive antibodies may bind to the structurally related pneumococcal capsular PSs with an avidity too low to be effective. If memory B cells producing such weakly cross-reactive antibodies are elicited with pneumococcal conjugate vaccines, the memory cells for low-avidity antibodies could compromise the subsequent immune responses to the cross-reactive PS (original antigenic sin). To investigate these issues, we produced 14 hybridomas secreting monoclonal antibodies (MAbs) to the capsular PS of Streptococcus pneumoniae serotype 6B by immunizing BALB/c mice with antigens containing 6B PS and studied their epitope, avidity, in vitro opsonizing capacity, in vivo protective capacity, and "antigen binding titer" by enzyme-linked immunosorbent assay (ELISA) of 6A and 6B capsular PSs. Six MAbs bound to the non-cross-reactive 6B-specific epitope, and seven MAbs bound to the cross-reactive epitope present in both 6A and 6B PSs One MAb (Hyp6BM6) revealed a novel epitope. This epitope was found on 6A PS in solution, but not on 6A PS adsorbed onto the plastic surface of the ELISA plates. The avidity of the MAb for 6A or 6B PS ranged from 7.8 x 10(6) M(-1) to 4.1 x 10(11) M(-1). No MAbs were weakly cross-reactive, since none of the cross-reactive MAbs showed any tendency toward having less avidity to 6A PS (the cross-reactive PS) than to 6B PS. Avidity influenced the results of several antibody assays. When all of the hybridomas were examined, avidity strongly correlated with the titer of a unit amount of MAb to bind antigen-coated ELISA plates (r = 0.91) or to opsonize pneumococci in vitro (r = -0.85). Because both assay results are avidity dependent, the ELISA and the opsonization assay results were strongly correlated (r = 0.91), regardless of avidity. Avidity also correlated with the potency of a MAb to passively protect mice against pneumococcal infections. When only the immunoglobulin G hybridomas were examined, little increase in opsonizing capacity and in vivo protective potency was observed above 10(9) M(-1). Taken together, an ELISA measuring antigen binding titer may be an adequate measure of the protective immunity induced with pneumococcal vaccines, and the absence of a partially cross-reactive MAb suggests that antigenic sin may not be significant in responses to vaccines against the S. pneumoniae 6B serotype.  相似文献   

14.
Mice were immunized with Cryptococcus neoformans serotype A capsular glucuronoxylomannan (GXM) conjugated to bovine serum albumin-adipic dihydrazide. Two splenocyte fusions yielded two monoclonal antibodies (MAbs) that were highly reactive in dot enzyme immunoassay, immunofluorescence, and sandwich enzyme immunoassay. The first MAb, BD-1 [immunoglobulin G1 (kappa) [IgG1(kappa)]], was GXM-A and GXM-D specific, whereas the second MAb, BA-4 (IgM), reacted with GXM-A and GXM-B. A third MAb, CD-6 [IgG1(kappa)], originated from mice immunized with O-deacetylated GXM-C-bovine serum albumin and reacted with GXMs of all four serotypes. Two of the MAbs (CD-6 and BD-1) were further characterized with chemically modified GXMs. Removal of glucuronosyl residues completely inhibited the binding of both MAbs, implicating (1----2)-beta-glucuronic acid as a key component of the epitope. Removal of (1----2)-beta-xylosyl residues decreased reactivity to an intermediate extent. O deacetylation led to a measurable decrease but had the least inhibitory effect of the three GXM derivatives tested. The combining site for these two MAbs appears to be a complex antigenic determinant involving more than one glycosidic residue.  相似文献   

15.
The protective efficacy of antibodies (Abs) to Cryptococcus neoformans glucuronoxylomannan (GXM) is dependent on Ab fine specificity. Two clonally related immunoglobulin M monoclonal Abs (MAbs) (12A1 and 13F1) differ in fine specificity and protective efficacy, presumably due to variable (V)-region sequence differences resulting from somatic mutations. MAb 12A1 is protective and produces annular immunofluorescence (IF) on serotype D C. neoformans, while MAb 13F1 is not protective and produces punctate IF. To determine the Ab molecular determinants responsible for the IF pattern, site-directed mutagenesis of the MAb 12A1 heavy-chain V region (V(H)) was followed by serological and functional studies of the various mutants. Changing two selected amino acids in the 12A1 V(H) binding cavity to the corresponding residues in the 13F1 V(H) altered the IF pattern from annular to punctate, reduced opsonic efficacy, and abolished recognition by an anti-idiotypic Ab. Analysis of the binding of the various mutants to peptide mimetics revealed that different amino acids were responsible for GXM binding and peptide specificity. The results suggest that V-region motifs associated with annular binding and opsonic activity may be predictive of Ab efficacy against C. neoformans. This has important implications for immunotherapy and vaccine design that are reinforced by the finding that GXM and peptide reactivities are determined by different amino acid residues.  相似文献   

16.
Three monoclonal antibodies (MAbs) to lipopolysaccharide of Actinobacillus actinomycetemcomitans strain Y4 (serotype b) and eight MAbs to a serotype b-specific polysaccharide antigen of strain Y4 were obtained. Latex particles sensitized with an MAb to the Y4 lipopolysaccharide produced a positive agglutination with whole cells of all three serotypes of A. actinomycetemcomitans, but not with Haemophilus aphrophilus, Haemophilus paraphrophilus, Haemophilus influenzae, Porphyromonas (Bacteroides) gingivalis, "Bacteroides" intermedius, Fusobacterium nucleatum and Escherichia coli. On the other hand, latex particles sensitized with an MAb to the serotype b-specific polysaccharide antigen agglutinated with whole cells of serotype b A. actinomycetemcomitans and P. gingivalis, but not with heated and trypsinized cells of P. gingivalis. The simple and rapid latex agglutination assay using MAbs may be useful for the identification of A. actinomycetemcomitans.  相似文献   

17.
A hallmark of infection with Cryptococcus neoformans is depression of the immune system characterized by poor inflammatory responses and loss of delayed-type hypersensitivity (DTH) and antibody responses. T-suppressor cell (Ts) responses, elicited by the capsular polysaccharide (GXM) of the organism, are known to develop during infection. This study was undertaken to develop a method to inhibit the anti-GXM Ts response and thereby study the influence of the Ts response on immune responsiveness and survival in cryptococcosis. Antigen-presenting cells (APC), elicited with complete Freund's adjuvant (CFA), were treated in vitro with GXM (GXM-APC). The GXM-APC were injected intravenously into normal mice. These mice were resistant to induction of anti-GXM Ts cells when soluble GXM was administered in tolerogenic doses or when animals were infected with C. neoformans. Inhibition of the anti-GXM Ts response was specific to GXM as levan-APC did not inhibit induction of anti-GXM Ts cells. Inhibition of the anti-GXM Ts response could not be attributed to increased clearance of GXM due to induction of anti-GXM antibodies or other mechanisms. Anti-cryptococcal DTH responses were lost in mice by the second week of infection. However, treatment with GXM-APC, but not levan-APC, allowed mice to maintain their DTH response. GXM-APC pretreatment enhanced survival of infected mice compared with mice pretreated with levan-APC. These results show that GXM-APC induces immune responses that inhibit the induction of Ts responses and enhances DTH responses in infected mice. These responses correlate with enhanced survival after cryptococcal infection.  相似文献   

18.
Cryptococcus neoformans is surrounded by an antiphagocytic capsule whose primary constituent is glucuronoxylomannan (GXM). An epitope shared by GXM serotypes A, B, C, and D is immunodominant when mice are immunized with serotype A GXM. In contrast, an epitope shared only by serotypes A and D is immunodominant when mice are immunized with serotype D. Hybridomas secreting antibodies reactive with subdominant epitopes were identified through a positive-negative screening procedure in which antibody-secreting colonies were characterized by reactivity with both the immunizing polysaccharide and GXMs from each of the four major serotypes. In this manner, a monoclonal antibody (MAb) that was reactive with an epitope shared only by serotypes A and B was identified and designated F10F5. Such an epitope has not been described previously. Immunization of mice with de-O-acetylated serotype A GXM generated a hybridoma that secreted an antibody, designated F12D2, that was reactive with all four serotypes. Unlike previously described monoclonal and polyclonal panspecific antibodies, the reactivity of MAb F12D2 was not altered by de-O-acetylation of GXM. These results indicate that there are at least two panspecific GXM epitopes; one epitope is dependent on O acetylation for antibody reactivity, and the other is independent of O acetylation. This study identifies strategies for production of MAbs that are reactive with subdominant or cryptic GXM epitopes and provides new information regarding the antigenic makeup and the humoral immune response to GXM, an essential virulence factor that is a target for active and passive immunization.  相似文献   

19.
Cryptococcus neoformans is surrounded by an antiphagocytic capsule whose primary constituent is glucuronoxylomannan (GXM). An epitope shared by GXM serotypes A, B, C, and D is immunodominant when mice are immunized with serotype A GXM. In contrast, an epitope shared only by serotypes A and D is immunodominant when mice are immunized with serotype D. Hybridomas secreting antibodies reactive with subdominant epitopes were identified through a positive-negative screening procedure in which antibody-secreting colonies were characterized by reactivity with both the immunizing polysaccharide and GXMs from each of the four major serotypes. In this manner, a monoclonal antibody (MAb) that was reactive with an epitope shared only by serotypes A and B was identified and designated F10F5. Such an epitope has not been described previously. Immunization of mice with de-O-acetylated serotype A GXM generated a hybridoma that secreted an antibody, designated F12D2, that was reactive with all four serotypes. Unlike previously described monoclonal and polyclonal panspecific antibodies, the reactivity of MAb F12D2 was not altered by de-O-acetylation of GXM. These results indicate that there are at least two panspecific GXM epitopes; one epitope is dependent on O acetylation for antibody reactivity, and the other is independent of O acetylation. This study identifies strategies for production of MAbs that are reactive with subdominant or cryptic GXM epitopes and provides new information regarding the antigenic makeup and the humoral immune response to GXM, an essential virulence factor that is a target for active and passive immunization.  相似文献   

20.
Monoclonal antibodies (MAbs) to the fusion protein (F), attachment protein (G), and nucleoprotein (N) of respiratory syncytial (RS) virus were evaluated for use as detector antibodies in immunoglobulin G (IgG), IgA, and IgM capture enzyme immunoassays. MAb assays were tested against assays using polyclonal antibodies (PAbs) with serum specimens from patients with and without evidence of recent RS virus infection. Assays developed with N MAbs were comparable to or better than PAb assays for detecting specific IgG and IgM antibodies but were somewhat less sensitive for IgA. F MAb assays were less sensitive for IgG and IgM antibodies but identified specific IgA in some specimens negative by N MAb assay. G MAb assays were insensitive for IgG and IgM antibodies but did detect about 50% of the IgA antibodies identified by the PAb assay. The basis for the low sensitivity of the G MAb assays is unclear, since many of these specimens were positive for IgG antibodies to G by Western immunoblot. The sensitivity of MAb assays varied with patient age: N MAb assays detected specific antibody responses to RS virus in all immunoglobulin classes in both adults and infants less than 1 year of age, F MAb assays detected specific IgG responses in adults and IgA responses in both adults and infants, and G MAb assays only detected IgA responses in adults. A mixture of N and F MAbs was complementary overall, identifying 54 of 55 (IgG), 51 of 52 (IgA), and 16 of 17 (IgM) serum specimens positive by PAb assay. These MAb assays were also specific with specimens tested from persons without a history of recent RS virus infection. The availability of these MAb-based assays offers other laboratories the opportunity to have long-term, standardized reagents and tests for serological diagnosis of RS virus infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号