首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sulaiman OA  Gordon T 《Glia》2002,37(3):206-218
Transforming growth factor-beta (TGF-beta) plays a central role in the regulation of Schwann cell (SC) proliferation and differentiation and is essential for the neurotrophic effects of several neurotrophic factors (reviewed by Unsicker and Krieglstein, 2000; Unsicker and Strelau, 2000). However, its role in peripheral nerve regeneration in vivo is not yet understood. Our studies were carried out to characterize (1) the effects of duration of regeneration, and chronic SC denervation on the number of tibial (TIB) motor neurons that regenerated axons over a fixed distance (25 mm into distal common peroneal [CP] nerve stumps), and (2) the effect of in vitro incubation of 6-month chronically denervated sciatic nerve explants with TGF-beta and forskolin on their capacity to support axonal regeneration in vivo. TIB--CP cross-suture in Silastic tubing was used, and regeneration into 0-24-week chronically denervated CP stumps was allowed for either 1.5 or 3 months. Chronically denervated rat sciatic nerve explants (3 x 3 mm(2)) were incubated in vitro with either DMEM and 15% fetal calf serum (D-15) plus TGF-beta/forskolin or D-15 alone for 48 h and placed into a 10-mm Silastic tube that bridged the proximal and distal nerve stumps of a freshly cut TIB nerve. The number of tibial motor neurons that regenerated axons through the explants and 25 mm into the distal nerve stump after 6 months, and TIB regeneration into the CP nerve stumps, were assessed using retrograde tracers, fluorogold, or fluororuby. We found that all tibial motor neurons regenerate their axons 25 mm into 0-4-week denervated CP nerve stumps after a regeneration period of 3 months. Reducing regeneration time to 1.5 months and chronic denervation, reduced the number of motor neurons that regenerated axons over 25 mm. Exposure of 6-month denervated nerve explants to TGF-beta/forskolin increased the number of motor neurons that regenerated through them from 258 +/-13; mean +/- SE to 442 +/- 22. Hence, acute treatment of atrophic SC with TGF-beta can reactivate the growth-permissive SC phenotype to support axonal regeneration.  相似文献   

2.
Motor axonal regeneration is compromised by chronic distal nerve stump denervation, induced by delayed repair or prolonged regeneration distance, suggesting that the pathway for regeneration is progressively impaired with time and/or distance. In the present experiments, we tested the impacts of (i) chronic distal sensory nerve stump denervation on axonal regeneration and (ii) sensory or motor innervation of a nerve graft on the ability of motoneurons to regenerate their axons from the opposite end of the graft. Using the motor and sensory branches of rat femoral nerve and application of neuroanatomical tracers, we evaluated the numbers of regenerated femoral motoneurons and nerve fibers when motoneurons regenerated (i) into freshly cut and 2-month chronically denervated distal sensory nerve stump, (ii) alone into a 4-cm-long distally ligated sensory autograft (MGL) and, (iii) concurrently as sensory (MGS) or motor (MGM) nerves regenerated into the same autograft from the opposite end. We found that all (315 +/- 24: mean +/- SE) the femoral motoneurons regenerated into a freshly cut distal sensory nerve stump as compared to 254 +/- 20 after 2 months of chronic denervation. Under the MGL condition, 151 +/- 5 motoneurons regenerated, which was not significantly different from the MGM group (134 +/- 13) but was significantly reduced to 99 +/- 2 in the MGS group (P < 0.05). The number of regenerated nerve fibers was 1522 +/- 81 in the MGL group, 888 +/- 18 in the MGM group, and 516 +/- 44 in the MGS group, although the high number of nerve fibers in the MGL group was due partly to the elaboration of multiple sprouts. Nerve fiber number and myelination were reduced in the MGS group and increased in the MGM group. These results demonstrate that both chronic denervation and the presence of sensory nerve axons reduced desired motor axonal regeneration into sensory pathways. A common mechanism may involve reduced responsiveness of sensory Schwann cells within the nerve graft or chronically denervated distal nerve stump to regenerating motor axons. The findings confirm that motor regeneration is optimized by avoiding even short-term denervation. They also imply that repairing pure motor nerves (without their cutaneous sensory components) to distal nerve stumps should be considered clinically when motor recovery is the main desired outcome.  相似文献   

3.
Poor functional recovery after peripheral nerve injury is attributable, at least in part, to chronic motoneuron axotomy and chronic Schwann cell (SC) denervation. While FK506 has been shown to accelerate the rate of nerve regeneration following a sciatic nerve crush or immediate nerve repair, for clinical application, it is important to determine whether the drug is effective after chronic nerve injuries. Two models were employed in the same adult rats using cross-sutures: chronic axotomy and chronic denervation of SCs. For chronic axotomy, a chronically (2 months) injured proximal tibial (TIB) was sutured to a freshly cut common peroneal (CP) nerve. For chronic denervation, a chronically (2 months) injured distal CP nerve was sutured to a freshly cut TIB nerve. Rats were given subcutaneous injections of FK506 or saline (5 mg/kg/day) for 3 weeks. In the chronic axotomy model, FK506 doubled the number of regenerated motoneurons identified by retrograde labeling (from 205 to 414 TIB motoneurons) and increased the numbers of myelinated axons (from 57 to 93 per 1000 microm2) and their myelin sheath thicknesses (from 0.42 to 0.78 microm) in the distal nerve stump. In contrast, after chronic denervation, FK506 did not improve the reduced capacity of SCs to support axonal regeneration. Taken together, the results suggest that FK506 acts directly on the neuron (as opposed to the denervated distal nerve stump) to accelerate and promote axonal regeneration of neurons whose regenerative capacity is significantly reduced by chronic axotomy.  相似文献   

4.
The capacity of Schwann cells (SCs) in the peripheral nervous system to support axonal regeneration, in contrast to the oligodendrocytes in the central nervous system, has led to the misconception that peripheral nerve regeneration always restores function. Here, we consider how prolonged periods of time that injured neurons remain without targets during axonal regeneration (chronic axotomy) and that SCs in the distal nerve stumps remain chronically denervated (chronic denervation) progressively reduce the number of motoneurons that regenerate their axons. We demonstrate the effectiveness of low-dose, brain-derived neurotrophic and glial-derived neurotrophic factors to counteract the effects of chronic axotomy in promoting axonal regeneration. High-dose brain-derived neurotrophic factor (BDNF) on the other hand, acting through the p75 receptor, inhibits axonal regeneration and may be a factor in stopping regenerating axons from forming neuromuscular connections in skeletal muscle. The immunophilin, FK506, is also effective in promoting axonal regeneration after chronic axotomy. Chronic denervation of SCs (>1 month) severely deters axonal regeneration, although the few motor axons that do regenerate to reinnervate muscles become myelinated and form enlarged motor units in the reinnervated muscles. We found that in vitro incubation of chronically denervated SCs with transforming growth factor-beta re-established their growth-supportive phenotype in vivo, consistent with the idea that the interaction between invading macrophages and denervated SCs during Wallerian degeneration is essential to sustain axonal regeneration by promoting the growth-supportive SC phenotype. Finally, we consider the effectiveness of a brief period of 20 Hz electrical stimulation in promoting the regeneration of axons across the surgical gap after nerve repair.  相似文献   

5.
While peripheral nerves demonstrate the capacity for axonal regeneration, outcome following injury remains relatively poor, especially following prolonged denervation. Since axon-deprived Schwann cells (SCs) in the distal nerve progressively lose their ability to support axonal growth, we took the approach of using skin-derived precursor cells (SKPs) as an accessible source of replacement SCs that could be transplanted into chronically denervated peripheral nerve. In this study, we employed a delayed cross-reinnervation paradigm to assess regeneration of common peroneal nerve axons into the chronically denervated rodent tibial nerve following delivery of SKP-derived SC (SKP-SCs). SKP-SC treated animals exhibited superior axonal regeneration to media controls, with significantly higher counts of regenerated motorneurons and histological recovery similar to that of immediately repaired nerve. Improved axonal regeneration correlated with superior muscle reinnervation, as measured by compound muscle action potentials and wet muscle weights. We therefore conclude that SKPs represent an easily accessible, autologous source of stem cell-derived Schwann cells that show promise in improving regeneration through chronically injured nerves.  相似文献   

6.
Regeneration in the peripheral nervous system is impaired after prolonged periods of denervation. Currently, no interventions exist to alter the outcome after prolonged denervation. To examine the role of transplanted neural stem cells (NSC), we prepared chronically denervated distal tibial nerve segments. After 6 months of chronic denervation, we transplanted vehicle, C17.2 mouse NSCs, or C17.2 mouse NSCs engineered to overexpress GDNF to the distal tibial nerve and performed a peroneal nerve cross-suture. In animals transplanted with the NSCs, there was better regeneration of the peroneal axons into the tibial nerve as measured by counting the number of axons and by the emergence of compound motor action potentials in the tibial innervated foot muscles. Improved regeneration correlated with a reduction of chondroitin sulphate proteoglycan (CSPG) immunoreactivity in the extracellular matrix (ECM). In vitro, supernatant from C17.2 NSCs contained large quantities of secreted matrix metalloprotease-2 (MMP-2), degraded the CSPGs on chronically denervated tibial nerve sections, and reversed the CSPG-induced inhibition of neuritic outgrowth of DRG neurons. This reversal was inhibited by selective MMP-2 inhibitors. This is the first successful demonstration of regeneration through a chronically denervated nerve. These findings suggest that improved regeneration in the PNS can be accomplished by combining neurotrophic factor support and removal of axon growth inhibitory components in the extracellular matrix.  相似文献   

7.
A viable population of undifferentiated Schwann cells may be prepared from chronically denervated peripheral nerves. Nerve transection stimulates a sequence of cellular events in distal stumps leading to removal of axons and myelin, and proliferation of Schwann cells. Sealing the ends of nerve stumps prevents reinnervation and leaves daughter Schwann cells residing in longitudinal columns. Schwann cells may be harvested from the endoneurial tissue of the nerve stumps 5-12 weeks after nerve transection. Unlike myelinating cells prepared from intact tissue, where function has been specified by associated axons, Schwann cells obtained from denervated stumps are functionally naive. Their usefulness in analyzing axonal regulation of myelinogenesis and mitosis is therefore suggested.  相似文献   

8.
《中国神经再生研究》2016,(10):1549-1552
We review the biology and role of transforming growth factor beta 1(TGF-β1) in peripheral nerve injury and regeneration, as it relates to injuries to large nerve trunks(i.e., sciatic nerve, brachial plexus), which often leads to suboptimal functional recovery. Experimental studies have suggested that the reason for the lack of functional recovery resides in the lack of sufficient mature axons reaching their targets, which is a result of the loss of the growth-supportive environment provided by the Schwann cells in the distal stump of injured nerves. Using an established chronic nerve injury and delayed repair animal model that accurately mimics chronic nerve injuries in humans, we summarize our key findings as well as others to better understand the pathophysiology of poor functional recovery. We demonstrated that 6 month TGF-β1 treatment for chronic nerve injury significantly improved Schwann cell capacity to support axonal regeneration. When combined with forskolin, the effect was additive, as evidenced by a near doubling of regenerated axons proximal to the repair site. We showed that in vivo application of TGF-β1 and forskolin directly onto chronically injured nerves reactivated chronically denervated Schwann cells, induced their proliferation, and upregulated the expression of regeneration-associated proteins. The effect of TGF-β1 and forskolin on old nerve injuries is quite impressive and the treatment regiment appears to mediate a growth-supportive milieu in the injured peripheral nerves. In summary, TGF-β1 and forskolin treatment reactivates chronically denervated Schwann cells and could potentially be used to extend and prolong the regenerative responses to promote axonal regeneration.  相似文献   

9.
In the peripheral nervous system, regeneration of motor and sensory axons into chronically denervated distal nerve segments is impaired compared to regeneration into acutely denervated nerves. In order to find possible causes for this phenomenon we examined the changes in the expression pattern of the glial cell-line-derived neurotrophic factor (GDNF) family of growth factors and their receptors in chronically denervated rat sciatic nerves as a function of time with or without regeneration. Among the GDNF family of growth factors, only GDNF mRNA expression was rapidly upregulated in Schwann cells as early as 48 h after denervation. This upregulation peaked at 1 week and then declined to minimal levels by 6 months of denervation. The changes in the protein expression paralleled the changes in the expression of the GDNF mRNA. The mRNAs for receptors GFRalpha-1 and GFRalpha-2 were upregulated only after maximal GDNF upregulation and remained elevated as late as 6 months. There were no significant changes in the expression of GFRalpha-3 or the tyrosine kinase coreceptor, RET. When we examined the expression of GDNF in a delayed regeneration paradigm, there was no upregulation in the distal chronically denervated tibial nerve even when the freshly axotomized peroneal branch of the sciatic nerve was sutured to the distal tibial nerve. This study suggests that one of the reasons for impaired regeneration into chronically denervated peripheral nerves may be the inability of Schwann cells to maintain important trophic support for both motor and sensory neurons.  相似文献   

10.
The time-dependent decline in the ability of motoneurons to regenerate their axons after axotomy is one of the principle contributing factors to poor functional recovery after peripheral nerve injury. A decline in neurotrophic support may be partially responsible for this effect. The up-regulation of BDNF after injury, both in denervated Schwann cells and in axotomized motoneurons, suggests its importance in motor axonal regeneration. In adult female Sprague-Dawley rats, we counted the number of freshly injured or chronically axotomized tibial motoneurons that had regenerated their axons 1 month after surgical suture to a freshly denervated common peroneal distal nerve stump. Motor axonal regeneration was evaluated by applying fluorescent retrograde neurotracers to the common peroneal nerve 20 mm distal to the injury site and counting the number of fluorescently labelled motoneurons in the T11-L1 region of the spinal cord. We report that low doses of BDNF (0.5-2 microg/day for 28 days) had no detectable effect on axonal regeneration after immediate nerve repair, but promoted axonal regeneration of motoneurons whose regenerative capacity was reduced by chronic axotomy 2 months prior to nerve resuture, completely reversing the negative effects of delayed nerve repair. In contrast, high doses of BDNF (12-20 microg/day for 28 days) significantly inhibited motor axonal regeneration, after both immediate nerve repair and nerve repair after chronic axotomy. The inhibitory actions of high dose BDNF could be reversed by functional blockade of p75 receptors, thus implicating these receptors as mediators of the inhibitory effects of high dose exogenous BDNF.  相似文献   

11.
Schwann cell mitosis in response to regenerating peripheral axons in vivo   总被引:4,自引:0,他引:4  
Schwann cell mitosis has been demonstrated in chronically denervated cat tibial nerves re-innervated by axons regenerating from the proximal stump of a coapted peroneal nerve. Thymidine incorporation rose above baseline levels at the axon front, with no detectable increase in more distal regions occupied by denervated Schwann cells. Schwann cells therefore enter S phase upon the arrival of a regenerating axon in vivo as previously described in tissue culture. Intraneural treatment of the denervated distal stump with Mitomycin C prior to re-innervation delayed the subsequent appearance of myelin formation. This supports the notion that axonally stimulated division of Schwann cells is a prerequisite for myelination during nerve regeneration. Axonal advancement was also retarded by drug treatment, possibly because of a reduced level of trophic support provided by the compromised Schwann cells. A comparable absence of myelin and poor re-innervation was found in chemically untreated distal stumps that had been maintained in the denervated state for prolonged periods when Schwann cell columns are known to undergo progressive atrophy. These observations suggest that nerve repair should be delayed for limited periods if efficacious regeneration is desired.  相似文献   

12.
There are receptors on denervated Schwann cells that may respond to the neurotransmitters that are released from growth cones of regenerating motor axons. In order to ascertain whether the interaction of the transmitters and their receptors plays a role during axon regeneration, we investigated whether pharmacological block of the interaction would reduce the number of motoneurons that regenerate their axons after nerve section and surgical repair. Peripheral nerves in the hindlimbs of rats and mice were cut and repaired, and various drugs were applied to the peripheral nerve stump either directly or via mini-osmotic pumps over a 2–4-week period to block the binding of acetylcholine to nicotinic and muscarinic acetylcholine receptors (AChRs: α-bungarotoxin, tubocurarine, atropine and, gallamine) and binding of ATP to P2Y receptors (suramin). In rats, the nicotinic AChR antagonistic drugs and suramin reduced the number of motoneurons that regenerated their axons through the distal nerve stump. In mice, suramin significantly reduced the upregulation of the carbohydrate HNK-1 on the Schwann cells in the distal nerve stump that normally occurs during motor axon regeneration. These data indicate that chemical communication between regenerating axons and Schwann cells during axon regeneration via released neurotransmitters and their receptors may play an important role in axon regeneration.  相似文献   

13.
In contrast to injuries in the central nervous system, injured peripheral neurons will regenerate their axons. However, axotomized motoneurons progressively lose their ability to regenerate their axons, following peripheral nerve injury often resulting in very poor recovery of motor function. A decline in neurotrophic support may be partially responsible for this effect. The initial upregulation of glial cell line-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF) by Schwann cells of the distal nerve stump after nerve injury has led to the speculation that they are important for motor axonal regeneration. However, few experiments directly measure the effects of exogenous BDNF or GDNF on motor axonal regeneration. This study provided the first direct and quantitative evidence that long-term continuous treatment with exogenous GDNF significantly increased the number of motoneurons which regenerate their axons, completely reversing the negative effects of chronic axotomy. The beneficial effect of GDNF was not dose-dependent. A combination of exogenous GDNF and BDNF on motor axonal regeneration was significantly greater than either factor alone, and this effect was most pronounced following long-term continuous treatment. The ability of GDNF, either alone or in combination with BDNF, to increase the number of motoneurons that regenerated their axons correlated well with an increase in axon sprouting within the distal nerve stump. Thus long-term continuous treatment with neurotrophic factors, such as GDNF and BDNF, can be used as a viable treatment to sustain motor axon regeneration.  相似文献   

14.
An important role in peripheral nerve regeneration has been ascribed to humoral trophic and tropic agents arising from the nonneuronal cells in the distal nerve stump and the denervated targets. In order to estimate their contribution to axonal elongation after crush injury to the rat sciatic nerve, an in vivo model was designed in which local cellular and target-derived influences were eliminated by 1) freeze-thawing of a long nerve segment distal to the crush site and 2) cutting the nerve far distally to the crush site, but within the frozen-thawed segment, and deflecting the frozen-thawed nerve stump in the opposite direction from its natural course. The sensory and motor axon elongation rate was estimated from the results of the nerve pinch test and choline acetyltransferase distribution along the nerve segment distal to the crush. The elongation rate of regenerating axons in deflected nerve segments, either non-treated or frozen-thawed, was close in magnitude to that obtained when target-derived influences were not eliminated. Neurotropism of axonal targets is therefore of little importance for axon elongation after nerve crush. In the absence of Schwann cells along the axonal path in frozen-thawed nerve segments, the elongation rate of both sensory and motor axons declined by about 40%. This implies that interactions between viable Schwann cells and growth cones of regenerating axons are not prerequisite for rapid axon elongation when Schwann cell basal lamina constitutes the growth substratum. Nevertheless, Schwann cells in Bungner bands possibly enhance the axon elongation rate by humoral or cell surface-mediated mechanisms.  相似文献   

15.
Injured peripheral nerves regenerate their lost axons but functional recovery in humans is frequently disappointing. This is so particularly when injuries require regeneration over long distances and/or over long time periods. Fat replacement of chronically denervated muscles, a commonly accepted explanation, does not account for poor functional recovery. Rather, the basis for the poor nerve regeneration is the transient expression of growth-associated genes that accounts for declining regenerative capacity of neurons and the regenerative support of Schwann cells over time. Brief low-frequency electrical stimulation accelerates motor and sensory axon outgrowth across injury sites that, even after delayed surgical repair of injured nerves in animal models and patients, enhances nerve regeneration and target reinnervation. The stimulation elevates neuronal cyclic adenosine monophosphate and, in turn, the expression of neurotrophic factors and other growth-associated genes, including cytoskeletal proteins. Electrical stimulation of denervated muscles immediately after nerve transection and surgical repair also accelerates muscle reinnervation but, at this time, how the daily requirement of long-duration electrical pulses can be delivered to muscles remains a practical issue prior to translation to patients. Finally, the technique of inserting autologous nerve grafts that bridge between a donor nerve and an adjacent recipient denervated nerve stump significantly improves nerve regeneration after delayed nerve repair, the donor nerves sustaining the capacity of the denervated Schwann cells to support nerve regeneration. These reviewed methods to promote nerve regeneration and, in turn, to enhance functional recovery after nerve injury and surgical repair are sufficiently promising for early translation to the clinic.  相似文献   

16.
Despite the capacity of Schwann cells to support peripheral nerve regeneration, functional recovery after nerve injuries is frequently poor, especially for proximal injuries that require regenerating axons to grow over long distances to reinnervate distal targets. Nerve transfers, where small fascicles from an adjacent intact nerve are coapted to the nerve stump of a nearby denervated muscle, allow for functional return but at the expense of reduced numbers of innervating nerves. A 1-hour period of 20 Hz electrical nerve stimulation via electrodes proximal to an injury site accelerates axon outgrowth to hasten target reinnervation in rats and humans, even after delayed surgery. A novel strategy of enticing donor axons from an otherwise intact nerve to grow through small nerve grafts(cross-bridges) into a denervated nerve stump, promotes improved axon regeneration after delayed nerve repair. The efficacy of this technique has been demonstrated in a rat model and is now in clinical use in patients undergoing cross-face nerve grafting for facial paralysis. In conclusion, brief electrical stimulation, combined with the surgical technique of promoting the regeneration of some donor axons to ‘protect' chronically denervated Schwa nn cells, improves nerve regeneration and, in turn, functional outcomes in the management of peripheral nerve injuries.  相似文献   

17.
Counts have been made of the numbers of unmyelinated and myelinated axons in the proximal and distal stumps of regenerated rat saphenous nerves and from equivalent sites in normal nerves. In the proximal part of normal nerves there were averages of 1 045 myelinated axons and 4 160 unmyelinated ones. Regenerated nerves contained the same number of myelinated axons in their proximal stumps but there was a 40% reduction in the unmyelinated axon count. In the distal stumps of these nerves the myelinated axon count had increased by an average of 620; this comes about because some regenerated myelinated axons support more than one process in the distal stump. In contrast, the number of unmyelinated axons was reduced further, from a mean of 2 476 in the proximal stump to one of 2 219.

The sizes of Schwann cell units in the normal and regenerated nerves were also noted. Schwann cell units in the proximal and distal stumps of the regenerated nerves were smaller than those in the normal ones.

These changes associated with unmyelinated axons in regenerated nerves are likely to contribute to the sensory, vasomotor and sudomotor abnormalities that sometimes occur after peripheral nerve injury and regeneration.  相似文献   


18.
Cross-anastomoses and autogenous grafts of unmyelinated and myelinated nerves were examined by electron microscopy and radioautography to determine if Schwann cells are multipotential with regard to their capacity to produce myelin or to assume the configuration seen in unmyelinated fibres. Two groups of adult white mice were studied. (A) In one group, the myelinated phrenic nerve and the unmyelinated cervical sympathetic trunk (CST) were cross-anastomosed in the neck. From 2 to 6 months after anastomosis, previously unmyelinated distal stumps contained many myelinated fibres while phrenic nerves joined to proximal CSTs became largely unmyelinated. Radioautography of distal stumps indicated that proliferation of Schwann cells occurred mainly in the first few days after anastomosis but was also present to a similar extent in isolated stumps. (B) In other mice, CSTs were grafted to the myelinated sural nerves in the leg. One month later, the unmyelinated CSTs became myelinated and there was no radioautographic indication of Schwann cell migration from the sural nerve stump to the CST grafts. Thus, Schwann cell proliferation in distal stumps is an early local response independent of axonal influence. At later stages, axons from the proximal stumps cause indigenous Schwann cells in distal stumps from the previously unmyelinated nerves to produce myelin while Schwann cells from the previously unmyelinated nerves to produce myelin while Schwann cells from the previously myelinated nerves become associated with unmyelinated fibres. Consequently, the regenerated distal nerve resembled the proximal stump. It is suggested that this change is possible because Schwann cells which divide after nerve injury reacquire the developmental multipotentiality which permits them to respond to aoxonal influences.  相似文献   

19.
Injured nerves regenerate their axons in the peripheral (PNS) but not the central nervous system (CNS). The contrasting capacities have been attributed to the growth permissive Schwann cells in the PNS and the growth inhibitory environment of the oligodendrocytes in the CNS. In the current review, we first contrast the robust regenerative response of injured PNS neurons with the weak response of the CNS neurons, and the capacity of Schwann cells and not the oligodendrocytes to support axonal regeneration. We then consider the factors that limit axonal regeneration in both the PNS and CNS. Limiting factors in the PNS include slow regeneration of axons across the injury site, progressive decline in the regenerative capacity of axotomized neurons (chronic axotomy) and progressive failure of denervated Schwann cells to support axonal regeneration (chronic denervation). In the CNS on the other hand, it is the poor regenerative response of neurons, the inhibitory proteins that are expressed by oligodendrocytes and act via a common receptor on CNS neurons, and the formation of the glial scar that prevent axonal regeneration in the CNS. Strategies to overcome these limitations in the PNS are considered in detail and contrasted with strategies in the CNS.  相似文献   

20.
Reimplantation of avulsed rat lumbar spinal ventral roots results in poor recovery of function of the denervated hind limb muscles. In contrast, reimplantation of cervical or sacral ventral roots is a successful repair strategy that results in a significant degree of regeneration. A possible explanation for this difference could be that following lumbar root avulsion, axons have to travel longer distances towards their target muscles, resulting in prolonged denervation of the distal nerve and a diminished capacity to support regeneration. Here we present a detailed spatio-temporal analysis of motoneuron survival, axonal regeneration and neurotrophic factor expression following unilateral avulsion and implantation of lumbar ventral roots L3, L4, and L5. Reimplantation prolongs the survival of motoneurons up to one month post-lesion. The first regenerating motor axons entered the reimplanted ventral roots during the first week and large numbers of fibers gradually enter the lumbar plexus between 2 and 4 weeks, indicating that axons enter the reimplanted roots and plexus over an extended period of time. However, motor axon counts show that relatively few axons reach the distal sciatic nerve in the 16 week post-lesion period. The observed initial increase and subsequent decline in expression of glial cell line-derived neurotrophic factor and brain-derived neurotrophic factor correlate with the apparent spatio-temporal decline in the regenerative capacity of motor axons, indicating that the distal nerve is losing its capacity to support regenerating motor axons following prolonged denervation. These findings have important implications for future strategies to promote long-distance regeneration through distal, chronically denervated peripheral nerves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号