首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We tested the role of group I mGluRs in the induction of long-term depression (LTD) in the visual cortex, using the novel mGluR antagonist LY341495 and mice lacking mGluR5, the predominant phosphoinositide (PI)-linked mGluR in the visual cortex. We find that LY341495 is a potent blocker of glutamate-stimulated PI hydrolysis in visual cortical synaptoneurosomes, and that it effectively antagonizes the actions of the mGluR agonist 1S, 3R-aminocyclopentane-1,3-dicarboxylic acid (ACPD) on synaptic transmission in visual cortical slices. However, LY341495 has no effect on the induction of LTD by low-frequency stimulation. Furthermore, mice lacking mGluR5 show normal NMDA receptor-dependent LTD. These results indicate that group I mGluR activation is not required for the induction of NMDA receptor-dependent LTD in the visual cortex.  相似文献   

2.
The N-methyl-D-aspartic acid (NMDA) receptor-dependent activation of Ca2+/calmodulin-dependent protein kinase II (CaMKII) is necessary for induction of the long-term potentiation of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor-mediated responses in the CA1 region of the hippocampus, a putative model for learning and memory. We analyzed the interplay among NMDA receptor, CaMKII and AMPA receptor during consolidation of the memory for an inhibitory avoidance learning task in the rat. Bilateral intra-CA1 infusion of the NMDA receptor antagonist D-(-)-2-amino-5-phosphonopentanoic acid (AP5) or of the CaMKII inhibitor 2-[N-(2-hydroxyethyl)]-N-(4-methoxybenzenesulfonyl)] amino-N-(4-chlorocinnamyl)-N-methylbenzylamine) (KN-93) immediately after step-down inhibitory avoidance training hindered memory consolidation. Learning of the avoidance response induced the NMDA receptor-dependent translocation of alphaCaMKII to a postsynaptic density-enriched fraction isolated from dorsal CA1 and the autophosphorylation of this kinase at Thr-286. Step-down inhibitory avoidance training increased the quantity of GluR1 and GluR2/3 AMPA receptor subunits and the phosphorylation of GluR1 at Ser-831 but not at Ser-845 in CA1 postsynaptic densities. The intra-CA1 infusion of KN-93 and AP5 blocked the increases in GluR1 and GluR2/3 levels and the phosphorylation of GluR1 brought on by step-down inhibitory avoidance training. Our data suggest that step-down inhibitory avoidance learning promotes the learning-specific and NMDA receptor-dependent activation of CaMKII in the CA1 region of the dorsal hippocampus and that this activation is necessary for phosphorylation and translocation of AMPA receptor to the postsynaptic densities, similarly to what happens during long-term potentiation.  相似文献   

3.
In neocortex glutamate activates ionotropic and metabotropic receptors (mGluRs). Whole-cell current-clamp recordings in the in vitro rat auditory cortex at 32 degrees C were used to explore the role that mGluRs have in regulation of AMPA/kainate, NMDA, and GABA receptor-mediated synaptic transmission. Our findings are: (a) The fast EPSP (AMPA/kainate), slow EPSP (NMDA), and IPSPs (GABAA, GABAB), elicited in pyramidal neurons are reduced in the presence of (1S,3R)-ACPD (mGluR agonist) with greatest effect on the slow IPSP>fast IPSP>fast EPSP. The effect is likely the result of ACPD acting at presynaptic mGluRs because the probability of release of glutamate and GABA is reduced in the presence of ACPD, intracellular infusion of a G protein antagonist (GDPPS) did not block the effect of ACPD, nor were iontophoretic kainic acid or NMDA-induced depolarizations reduced by ACPD. (b) The slow EPSP is enhanced following washout of ACPD and enhancement is not due to disinhibition because it is present in the absence of IPSPs, but if IPSPs are present, its magnitude can be influenced. Iontophoretic NMDA responses are enhanced in the presence of ACPD, an effect blocked by GDPbetaS and heparin (intracellular inositol 1,4,5-trisphosphate receptor antagonist). Taken together, this evidence suggests that enhancement is a result of group I postsynaptic mGluR activation. (c) In fast-spiking cells ACPD reduces the EPSP (AMPA/kainate and NMDA-mediated). This action is likely presynaptic because it persists when GDPbetaS is in the cells. (d) The rate of spike discharge recorded from fast-spiking cells is accelerated in ACPD but does not change in the presence of GDPbetaS, suggesting a postsynaptic effect. Our data indicate that mGluRs can influence neocortical synaptic transmission in complex ways by acting presynaptically and postsynaptically.  相似文献   

4.
The perirhinal cortex is crucially involved in various forms of learning and memory. Decrements in neuronal responsiveness occur in the perirhinal cortex with stimulus repetition during visual recognition performance. However, very little is known concerning the underlying mechanisms of synaptic transmission and plasticity in this cortical region. In this study, we provide evidence demonstrating the presence of functional group I, II and III metabotropic glutamate receptors in the rat perirhinal cortex in vitro. Furthermore, the results demonstrate long-lasting synaptic depression in the perirhinal cortex. Extracellular synaptic responses were recorded from superficial layers of the perirhinal cortex directly below the rhinal sulcus, in response to electrical stimuli delivered in the superficial or intermediate layers to the entorhinal or temporal cortex sides of the rhinal sulcus. Evoked synaptic potentials were depressed during bath perfusion of each of the following: the broad-spectrum metabotropic glutamate receptor agonist (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid, the selective group I agonist (R,S)-3,5-dihydroxyphenylglycine, the group II agonist (2S,1'R,2'R,3'R)-(2',3'-dicarboxycyclopropyl)glycine and the group III agonist (S)-2-amino-4-phosphonobutanoate. Furthermore, there was a long-lasting depression of synaptic transmission following washout of (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid, (R,S)-3,5-dihydroxyphenylglycine or (2S,1'R,2'R,3'R)-(2',3'-dicarboxy-cyclopropyl)glycine. Activation of group III metabotropic glutamate receptors by (S)-2-amino-4-phosphonobutanoate did not result in long-lasting changes in synaptic transmission. Thus, the pharmacological activation of metabotropic glutamate receptors can produce short- or long-term changes in synaptic transmission in the perirhinal cortex. It is possible therefore, that metabotropic glutamate receptors are involved in the decrement in neuronal responsiveness associated with visual recognition in the perirhinal cortex.  相似文献   

5.
We demonstrate a form of long-term depression (LTD) in the perirhinal cortex that relies on interaction between different glutamate receptors. Group II metabotropic glutamate (mGlu) receptors facilitated group I mGlu receptor-mediated increases in intracellular calcium. This facilitation plus NMDA receptor activation may be necessary for induction of LTD at resting membrane potentials. However, depolarization enhanced NMDA receptor function and removed the requirement of synergy between group I and group II mGlu receptors: under these conditions, activation of only NMDA and group I mGlu receptors was required for LTD. Such glutamate receptor interactions potentially provide new rules for synaptic plasticity. These forms of LTD occur in the perirhinal cortex, where long-term decreases in neuronal responsiveness may mediate recognition memory.  相似文献   

6.
The role of group III metabotropic glutamate receptors (mGluRs) in modulating excitatory synaptic transmission was investigated in the rat entorhinal cortex (EC) in vitro. AMPA receptor-mediated excitatory postsynaptic currents (EPSCs) were recorded in the whole cell configuration of the patch-clamp technique from visually identified neurons in layers V and II. In layer V, bath application of the specific group III mGluR agonist L(+)-2-amino-4-phosphonobutyric acid (L-AP4, 500 microM) resulted in a marked facilitation of both spontaneous and activity-independent "miniature" (s/mEPSC) event frequency. The facilitatory effect of L-AP4 (100 microM) on sEPSC frequency prevailed in the presence of DL-2-amino-5-phosphonopentanoic acid (100 microM) but was abolished by the group III antagonist (RS)-cyclopropyl-4-phosphonophenylglycine (20 microM). These data confirmed that group III mGluRs, and not N-methyl-D-aspartate (NMDA) receptors were involved in the response to L-AP4. Bath application of the specific mGluR4a agonist (1S,3R,4S)-1-aminocyclopentane-1,2, 4-tricarboxylic acid (20 microM) also had a facilitatory effect on sEPSC frequency, suggesting involvement of mGluR4a. In layer II neurons, L-AP4 caused a reduction in sEPSC frequency but did not affect mEPSCs recorded in the presence of tetrodotoxin. These findings suggest that a group III mGluR with mGluR4a-like pharmacology is involved in modulating synaptic transmission in layer V cells of the EC. The effect on mEPSCs suggests that this receptor is located presynaptically and that its activation results in a direct facilitation of glutamate release. This novel facilitatory effect is specific to layer V and, to our knowledge, is the first report of a direct facilitatory action of group III mGluRs on synaptic transmission. In layer II, L-AP4 had an inhibitory effect on glutamate release similar to that reported in other brain regions.  相似文献   

7.
Recent work has demonstrated that specific patterns of synaptic stimulation can induce long-term depression (LTD) in area CA1 that depends on activation of metabotropic glutamate receptors (mGluRs) and rapid protein synthesis. Here we show that the same form of synaptic modification can be induced by brief application of the selective mGluR agonist (RS)-3,5-dihydroxyphenylglycine (DHPG). DHPG-LTD 1) is a saturable form of synaptic plasticity, 2) requires mGluR5, 3) is mechanistically distinct from N-methyl-D-aspartate receptor (NMDAR)--dependent LTD, and 4) shares a common expression mechanism with protein synthesis-dependent LTD evoked using synaptic stimulation. DHPG-LTD should be useful for biochemical analysis of mGluR5- and protein synthesis-dependent synaptic modification.  相似文献   

8.
Although metabotropic glutamate receptors (mGluRs) mGluR1 and mGluR5 are often found to have similar functions, there is considerable evidence that the two receptors also serve distinct functions in neurons. In hippocampal area CA1, mGluR5 has been most strongly implicated in long-term synaptic depression (LTD), whereas mGluR1 has been thought to have little or no role. Here we show that simultaneous pharmacological blockade of mGluR1 and mGluR5 is required to block induction of LTD by the group 1 mGluR agonist, (RS)-3,5-dihydroxyphenylglycine (DHPG). Blockade of mGluR1 or mGluR5 alone has no effect on LTD induction, suggesting that activation of either receptor can fully induce LTD. Consistent with this conclusion, mGluR1 and mGluR5 both contribute to activation of extracellular signal-regulated kinase (ERK), which has previously been shown to be required for LTD induction. In contrast, selective blockade of mGluR1, but not mGluR5, reduces the expression of LTD and the associated decreases in AMPA surface expression. LTD is also reduced in mGluR1 knockout mice confirming the involvement of mGluR1. This shows a novel role for mGluR1 in long-term synaptic plasticity in CA1 pyramidal neurons. In contrast to DHPG-induced LTD, synaptically induced LTD with paired-pulse low-frequency stimulation persists in the pharmacological blockade of group 1 mGluRs and in mGluR1 or mGluR5 knockout mice. This suggests different receptors and/or upstream mechanisms for chemically and synaptically induced LTD.  相似文献   

9.
Activation of group 1 metabotropic glutamate receptors (mGluRs) stimulates dendritic protein synthesis and long-term synaptic depression (LTD), but it remains unclear how these effects are related. Here we provide evidence that a consequence of mGluR activation in the hippocampus is the rapid loss of both AMPA and NMDA receptors from synapses. Like mGluR-LTD, the stable expression of this change requires protein synthesis. These data suggest that expression of mGluR-LTD is at least partly postsynaptic, and that a functional consequence of dendritic protein synthesis is the regulation of glutamate receptor trafficking.  相似文献   

10.
The structure of dendritic spines is highly plastic and can be modified by neuronal activity. In addition, there is evidence that spine head size correlates with the synaptic α-amino-3-hydroxy-5-methylisoxazole propionic acid (AMPA) receptor (AMPAR) content, which suggests that they may be coregulated. Although there is evidence that there are overlapping mechanisms for structural and functional plasticity, the extent of the overlap needs further investigation. Specifically, it is unknown whether AMPAR levels determine spine size or whether both are regulated via parallel pathways. We studied the correlation between spine structural plasticity and long-term synaptic plasticity following chemical-induced long-term depression (chemLTD). In particular, we examined whether the regulation of AMPARs, which is implicated in LTD, is critical for spine morphological plasticity. We used mutant mice specifically lacking the serine-845 site on the type 1 glutamate receptor (GluR1, or GluA1) subunit of AMPARs (mutants). These mice specifically lack N-methyl-D-aspartate (NMDA) receptor (NMDAR)-dependent LTD and NMDAR activation-induced AMPAR endocytosis. We found that chemLTD causes a rapid and persistent shrinkage in spine head volume of hippocampal CA1 pyramidal neurons in wild types similar to that reported in other studies using low-frequency stimulation (LFS)-induced LTD. Surprisingly, we found that although S845A mutant mice display impaired chemLTD, the shrinkage of spine head volume occurred to a similar magnitude to that observed in wild types. Our results suggest that there is dissociation in the molecular mechanisms underlying functional LTD and spine shrinkage and that GluR1-S845 regulation is not necessary for spine morphological plasticity.  相似文献   

11.
Effects of redox reagents on excitatory and inhibitory synaptic responses as well as on the bidirectional plasticity of α-amino-3-hydroxy-5-methylisoxazole-propionic acid (AMPA) andN-methyl-d-aspartate (NMDA) receptor-mediated synaptic responses were studied in CA1 pyramidal neurons in rat hippocampal slices. The oxidizing agent 5,5′-dithiobis(2-nitrobenzoic acid) (DTNB, 200 μM) did not affect AMPA, GABAA or GABAB receptor-mediated synaptic responses or the activation of presynaptic metabotropic receptors. However, DTNB irreversibly decreased (by approximately 50%) currents evoked by focal application of NMDA. DTNB also decreased the NMDA component of the EPSC. The reversal potential of NMDA currents and the Mg2+ block were not modified. In the presence of physiological concentrations of Mg2+ (1.3 mM), DTNB did not affect the NMDA receptor-dependent induction of long-term potentiation (LTP) or long-term depression (LTD) expressed by AMPA receptors. In contrast, DTNB fully prevented LTP and LTD induced and expressed by NMDA receptors. Plasticity of NMDA receptor-mediated synaptic responses could be reinstated by the reducing agenttris-(2-carboxyethyl) phosphine (TCEP, 200 μM). These results suggest that persistent, bidirectional changes in synaptic currents mediated by NMDA receptors cannot be evoked when these receptors are in an oxidized state, whereas NMDA-dependent LTP and LTD are still expressed by AMPA receptors. Our observations raise the possibility of developing therapeutic agents that would prevent persistent excitotoxic enhancement of NMDA receptor-mediated events without blocking long-term modifications of AMPA receptor-mediated synaptic responses, thought to underlie memory processes.  相似文献   

12.
Picrotoxin, an antagonist of GABA(A) receptor-mediated activity, elicited 320- to 475-ms synchronized bursts from the CA3 region of the guinea pig hippocampal slice. The addition of the selective group I metabotropic glutamate receptor (mGluR) agonist (S)-3, 5-dihydroxyphenylglycine (DHPG, 50 microM; 20- to 45-min application) gradually increased the burst duration to 1-4 s; this effect persisted 2-3 h after agonist removal. To determine whether the induction of this long-lasting effect required ongoing synchronized activity during mGluR activation, DHPG application in a second set of experiments took place in the presence of CNQX and (R, S)-CPP, antagonists of AMPA/kainate and NMDA receptors, respectively. In these experiments, synchronized bursting was silenced during the mGluR agonist application, yet after wash out of the DHPG and the ionotropic glutamate receptor (iGluR) blockers, epileptiform discharges 1-10 s in duration appeared and persisted at least 2 h after wash out of the mGluR agonist. The potentiated bursts were reversibly shortened by application of 500-1,000 microM (+)-alpha-methyl-4-carboxyphenylglycine (MCPG) or (S)-4-carboxyphenylglycine (4CPG), agents with group I mGluR antagonist activity. These data suggest that transient activation of group I mGluRs, even during silencing of synchronized epileptiform activity, may have an epileptogenic effect, converting brief interictal-length discharges into persistent seizure-length events. The induction process is iGluR independent, and the maintenance is largely mediated by the action of endogenous glutamate on group I mGluRs, suggesting that autopotentiation of the group I mGluR-mediated response may underlie the epileptogenesis seen here.  相似文献   

13.
AMPA receptors and NMDA receptors are the main subtypes of ionotropic glutamate receptors in the vertebrate central nervous system. Accumulating evidence demonstrates that two serine sites, S831 and S845, on the AMPA receptor GluA1 subunit, are phosphorylation-regulated and profoundly involved in NMDA receptor-dependent synaptic plasticity. On the other hand, recent studies have revealed distinct functional consequences of activating synaptic or extrasynaptic NMDA receptors, or of activating GluN2A- or GluN2B-containing NMDA receptors. Therefore, it is essential to determine how phosphorylation of the GluA1 at S831 and S845 is regulated by NMDA receptor subpopulations. In this study, we demonstrated transiently increased phosphorylation of GluA1 at S831 and persistently decreased phosphorylation of GluA1 at S845 by bath application of NMDA to hippocampal slices from rats. Interestingly, we also found a differential regulation of phosphorylation of GluA1 at S831 and S845 by activation of NMDA receptor subpopulations: the synaptic and/or the GluN2A-containing NMDA receptors were more likely to mediate up-regulation of GluA1 phosphorylation at S831 and down-regulation of GluA1 phosphorylation at S845, while the extrasynaptic NMDA receptors down-regulated GluA1 phosphorylation at S831. Taken together, our results suggest the NMDA receptor subpopulations differentially regulate GluA1 phosphorylation, which may contribute to NMDA receptor-dependent synaptic plasticity.  相似文献   

14.
In CA1 neurons of guinea pig hippocampal slices, long-term potentiation (LTP) was induced by 10 min application of 10 microM aminocyclopentane-1S, 3R-dicarboxylic acid (ACPD), the metabotropic glutamate receptor (mGluR) agonist, in the presence of test synaptic inputs (once every 20 s). In contrast, long-term depression (LTD) was induced by application of 10 microM ACPD in the absence of test inputs. When 10 microM ACPD was applied in the presence of test inputs, co-application of the N-methyl-D-aspartate (NMDA) receptor antagonist, D,L-2-amino-5-phosphonovalerate resulted in LTD induction when used at 50 microM. In ACPD-induced LTP, the delivery of test synaptic inputs to CA1 neurons could be replaced by co-application of NMDA (100 nM) during ACPD perfusion. These results suggest that, in CA1 neurons, a co-operative effect involving the activation of both mGluRs and NMDA receptors is required to trigger the process involved in ACPD-induced LTP. In addition, ACPD-induced LTD was blocked by co-application of an inositol 1,4,5-trisphosphate (IP3) receptor inhibitor, 2-aminotheoxydiphenyl borate (10 microM), which had no effect on ACPD-induced LTP. The results of the present study, therefore, indicate that ACPD-induced LTP involves NMDA receptors, but not IP3 receptors, whereas the converse applies to ACPD-induced LTD.  相似文献   

15.
Presynaptic inhibition is one of the major control mechanisms in the CNS. Previously we reported that adenosine A1 receptors mediate presynaptic inhibition at the retinotectal synapse of goldfish. Here we extend these findings to metabotropic glutamate receptors (mGluRs) and report that presynaptic inhibition produced by both A1 adenosine receptors and group II mGluRs is due to G(i) protein coupling to inhibition of N-type calcium channels in the retinal ganglion cells. Adenosine (100 microM) and an A1 (but not A2) receptor agonist reduced calcium current (I(Ca2+)) by 16-19% in cultured retinal ganglion cells, consistent with their inhibition of retinotectal synaptic transmission (-30% amplitude of field potentials). The general metabotropic glutamate receptor (mGluR) agonist 1S,3R-1-amino-cyclopentane-1,3-dicarboxylic acid (1S,3R-ACPD, 50 microM) and the selective group II mGluR receptor agonist (2S, 2'R,3'R)-2-(2',3'-dicarboxy-cyclopropyl)glycine (DCG-IV, 300 nM) inhibited both synaptic transmission and I(Ca2+), whereas the group III mGluR agonist L-2-amino-4-phosphono-butyrate (L-AP4) inhibited neither synaptic transmission nor I(Ca2+). When the N-type calcium channels were blocked with omega-conotoxin GVIA, both adenosine and DCG-IV had much smaller percentage effects on the residual 20% of I(Ca2+), suggesting effects mainly on the N-type calcium channels. The inhibitory effects of A1 adenosine receptors and mGluRs were both blocked by pertussis toxin, indicating that they are mediated by either G(i) or G(o). They were also inhibited by activation of protein kinase C (PKC), which is known to phosphorylate and inhibit G(i). Finally, when applied sequentially, inhibition by adenosine and DCG-IV were not additive but occluded each other. Together these results suggest that adenosine A1 receptors and group II mGluRs mediate presynaptic inhibition of retinotectal synaptic transmission by sharing a pertussis toxin (PTX)-sensitive, PKC-regulated G(i) protein coupled to N-type calcium channels.  相似文献   

16.
Group I metabotropic glutamate receptors (mGluRs) are Gαq-protein-coupled receptors and are densely expressed in medium-sized spiny projection neurons of the neostriatum. Among different subtypes of glutamate receptors, group I mGluRs have been demonstrated to actively interact with the ionotropic glutamate receptor N-methyl-d-aspartate (NMDA) subtypes for regulating various forms of cellular activities and synaptic plasticity. In this study, the possible role of group I mGluRs in regulating serine phosphorylation of NMDA receptor NR1 subunits in the neostriatum was investigated in vivo. We found in chronically cannulated rats that injection of the group I mGluR agonist 3,5-dihydroxyphenylglycine (DHPG) into the dorsal striatum (caudate putamen) significantly increased phosphorylation of the two serine residues (serine 896 and serine 897) on the intracellular C-terminus of the NR1. The increase in NR1 phosphorylation was dose-dependent and DHPG had no effect on basal levels of NR1 proteins. Intrastriatal infusion of the group I mGluR antagonist N-phenyl-7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxamide (PHCCC) significantly attenuated the DHPG-stimulated NR1 phosphorylation. Pretreatment with the mGluR5 antagonist 2-methyl-6-(phenylethynyl)pyridine hydrochloride (MPEP) also produced the same effect. These data suggest that group I mGluRs, likely mGluR5 subtypes, possess the ability to upregulate protein phosphorylation of NMDA receptor NR1 subunits in striatal neurons in vivo.  相似文献   

17.
Glutamate acts at central synapses via ionotropic (iGluR – NMDA, AMPA and kainate) and metabotropic glutamate receptors (mGluRs). Group I mGluRs are excitatory whilst group II and III are inhibitory. Inhibitory mGluRs also modulate peripherally the mechanosensitivity of gastro-oesophageal vagal afferents. Here we determined the potential of excitatory GluRs to play an opposing role in modulating vagal afferent mechanosensitivity , and investigated expression of receptor subunit mRNA within the nodose ganglion. The responses of mouse gastro-oesophageal vagal afferents to graded mechanical stimuli were investigated before and during application of selective GluR ligands to their peripheral endings. Two types of vagal afferents were tested: tension receptors, which respond to circumferential tension, and mucosal receptors, which respond only to mucosal stroking. The selective iGluR agonists NMDA and AMPA concentration-dependently potentiated afferent responses. Their corresponding antagonists AP-5 and NBQX alone attenuated mechanosensory responses as did the non-selective antagonist kynurenate. The kainate selective agonist SYM-2081 had minor effects on mechanosensitivity, and the antagonist UBP 302 was ineffective. The mGluR5 antagonist MTEP concentration-dependently inhibited mechanosensitivity. Efficacy of agonists and antagonists differed on mucosal and tension receptors. We conclude that excitatory modulation of afferent mechanosensitivity occurs mainly via NMDA, AMPA and mGlu5 receptors, and the role of each differs according to afferent subtypes. PCR data indicated that all NMDA, kainate and AMPA receptor subunits plus mGluR5 are expressed, and are therefore candidates for the neuromodulation we observed.  相似文献   

18.
Cerebellar long-term depression (LTD) induced at parallel fiber-Purkinje neuron synapses is proposed to underlie certain types of motor learning. alpha-Amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptors, which mediate chemical transmission in these synapses, are clustered on the postsynaptic membrane. By increasing local density of the receptors, clustering is believed to increase synaptic efficacy. This article focuses on molecular mechanisms regulating the synaptic AMPA receptor clustering in Purkinje cells, which could underlie the expression of cerebellar LTD. Synaptic AMPA receptor clusters in dendritic spines of Purkinje cells are disrupted upon protein kinase C (PKC)-mediated phosphorylation of serine 880 in the C-terminal domain of GluR2. Phosphorylation of this residue causes significant reduction in the affinity of GluR2 C-terminal tail for glutamate receptor interacting protein (GRIP), a molecule known to be crucial for AMPA receptor clustering. Consequently, AMPA receptors on the synaptic membrane are destabilized and internalized by endocytosis. Based on these findings, a model for the expression of cerebellar LTD is proposed, in which a decrease in the number of postsynaptic AMPA receptors, initiated by phosphorylation of GluR2 serine 880, is the major mechanism underlying cerebellar LTD.  相似文献   

19.
20.
Mateo Z  Porter JT 《Neuroscience》2007,146(3):1062-1072
Thalamocortical synapses provide a strong glutamatergic excitation to cortical neurons that is critical for processing sensory information. Unit recordings in vivo indicate that metabotropic glutamate receptors (mGluRs) reduce the effect of thalamocortical input on cortical circuits. However, it is not known whether this reduction is due to a reduction in glutamate release from thalamocortical terminals or from a decrease in cortical neuron excitability. To directly determine whether mGluRs act as autoreceptors on thalamocortical terminals, we examined the effect of mGluR agonists on thalamocortical synapses in slices. Thalamocortical excitatory postsynaptic currents (EPSCs) were recorded in layer IV cortical neurons in developing mouse brain slices. The activation of group II mGluRs with (2S,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl)glycine (DCG IV) reduced thalamocortical EPSCs in both excitatory and inhibitory neurons, while the stimulation of group I or group III mGluRs had no effect on thalamocortical EPSCs. Consistent with a reduction in glutamate release, DCG IV increased the paired pulse ratio and the coefficient of variation of the EPSCs. The reduction induced by DCG IV was reversed by the group II mGluR antagonist, LY341495, and mimicked by another selective group II agonist, (2R,4R)-4-aminopyrrolidine-2,4-dicarboxylic acid (APDC). The mGluR2 subtype appears to mediate the reduction of thalamocortical EPSCs, since the selective mGluR3 agonist, N-acetylaspartylglutamate (NAAG), had no effect on the EPSCs. Consistent with this, we showed that mGluR2 is expressed in the barrels. Furthermore, blocking group II mGluRs with LY341495 reduced the synaptic depression induced by a short stimulus train, indicating that synaptically released glutamate activates these receptors. These results indicate that group II mGluRs modulate thalamocortical processing by inhibiting glutamate release from thalamocortical synapses. This inhibition provides a feedback mechanism for preventing excessive excitation of cortical neurons that could play a role in the plasticity and refinement of thalamocortical connections during this early developmental period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号