首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MDL 73,147EF (1H-indole-3-carboxylic acid-trans-octahydro-3-oxo-2,6- methano-2H-quinolizin-8-yl-ester methanesulphonate) is a potent and selective 5-HT3 receptor antagonist (pA2 9.8, rabbit heart; pIC50 less than 5, D-2 receptor). The effects of acutely and chronically administered haloperidol and MDL 73,147EF were compared in an electrophysiologic model for antipsychotic activity. Haloperidol, but not MDL 73,147EF, given acutely increased the number of active dopamine neurons in the substantia nigra (A9). Both haloperidol and MDL 73,147EF, given chronically, decreased the number of active ventral tegmental dopamine neurons and the number of active A9 dopamine neurons. The results indicate that MDL 73,147EF may prove useful as an antipsychotic with a unique mechanism of action.  相似文献   

2.
The discriminative stimulus induced in rats by amphetamine has previously been shown to be due to raised mesolimbic dopamine levels. As 5-HT3 receptor antagonists have been shown to inhibit hyperactivity resulting from raised mesolimbic dopamine levels, the present study examined their effects against the amphetamine discriminative stimulus. None of the 5-HT3 receptor antagonists tested (MDL 72,222EF, 0.3-10 mg/kg s.c.; MDL 73,147EF, 0.3-10 mg/kg s.c.; ICS 205-930, 0.01-10.0 mg/kg s.c.; ondansetron, 0.1-1000 micrograms/kg s.c.) antagonised the effects of amphetamine in this test. This suggests that 5-HT3 receptors cannot modulate the effects of raised mesolimbic dopamine in pathways involved in the interoceptive effects of amphetamine.  相似文献   

3.
The antipsychotic potential of cholecystokinin (CCK)-related compounds stems from CCK's colocalization with dopamine (DA). CCK demonstrates excitatory and inhibitory effects on DA in the mesolimbic pathway. Such diverse actions might be mediated by different receptor subtypes (CCK(A) or CCK(B)). Multiple hypotheses have emerged regarding the clinical application of CCK-based drugs. Administering selective nonpeptide antagonists within animal models relevant to schizophrenia would help delineate CCK receptor involvement. One animal model simulating a cognitive dysfunction of schizophrenia is latent inhibition (LI). An animal repeatedly exposed to a stimulus that is devoid of consequence is subsequently inhibited in making new associations with that stimulus. This reflects a process of learning to ignore irrelevant stimuli. The present study examined the effects of the selective CCK(B) antagonist PD-135,158 (0.001, 0. 01, and 0.1 mg/kg) using a conditioned suppression of drinking procedure in rats. For purposes of comparison the effects of haloperidol (0.1 mg/kg) were also investigated. PD-135,158 (0.1 mg/kg), similar to haloperidol (0.1 mg/kg), elicited a clear LI effect under conditions that did not lead to LI in control rats (low number of preexposures). These findings highlight the antipsychotic potential of CCK(B) antagonists, and further illustrate the LI paradigm's capacity to detect novel, antipsychotic-like, drug activity.  相似文献   

4.
Latent inhibition (LI), i.e., retarded conditioning to a stimulus following its nonreinforced preexposure, is impaired in some subsets of schizophrenia patients and in amphetamine-treated rats. Typical and atypical antipsychotic drugs (APD's) potentiate LI, but to date the model has not dissociated between them. This study demonstrates such a dissociation using haloperidol (0.1 mg/kg), clozapine (5 mg/kg), and ritanserin (0.6 mg/kg) administered in preexposure and/or conditioning. Under conditions which did not yield LI in vehicle controls (40 preexposures and five conditioning trials), both haloperidol and clozapine, but not ritanserin, led to LI when administered in conditioning. Under conditions which led to LI in vehicle controls (40 preexposures and two conditioning trials), clozapine and ritanserin, but not haloperidol, abolished LI when administered in preexposure. It is suggested that LI potentiation via conditioning detects the "typical" action of APD's whereas LI disruption via preexposure detects the "atypical" action of APD's.  相似文献   

5.
Latent inhibition (LI) is a behavioural phenomenon whereby preexposure to a stimulus without reinforcement interferes with the formation of subsequent associations to that stimulus. Using preexposure to a tone stimulus which subsequently serves as a conditioned stimulus for suppression of licking, we have confirmed that LI is disrupted by a low dose of amphetamine. Haloperidol was able to prevent this effect of amphetamine. Ondansetron, a selective and potent 5HT3 receptor antagonist, was also shown to be effective at blocking the amphetamine-induced disruption of LI at a dose of 0.01 mg/kg, but not at 0.1 mg/kg. In addition, it was demonstrated that ondansetron could enhance LI; using only ten preexposures, no LI was obtained in the saline group, but was apparent in animals given ondansetron, an effect which has been previously shown with haloperidol. Haloperidol, at the higher dose used, reduced suppression of licking, however, ondansetron at the effective dose had no such effect. It is concluded that ondansetron is able to attenuate increases in dopamine activity, produced pharmacologically with amphetamine without affecting baseline dopamine activity. The implications of these findings for a possible antipsychotic action of ondansetron are discussed.  相似文献   

6.
Rationale Latent inhibition (LI) refers to retarded conditioning to a stimulus as a consequence of its inconsequential preexposure. Amphetamine-induced disruption of LI and its potentiation by antipsychotic drugs (APDs) in the adult rat are well-established models of schizophrenia and antipsychotic drug action, respectively. It is not clear whether LI can be similarly modulated at prepubertal age.Objectives In view of the notion that schizophrenia is a neurodevelopmental disorder whose overt expression depends on postpubertal brain maturational processes, we investigated whether several manipulations known to modulate LI in adult rats, including systemic administration of amphetamine and the atypical APD clozapine, are capable of producing the same effects in prepubertal (35-day-old) rats.Methods LI was measured in a thirst motivated conditioned emotional response (CER) procedure in which rats received 10 or 40 tone preexposures followed by 2 or 5 tone-footshock pairings.Results Like in adults, LI was present with 40 preexposures and 2 conditioning trials. In contrast to findings in adults, LI was resistant to disruption by amphetamine at a dose (1 mg/kg) that significantly increased locomotor activity, as well as by reducing the number of preexposures to ten, increasing the number of conditioning trials to five, or changing the context between preexposure and conditioning. Clozapine (5 mg/kg) and the selective 5HT2A antagonist M100907 (0.3 mg/kg) administered in conditioning were without an effect on "persistent" LI with extended conditioning, but were capable of disrupting LI when administered in the preexposure stage, as found in adults.Conclusion The results point to functionality within brain systems regulating LI acquisition but not those regulating LI expression in periadolescent rats, further suggesting that postpubertal maturation of the latter systems may underlie schizophrenia-mimicking LI disruption reported in adult rats following perinatal manipulations and possibly disrupted LI observed in schizophrenia.  相似文献   

7.
Latent inhibition (LI) is a measure of retarded conditioning to a previously-presented nonreinforced stimulus, that is impaired in schizophrenic patients and in rats treated with amphetamine. Neuroleptic drugs are known to produce two effects in this test paradigm: to antagonise amphetamine-induced disruption of LI, and to enhance LI when administered on their own. The present experiments tested the effects on LI of a potential antipsychotic, sigma ligand BMY-14802. The experiments used a conditioned emotional response (CER) procedure in rats licking for water, consisting of three stages: preexposure, in which the to-be-conditioned stimulus (a tone) was repeatedly presented without being followed by reinforcement; conditioning, in which the preexposed stimulus was paired with reinforcement (a foot shock); and test, in which LI was indexed by animals' degree of suppression of licking during tone presentation. In Experiment 1, 20 tone preexposures and two conditioning trials were given and the effects of 5, 15, and 30mg/kg BMY-14802 were assessed. Experiment 2 tested the effects of 15 and 30mg/kg on LI using ten preexposures and two conditioning trials. Experiment 3 investigated the effects of 15 and 30mg/kg on LI using 40 preexposures and extended conditioning consisting of five tone-shock pairings. Experiments 4 and 5 investigated antagonism of amphetamine-induced disruption of LI by 15 and 30mg/kg BMY-14802, respectively. BMY-14802 was found to antagonise amphetamine-induced disruption of LI and enhance LI when low numbers of preexposures and two conditioning trials were given, but not following extended conditioning. These results provide partial support for the suggestion that BMY-14802 may possess antipsychotic properties.  相似文献   

8.
Employing a two-lever, food-reinforced FR10 procedure, rats were trained to recognize a discriminative stimulus (DS) elicited by the 5-HT(2A) receptor antagonist and potential antipsychotic agent, MDL100,907 (0.16 mg/kg, i.p.). In generalization tests, by analogy to MDL100,907 itself (Effective Dose(50) (ED(50)), 0.002 mg/kg, s.c.), the 'atypical' antipsychotic, clozapine, which displays high affinity for 5-HT(2A) as compared to D(2) receptors, dose-dependently and fully generalized to MDL100,907 (ED(50), 0.2 mg/kg, s.c.). S16924 (0.05 mg/kg, s.c.), S18327 (0.09 mg/kg, s.c.), quetiapine (1.8 mg/kg, s.c.), risperidone (0.02 mg/kg, s.c.) and ziprasidone (0.01 mg/kg, s.c.), antipsychotics which possess-like clozapine-marked affinity for 5-HT(2A) versus D(2) receptors, also generalized to MDL100,907. In distinction, raclopride, an antipsychotic which selectively interacts with D(2) versus 5-HT(2A) receptors, did not display significant generalization. Interestingly, haloperidol, which shows only modest affinity for 5-HT(2A) versus D(2) sites, generalized to MDL100,907 (ED(50), 0.02 mg/kg, s.c.). In light of the antagonist properties of haloperidol, clozapine and all other antipsychotics tested (except raclopride) at alpha(1)-adrenoceptors (ARs), the selective alpha(1)-AR antagonists, prazosin and WB4101, were examined. Both dose-dependently and fully generalized to MDL100,907 (ED(50)s, 0.07 and 0.11 mg/kg, s.c., respectively). At doses showing pronounced generalization to MDL100,907, the only drugs which significantly suppressed response rates were haloperidol and, weakly, quetiapine. Raclopride also markedly decreased response rates. In conclusion, the antipsychotic agents, clozapine, ziprasidone, risperidone, S16924, S18327, quetiapine and haloperidol, all generalized to a DS elicited by MDL100,907. While D(2) receptors are not implicated in their actions, in addition to antagonist properties at 5-HT(2A) receptors, blockade of alpha(1)-ARs and other, as yet unidentified, mechanisms may be involved. These data underpin interest in MDL100,907 as a potential antipsychotic agent.  相似文献   

9.
Abstract Rationale. Latent inhibition (LI) refers to retarded conditioning to a stimulus as a consequence of its inconsequential pre-exposure, and disrupted LI in the rat is considered to model an attentional deficit in schizophrenia. Blockade of NMDA receptor transmission, which produces behavioral effects potentially relevant to schizophrenic symptomatology in several animal models, has been reported to spare LI. Objectives. To show that systemic administration of the non-competitive NMDA antagonist MK-801 will lead to an abnormally persistent LI which will emerge under conditions that disrupt LI in controls, and that this will be reversed by the atypical neuroleptic clozapine but not by the typical neuroleptic haloperidol, as found for other NMDA antagonist-induced models. Methods. LI was measured in a thirst-motivated conditioned emotional response (CER) procedure by comparing suppression of drinking in response to a tone in rats which previously received 0 (non-pre-exposed) or 40 tone exposures (pre-exposed) followed by two (experiment 1) or five (experiments 2–5) tone – foot shock pairings. Results. MK-801 at doses of 0.1 and 0.2 mg/kg reduced conditioned suppression while no effect on suppression was seen at the 0.05 mg/kg dose. At the latter dose, intact LI was seen with parameters that produced LI in controls (40 pre-exposures and two conditioning trials). Raising the number of conditioning trials to five disrupted LI in control rats, but MK-801-treated rats continued to show LI, and this abnormally persistent LI was due to the action of MK-801 in the conditioning stage. MK-801-induced LI perseveration was unaffected by both haloperidol (0.1 mg/kg) and clozapine (5 mg/kg) administered in conditioning, and was reversed by clozapine but not by haloperidol administered in pre-exposure. Conclusion. MK-801-induced perseveration of LI is consistent with other reports of perseverative behaviors, suggested to be particularly relevant to negative symptoms of schizophrenia, following NMDA receptor blockade. We suggest that LI perseveration may model impaired attentional set shifting associated with negative symptoms of schizophrenia. Moreover, the finding that the action of MK-801 on LI and the action of clozapine are exerted in different stages of the LI procedure suggests that the MK-801-based LI model may provide a unique screening tool for the identification of novel antipsychotic compounds, whereby the schizophrenia-mimicking LI abnormality is drug-induced, but the detection of the antipsychotic action is not dependent on the mechanism of action of the pro-psychotic drug. Electronic Publication  相似文献   

10.
The combination of M100907, a putative antipsychotic drug (APD) and serotonin (5-HT)(2A) antagonist, and the typical APD haloperidol, can enhance dopamine (DA) release in rat medial prefrontal cortex (mPFC), an effect which has been postulated to be of value to improve cognition and negative symptoms. The present study demonstrated that another putative APD and 5-HT(2A/2C) antagonist, SR46349-B (10 mg/kg, but not 1-3 mg/kg) alone, but not M100907 (0.1 and 3 mg/kg) alone, increased mPFC DA release, whereas neither drug alone affected nucleus accumbens (NAC) DA release. Neither SR46349-B nor M100907 alone affected nucleus accumbens (NAC) DA release. Neither SR46349-B nor M100907 alone affected nucleus accumbens (NAC) DA release. SR46349-B (3 mg/kg) potentiated haloperidol-induced DA release in both regions, whereas M100907 (0.1 mg/kg) potentiated haloperidol (0.1 mg/kg)-induced mPFC DA release and inhibited it in the NAC. WAY100635 (0.2 mg/kg), a 5-HT(1A) antagonist, abolished the effects of haloperidol plus M100907 as well as SR46349-B on DA release in the mPFC, but did not do so in the NAC. Thus, 5-HT(2A) and 5-HT(2A/2C) antagonism together with haloperidol-induced D(2) antagonism may potentiate mPFC DA release via 5-HT(1A) agonism, whereas the combined effects of these agents on NAC DA release is not dependent upon 5-HT(1A) receptor stimulation. Interestingly, similar to the effect of SR46349-B, high dose M100907 (3 mg/kg), which might have antagonist activity at 5-HT(2C) receptors, potentiated 1 mg/kg haloperidol-induced DA release in the mPFC and NAC. These results suggest that 5-HT(2A/2C) antagonism may be more advantageous than selective 5-HT(2A) antagonism as an adjunct to D(2) antagonists to improve cognition and negative symptoms in schizophrenia.  相似文献   

11.
Employing a two-lever, food-reinforced, Fixed Ratio 10 drug discrimination procedure, rats were trained to recognize the highly-selective serotonin (5-HT)(2A) receptor antagonist, MDL100,907 (0.16 mg/kg, i.p.). They attained criterion after a mean +/- S.E.M. of 70 +/- 11 sessions. MDL100,907 fully generalized with an Effective Dose (ED)(50) of 0.005 mg/kg, s.c. A further selective 5-HT(2A) antagonist, SR46349, similarly generalized with an ED(50) of 0.04 mg/kg, s.c. In distinction, the selective 5-HT(2B) antagonist, SB204,741 (0.63 and 10.0 mg/kg), the 5-HT(2B/2C) antagonist, SB206,553 (0.16 and 2.5 mg/kg) and the selective 5-HT(2C) antagonists, SB242,084 (2.5 and 10.0 mg/kg,) and RS102221 (2.5 and 10.0 mg/kg), did not significantly generalize. In conclusion, selective blockade of 5-HT(2A) receptors by MDL100,907 elicits a discriminative stimulus in rats which appears to be specifically mediated via 5-HT(2A) as compared with 5-HT(2B) and 5-HT(2C) receptors.  相似文献   

12.
The hyperlocomotion induced by the noncompetitive NMDA antagonist MK-801 (0.3 mg/kg SC) in mice was attenuated by the nonselective 5-HT2 antagonist ritanserin (0.12 and 0.25 mg/kg SC) and by the 5-HT2A selective antagonist MDL100907 (0.05 and 0.1 mg/kg SC). SB242084 (0.25-1.0 mg/kg), a selective 5-HT(2C) antagonist, had no effect on MK-801-induced hyperactivity. These same doses of ritanserin and MDL100907 reduced the hyperactivity induced by cocaine (10 mg/ kg). Amphetamine (2.5 mg/kg SC) induced hyperlocomotion that was also attenuated by ritanserin (0.064).25 mg/kg SC). The hyperlocomotion induced by the D1 agonist C-APB (1.0 mg/kg) is not altered by pretreatment with ritanserin or MDL100907. This suggests that compounds that increase locomotor activity via indirectly increasing dopaminergic activity (either by increased release or blockade of reuptake) require the activation of a 5-HT2A receptor. Activity of compounds that act directly at the postsynaptic dopamine receptors such as C-APB is not dependent on such a mechanism. This suggests a selective involvement of 5-HT2A receptors but not 5-HT2c receptors in the mediation of the behavioral effects of compounds that increase synaptic concentration of dopamine but not directly acting agonists. This implies that the 5-HT2A receptors modulate elevation of extracellular dopamine, not the postsynaptic sensitivity of dopamine neurons.  相似文献   

13.
Recent studies indicate that 5-HT1A receptor agonists stimulate noradrenaline release in the brain. Here we investigate the mechanism underlying the increase in extracellular noradrenaline induced by (+/-)-MDL 73005EF, a weak 5-HT1A receptor agonist. Extracellular noradrenaline was measured in the hippocampus of the awake rat using microdialysis. (+/-)-MDL 73005EF (0.1, 1 and 5 mg/kg s.c.) caused a dose-related increase in noradrenaline. The active S(-)- enantiomer of MDL 73005EF (1 mg/kg s.c.) also increased noradrenaline whereas the inactive R(+)- enantiomer (1 mg/kg s.c.) did not. Measurements of extracellular 5-HT in hippocampus of anaesthetised rats confirmed that the 5-HT1A receptor agonist action of (+/-)-MDL 73005EF resides in the S(-)- enantiomer. Thus, S(-)-MDL 73005EF (0.3 and 1 mg/kg s.c.) markedly decreased 5-HT, whereas R(+)-MDL 73005EF (1 mg/kg s.c.) did not. The noradrenaline response to (+/-)-MDL 73005EF (1 mg/kg s.c.) was significantly blocked by the selective 5-T1A receptor antagonist, WAY 100635 (1 but not 0.3 mg/kg s.c). The noradrenaline response to (+/-)-MDL 73005EF (1 mg/kg s.c.) was not modified by pretreatment with the 5-HT synthesis inhibitor p-chlorophenylalanine. Intra-hippocampal application of (+/-)-MDL 73005EF (10 microM in perfusion medium) did not increase noradrenaline. Although (+/-)-MDL 73005EF has moderate affinity for dopamine D2 binding sites, the dopamine D2 receptor antagonist, remoxipride (1 mg/kg s.c.) did not increase noradrenaline. In conclusion, our data suggest that (+/-)-MDL 73005EF increases noradrenaline release in rat hippocampus through activation of 5HT1A receptors that appear to be located postsynaptically. These data are discussed in relation to the antidepressant/anxiolytic effects of 5-HT1A agonists.  相似文献   

14.
Activity at the 5-HT2A receptor versus that of the 5-HT2C receptor was studied in three behavioural paradigms. In pigeons trained to discriminate 0.32 mg/kg of 1-(2,5-diemethoxy-4-iodophenyl)-2-aminopropane (DOI) (a mixed 5-HT2A/C receptor agonist) from vehicle, quipazine (0.1-1 mg/kg) and m-chlorophenylpiperazine (mCPP) (1-3 mg/kg) substituted for DOI in a dose-related manner, and this generalization was blocked by MDL100907 (0.0001-0.01 mg/kg), a selective 5-HT2A receptor antagonist. RO60-0175 (a relatively selective 5-HT2C agonist) induced partial substitution at 3 mg/kg that was antagonized by both MDL100907 and by 3 mg/kg of SB242084, a relatively selective 5-HT2C antagonist. MK212 (a mixed 5-HT2C/A agonist) induced partial substitution that was antagonized by SB242084, but not by MDL100907. On a progressive ratio 5 operant schedule (PR5) for food reinforcement, DOI, quipazine, mCPP, MK212 and R060-0175 decreased the break point; mCPP, DOI, MK212 and quipazine also induced vomiting. Although MDL100907 antagonized both the reductions of break point and vomiting, SB242084 only partially attenuated the decrease in break point observed with MK212 and DOI, and was unable to eliminate vomiting. Thus pharmacological activity at the 5-HT2A receptor can be behaviourally distinguished from pharmacological activity at the 5-HT2C receptor in the pigeon. Furthermore, the decrease in the break point of a PR5 schedule induced by 5-HT2C receptor agonists may be related to decreased appetite, whereas that induced by 5-HT2A receptor agonists may be due to unrelated factors, such as emesis.  相似文献   

15.
High affinity for serotonin-2A (5-HT(2A)) over dopamine (DA) D(2) receptors is a leading hypothesis for clozapine's favorable therapeutic profile. Recent preclinical studies also indicate that a sufficient antipsychotic effect might be obtained by a combined high 5-HT(2A)/low D(2) receptor blockade. Thus, addition of a 5-HT(2A) receptor antagonist to an ineffective dose of a D(2) receptor antagonist produces a robust antipsychotic-like effect in the conditioned avoidance response (CAR) test. Electrophysiological and biochemical studies also show that 5-HT(2A) receptor antagonists can confer an atypical (clozapine-like) profile on a D(2) receptor antagonist. Improved therapeutic efficacy by adjunctive 5-HT(2A) receptor antagonist treatment to a traditional D(2) receptor blocking regimen has been suggested. However, the ability of 5-HT(2A) receptor blockade to protect against, or ameliorate, parkinsonian symptoms still remains unclear. Using the CAR and the catalepsy (CAT) tests as indices for antipsychotic activity and extrapyramidal side effect (EPS) liability, respectively, the effects of the selective 5-HT(2A) receptor antagonist MDL 100,907 in combination with the DA D(2) receptor antagonists haloperidol or raclopride were studied in rats. Haloperidol (0.025 or 0.1 mg/kg sc, -30 min) produced a dose-dependent suppression of CAR. Pretreatment with MDL 100,907 (0.5, 1.0, or 1.5 mg/kg sc; -60 min) enhanced and prolonged the haloperidol-induced suppression of CAR without escape failures. MDL 100,907 (1 mg/kg sc, -60 min) had no effect on CAT when coadministered with ineffective doses of raclopride. Raclopride (1 mg/kg sc, -30 min) alone produced a submaximal cataleptic response that was significantly enhanced by pretreatment with MDL 100,907. The present results confirm and extend previous results by showing that 5-HT(2A) receptor blockade can enhance the antipsychotic-like effects of a very low dose of a commonly used traditional antipsychotic. 5-HT(2A) receptor blockade does not, however, prevent EPS (CAT). The therapeutic advantage of this combination might, therefore, operate within a fairly narrow window.  相似文献   

16.
Recent studies have shown that non-opioid defensive analgesia in male mice is potently inhibited by the 5-HT3 receptor antagonist, ondansetron. The present series of experiments was conducted to further explore the involvement of 5-HT3 receptor mechanisms in this particular form of adaptive inhibition of pain. The drug ICS 205-930 significantly attenuated the reaction at 1.25-2.5 micrograms/kg, with smaller and larger doses being ineffective. Both MDL 72222 and MDL 73147EF produced flat dose-response curves, with significant inhibition of defensive analgesia at minimum effective doses of less than or equal to 10 and 300 micrograms/kg, respectively. Although MDL 72699, the quaternary salt of MDL 72222, also inhibited the reaction, this effect was seen at comparatively large doses (0.5-1.0 mg/kg) only. None of the compounds tested had significant intrinsic effects of tail-flick latencies, over the dose ranges tested. These findings indicate that 5-HT3 receptor mechanisms may have an important modulatory role in certain forms of "stress" analgesia. Data are discussed in relation to the consistent profile of partial inhibition produced by 5-HT3 receptor antagonists in this model.  相似文献   

17.
The goal of the present study was to better delineate the mechanisms of action of the prototypical hallucinogen LSD. LSD (0.03, 0.1 and 0.3 mg/kg, s.c.) produced locomotor hyperactivity, disruption of PPI and a number of behaviors indicative of 5-HT activation such as wet-dog shakes, back muscle contractions and forepaw treading. These various behavioral effects of LSD were studied in both Sprague-Dawley and Wistar rats, although with the exception of back muscle contractions which were more prominent in Sprague-Dawley rats, no major strain differences were detected. The PPI disruption induced by LSD (0.1 mg/kg) in Sprague-Dawley rats was completely reversed by pretreatment with the selective 5-HT(2A) antagonist MDL 100907 (0.5 and 1 mg/kg, s.c.). In contrast, pretreatment with antagonists at 5-HT(2C), (SB 242084 (0.5 mg/kg, i.p.)); 5-HT(2B/2C) (SDZ SER 082 (1 mg/kg, s.c.)); 5-HT(1A), ((+)-WAY 100135 (1 and 20 mg/kg, s.c.)) and 5-HT(6) receptors, (RO 04-6790 (30 mg/kg, i.p.)), all failed to influence LSD-induced disruption of PPI. The dopamine DA(2like) receptor antagonist, haloperidol (0.1 and 0.2 mg/kg, s.c.), was without effect against an LSD-induced disruption of PPI. Finally, selective blockade of 5-HT(2A) but not 5-HT(2C) receptors completely abolished the locomotor hyperactivity induced by LSD. These findings provide empirical evidence to support the view that the hallucinogenic effects of LSD are mediated by a direct agonist effect at 5-HT(2A) receptors.  相似文献   

18.
The effect of the selective dopamine D2 receptor agonist quinpirole, the selective 5-HT1A receptor agonist 8-OH-DPAT and the selective 5-HT2A receptor antagonist ketanserin on catalepsy induced by atypical antipsychotics clozapine, risperidone, olanzapine and sertindole at higher doses was studied in rats. Haloperidol (0.5, 1 and 2 mg/kg), clozapine (50 and 75 mg/kg) and olanzapine (15 and 30 mg/kg) produced catalepsy dose-dependently while sertindole at doses up to 40 mg/kg failed to produce catalepsy in rats. However, sertindole (15, 30 and 45 mg/kg) produced a cataleptic effect in mice in a dose-dependent manner. At a high dose (5 mg/kg), risperidone produced catalepsy in rats. Quinpirole (0.05 and 0.1 mg/kg) reversed the cataleptic effect of haloperidol (2 mg/kg), risperidone (5 mg/kg), olanzapine (30 mg/kg) and sertindole (45 mg/kg). Quinpirole (0.05 and 0.1 mg/kg) reversed clozapine (75 mg/kg)-induced catalepsy. 8-OH-DPAT (0.15 and 0.3 mg/kg) dose-dependently reversed catalepsy induced by haloperidol (2 mg/kg) and risperidone (5 mg/kg) without affecting the cataleptic effect of olanzapine. However, the higher dose (0.45 mg/kg) of 8-OH-DPAT reversed it significantly. 8-OH-DPAT (0.3 mg/kg) reversed clozapine (75 mg/kg)-induced catalepsy. 8-OH-DPAT (0.15, 0.3 and 0.45 mg/kg) failed to reverse sertindole-induced catalepsy. Ketanserin (0.75 and 1.5 mg/kg) completely reversed catalepsy induced by haloperidol (2 mg/kg) and risperidone (5 mg/kg). Ketanserin (0.75 and 1.5 mg/kg) dose-dependently reversed olanzapine (30 mg/kg) and sertindole (45 mg/kg)-induced catalepsy without any effect on clozapine (75 mg/kg)-induced catalepsy. A higher dose (3 mg/kg) of ketanserin reversed clozapine-induced catalepsy. The present study suggests that atypical antipsychotics show fewer extrapyramidal symptoms (EPS) due to greater modulation of the serotonergic system. Therefore, an antipsychotic with dopamine D2/5-HT2A antagonistic action and 5-HT1A agonistic action may prove to be superior to the existing antipsychotics.  相似文献   

19.
RATIONALE: Latent inhibition (LI) refers to the decrease in conditioned response induced by the repeated non-reinforced pre-exposure to the conditioned stimulus before its pairing with the unconditioned stimulus during the conditioning stage. LI has been considered as a relevant animal model for the study of the biological bases of schizophrenia. LI has recently been demonstrated to depend on the integrity of the entorhinal cortex, as lesioning of this area disrupted LI. OBJECTIVES: The present study aimed to verify whether the classical neuroleptic haloperidol and/or the atypical antipsychotic olanzapine would prevent the effect of entorhinal cortex lesioning. METHODS: LI was studied in an off-baseline conditioned emotional response (CER) paradigm in which a tone is paired with a footshock. Entorhinal cortex lesions were produced by the electrolytic method. After a recovery period, both lesioned and control rats received either haloperidol (0.3 mg/kg), olanzapine (0.3 mg/kg) or vehicle before both the pre-exposure and conditioning stages of the experiment. RESULTS: In control rats, pre-exposure to the tone induced LI, which was affected by neither haloperidol nor olanzapine. Lesioning of the entorhinal cortex produced a deficit of LI, which was restored by olanzapine but not by haloperidol. CONCLUSIONS: This result suggests a dissociation of the anatomical and pharmacological targets of the two drugs. The possible involvement of dopamine D3 receptors in the effects of olanzapine is discussed.  相似文献   

20.
The effects of MDL 73005EF (8-[2-(2,3-dihydro-1,4-benzodioxin-2-yl)methylamino]-8- azaspiro[4,5]decan-7,9-dione methyl sulphonate), a novel selective 5-HT1A receptor ligand with putative anxiolytic properties, were explored using models of central pre- and postsynaptic 5-HT1A receptor function in the male rat. MDL 73005EF dose dependently decreased the hippocampal 5-HT output measured by in vivo microdialysis in chloral hydrate-anaesthetised rats and this response was antagonised by the 5-HT1A/B receptor antagonist, pindolol. Local administration of MDL 73005EF had no effect on the hippocampal 5-HT output. MDL 73005EF failed to alter basal plasma adrenocorticotropin (ACTH) levels but, in common with pindolol, attenuated the ACTH response to the 5-HT1A receptor agonist, 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT). In contrast to 8-OH-DPAT, MDL 73005EF significantly increased plasma prolactin but apparently not through a 5-HT receptor-mediated mechanism. The results indicate that MDL 73005EF possesses mixed 5-HT1A receptor agonist/antagonist properties, acting as an agonist at presynaptic 5-HT1A receptors controlling 5-HT release and as an antagonist at postsynaptic 5-HT1A receptors mediating ACTH release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号