首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the molecular basis of hereditary fructose intolerance (HFI) in 80 patients from 72 families by means of a PCR-based mutation screening strategy, consisting of heteroduplex analysis, restriction enzyme digest, DNA single strand electrophoresis, and direct sequencing. For a subset of patients mutation screening with DHPLC was established which turned out to be as fast and as sensitive as the more conventional methods. Fifteen different mutations of the aldolase B (ALDOB) gene were identified in HFI patients. As in smaller previous studies, p.A150P (65%), p.A175D (11%) and p.N335K (8%) were the most common mutated alleles, followed by c.360_363delCAAA, p.R60X, p.Y204X, and c.865delC. Eight novel mutations were identified in eight families with HFI: a small indel mutation (c.1044_1049delTTCTGGinsACACT), two small deletions (c.345_372del28; c.841_842delAC), two splice site mutations (c.113-1G>A, c.799+2T>A), one nonsense mutation (c.612T>G (p.Y204X)), and two missense mutations (c.532T>C (p.C178R), c.851T>C (p.L284P)). By mutation screening for the three most common ALDOB mutations by DHPLC in 2,000 randomly selected newborns we detected 21 heterozygotes. Based on these data and after correction for less common and private ALDOB mutations, HFI prevalence in central Europe is estimated to be 1:26,100 (95% confidence interval 1: 12,600-79,000).  相似文献   

2.
Niemann Pick disease (NPD) is an autosomal recessive disorder due to the deficit of lysosomal acid sphingomyelinase, which results in intracellular accumulation of sphingomyelin. In the present work we studied 18 patients with NPD type B, including five individuals who presented an intermediate phenotype characterised by different levels of neurological involvement. We identified nine novel mutations in the SMPD1 gene including six single base changes c.2T>G, c.96G>A, c.308T>C, c.674T>C, c.732G>C, c.841G>A (p.M1_W32del, p.W32X, p.L103P, p.L225P, p.W244C, p.A281T) and three frameshift mutations c.100delC, c.565dupC, c.575dupC (p.G34fsX42, p.P189fsX1 and p.P192fsX14). The novel c.2T>G (p.M1_W32del) mutation inactivates the first in-frame translation start site of the SMPD1 gene and in the homozygous status causes NPD type B indicating that in'vivo translation of wild type SMPD1 initiates from the first in-frame ATG. Moreover, the new c.96G>A (p.W32X) introduces a premature stop codon before the second in-frame ATG. As a consequence of either c.2T>G (p.M1_W32del) or c.96G>A (p.W32X), impaired translation from the first in-frame ATG results in a mild NPD-B phenotype instead of the severe phenotype expected for a complete deficiency of the enzyme, suggesting that when the first ATG is not functional, the second initiation codon (ATG33) still produces a fairly functional sphingomyelinase. Analysis of the patients'clinical and molecular data demonstrated that all five patients with the intermediate phenotype carried at least one severe mutation. No association between the onset of pulmonary symptoms and genotype was observed. Finally, the presence of c.96G>A (p.W32X), the most frequent allele among Italian NPD type B population, and c.1799G>C (p.R600P) as compound heterozygotes in association with severe mutations suggested a beneficial effect for both mutations.  相似文献   

3.
Objective: To perform genetic analysis for 7 patients with Waardenburg syndrome. Methods: Potential mutation of MITF, PAX3, SOX10 and SNAI2 genes was screened by polymerase chain reaction and direct sequencing. Functions of non-synonymous polymorphisms were predicted with Polyphen2 software. Results: Seven mutations, including c. 649-651delAGA (p. R217del), c. 72delG (p. G24fs), c. 185T>C (p. M62T), c. 118C>T (p. Q40X), c. 422T>C (p. L141P), c. 640C>T (p. R214X) and c. 28G>T (p. G43V), were detected in the patients. Among these, four mutations of the PAX3 gene (c. 72delG, c. 185T>C, c. 118C>T and c. 128G>T) and one SOX10 gene mutation (c. 422T>C) were not reported previously. Three non-synonymous SNPs (c. 185T>C, c. 128G>T and c. 422T>C) were predicted as harmful. Conclusion: Genetic mutations have been detected in all patients with Waardenburg syndrome. © 2016, West China University of Medical Sciences. All rights reserved.  相似文献   

4.
Hereditary fructose intolerance (HFI) is an inborn error of metabolism caused by aldolase B deficiency. The aldolase B gene has been cloned and the following mutations causing HFI have been identified: A149P (a G----C transversion in exon 5), A174D (a C----A transversion in exon 5), L288 delta C (a base pair deletion in exon 8), and N334K (a G----C transversion in exon 9). We have investigated the occurrence of these mutations in 11 Italian patients affected by HFI using PCR and hybridisation to specific oligomers. We found that four patients were homozygous for the A149P mutation, two patients were homozygous for the A174D mutation, three patients were compound heterozygotes for both the A149P and A174D mutations, one patient was homozygous for the N334K mutation, and one patient did not show any of the reported mutations (HFI diagnosis carried out by aldolase B assay). The L288 delta C mutation has not been found in this survey.  相似文献   

5.
Gaucher disease, the most prevalent sphingolipidosis, is caused by the deficient activity of acid beta-glucosidase, mainly due to mutations in the GBA gene. Over 200 mutations have been identified worldwide, more than 25 of which were in Spanish patients. In order to demonstrate causality for Gaucher disease, some of them: c.662C>T (p.P182L), c.680A>G (p.N188S), c.886C>T (p.R257X), c.1054T>C (p.Y313H), c.1093G>A (p.E326K), c.1289C>T (p.P391L), c.1292A>T (p.N392I), c.1322T>C (p.I402T), and the double mutants [c.680A>G; c.1093G>A] ([p.N188S; p.E326K]) and [c.1448T>C; c.1093G>A] ([p.L444P; p.E326K]), were expressed in Sf9 cells using a baculovirus expression system. Other well-established Gaucher disease mutations, namely c.1226A>G (p.N370S), c.1342G>C (p.D409H), and c.1448T>C (p.L444P), were also expressed for comparison. The levels of residual acid beta-glucosidase activity of the mutant enzymes produced by the cDNAs carrying alleles c.662C>T (p.P182L), c.886C>T (p.R257X), c.1054T>C (p.Y313H), c.1289C>T (p.P391L), and c.1292A>T (p.N392I) were negligible. The c.1226A>G (p.N370S), c.1322T>C (p.I402T), c.1342G>C (p.D409H), c.1448T>C (p.L444P), and [c.1448T>C; c.1093G>A] ([p.L444P; p.E326K]) alleles produced enzymes with levels ranging from 6 to 14% of the wild-type. The three remaining alleles, c.680A>G (p.N188S), c.1093G>A (p.E326K), and [c.680A>G; c.1093G>A] ([p.N188S; p.E326K]), showed higher activity (66.6, 42.7, and 23.2%, respectively). Expression studies revealed that the c.1093G>A (p.E326K) change, which was never found alone in a Gaucher disease-causing allele, when found in a double mutant such as [c.680A>G; c.1093G>A] ([p.N188S; p.E326K]) and [c.1448T>C; c.1093G>A] ([p.L444P; p.E326K]), decreases activity compared to the activity found for the other mutation alone. These results suggest that c.1093G>A (p.E326K) should be considered a "modifier variant" rather than a neutral polymorphism, as previously considered. Mutation c.680A>G (p.N188S), which produces a mutant enzyme with the highest level of activity, is probably a very mild mutation or another "modifier variant."  相似文献   

6.
Hypohidrotic ectodermal dysplasia (HED) is characterized by abnormal development of the eccrine sweat glands, hair, and teeth. The X-linked form of the disease, caused by mutations in the ED1 gene, represents the majority of HED cases. Autosomal-dominant and -recessive forms occur occasionally and result from mutations in at least two genes: EDAR and EDARADD. These different forms are phenotypically indistinguishable. To better assess the implication of the EDAR gene in HED, we screened for mutations in 37 unrelated HED families or sporadic cases with no detected mutations in the ED1 gene. We identified 11 different mutations, nine of which are novel variants, in two familial and seven sporadic cases. Seven of the 11 are recessive mutations (c.140G>A (p.Cys47Tyr), c.266G>A (p.Arg89His), c.329A>C (p.Asp110Ala), c.442T>C (p.Cys148Arg), c.1208C>T (p.Thr403Met), c.1302G>T (p.Trp434Cys) and c.528+1G>A), and the other four are probably dominant (c.1129C>T (p.Leu377Phe), c.1237A>C (p.Thr413Pro), c.1253T>C (p.Ile418Thr), and c.1259G>A (p.Arg420Gln)). Our study demonstrates that EDAR is implicated in about 25% of non-ED1 HED, and may account for both autosomal-dominant and -recessive forms. The correlation between the nature and location of EDAR mutations and their mode of inheritance is discussed. A genotype-phenotype relationship was evaluated, since such data could be helpful for genetic counseling.  相似文献   

7.
X-linked agammaglobulinemia (XLA) is an immunodeficiency caused by mutations in the Bruton tyrosine kinase (BTK) gene. Twenty Australian patients with an XLA phenotype, from 15 unrelated families, were found to have 14 mutations. Five of the mutations were previously described c.83G>A (p.R28H), c.862C>T (p.R288W), c.904G>A (p.R302G), c.1535T>C (p.L512P), c.700C>T (p.Q234X), while nine novel mutations were identified: four missense c.82C>A (p.R28S), c.494G>A (p.C165Y), c.464G>A (p.C155Y), c.1750G>A (p.G584E), one deletion c.142_144delAGAAGA (p.R48_G50del), and four splice site mutations c.241-2A>G, c.839+4A>G, c.1350-2A>G, c.1566+1G>A. Carrier analysis was performed in 10 mothers and 11 female relatives. The results of this study further support the notion that molecular genetic testing represents an important tool for definitive and early diagnosis of XLA and may allow accurate carrier status and prenatal diagnosis.  相似文献   

8.
9.
Congenital agammaglobulinemia is a humoral primary immunodeficiency and affected patients have extremely low levels of peripheral B cells and profound deficiency of all immunoglobulin isotypes. Mutations of the Bruton's tyrosine kinase (BTK) gene are responsible for most of the congenital agammaglobulinemia. In this study, the phenotypes of congenital agammaglobulinemia were investigated in 21 male children from 21 unrelated Chinese families. Sixteen different mutations of BTK gene were identified in 18 patients, and three patients did not have BTK gene mutations. Nine mutations had been reported previously including one gross deletion (c.722_2041del), one missense mutation (c.1764G>T), three non-sense mutations (c.194C>A, c.895C>T and c.1821G>A) and four invariant splice-site mutations (c.971+2T>C, c.1481+2T>A, c.1482-2A>G, c.1699-2A>G). Seven novel mutations were identified (c.373_441del, c. 504delG, c.537delC, c.851delA, c.1637G>A, c.1879T>C and c. 1482_1882 del). Ten of the eighteen mutations of BTK gene were located in the TK domain, four in the PH domain, three in the SH3 domain and one spanned the TH, SH3, SH2 and TK domain. Candidate genes of autosomal-recessive agammaglobulinemia, including IGHM, CD79a, CD79b and IGLL1, were screened in three patients without mutations in the BTK gene. A compound heterozygosity mutation in the IGHM gene (c.1956G>A, c.175_176insC) was identified in one patient. The results of our study further support that molecular genetic testing represents an important tool for early confirmed diagnosis of congenital agammaglobulinemia and may allow accurate carrier detection and prenatal diagnosis.  相似文献   

10.
Autosomal recessive inherited mutations in each of the five eukaryotic initiation factor 2B (eIF2B) subunits are known to cause white matter abnormalities with a wide continuum of clinical signs and severity leading to the concept of eIF2B-related disorders. The clinical spectrum extends from fatal infantile forms to adult forms with slow or absent neurological deterioration. In this study 15 well-characterised patients with the classical form of leukoencephalopathy with vanishing white matter (VWM) or with phenotypic variants like ovarioleukodystrophy were investigated for mutations in the genes EIF2B1, EIF2B2, EIF2B3, EIF2B4, and EIF2B5 encoding eIF2B. We identified one novel nonsense mutation (EIF2B4, c.625C>T, p.Arg209X), one novel frameshift mutation (EIF2B5, c.453_454del, p.Tyr152fsX12), eight novel missense muations (EIF2B1, c.547G>T, p.Val183Phe; EIF2B2, c. 586C>T, p.Pro196Ser; EIF2B4, c.806T>G, p.Leu269Arg; EIF2B5, c.203T>C, p.Leu68Ser; EIF2B5, c.220G>A, p.Ala74Thr; EIF2B5, c.805C>G, p.Arg269Gly; EIF2B5, c.929G>T, p.Cys310Phe; EIF2B5, c.1003T>C, p.Cys335Arg), and eight previously described alterations.  相似文献   

11.
The spectrum of phenylalanine hydroxylase (PAH) gene mutations was determined in 25 families of hyperphenylalaninemia identified by a neonatal screening program in Taiwan. The coding sequence and exon-flanking intron sequences of PAH gene were amplified and sequenced. Mutations were identified in forty-five of the 50 chromosomes. R241C was the most common mutation (36% of the chromosomes), followed by R408Q (14% of the chromosomes). The remaining mutations were rare and seven mutations have not been reported before: p.F233L (c.697T>C), p.R252Q (c.756G>A), p.E286K (c.856G>A), p.G312V (c.935G>T), p.P314T (c.940C>A), p.I95del (c.284_286delTCA), and p.T81fsX6 (c.241_256del). Both p.R241C and p.R408Q are classified as mild phenylketonuria (PKU) or mild hyperphenylalaninemia (MHP) mutation, which may explain the fact that classical PKU is very rare in Taiwan (n=4, or one in 413,035). This strong founder effect for the p.R241C mutation has been described neither in the Caucasian populations, nor in other reports from Chinese. Since most of the populations in Taiwan are derived from Southeastern China, the spectrum of PAH gene mutations in Southeastern China should be different from other Chinese populations. This report not only disclose a specific spectrum of PAH gene mutation in Taiwan, but may also give clues to the movement of populations in Mainland China.  相似文献   

12.
Restriction fragment length polymorphism in the NAT1 gene was assayed to reveal 7 mutations (97C>T; 190C>T; 350,351G>C; 402T>C; 752A>T; D(1105); D(1025)) in 74 Europeans from West Siberia. New methods for detecting mutations 350,351G>C, 402T>C, 752A>T, D(1105), and D(1025) were proposed.  相似文献   

13.
Antithrombin (AT) is a major physiological inhibitor of hemostasis. We report 22 novel antithrombin gene (SERPINC1) mutations associated with antithrombin deficiency in 17 French and five German families. They were all present at the heterozygous state. Nine missense mutations accounted for type I deficiency, defined by equally low antithrombin activity and antigen level. Most of them (7/9) affected highly conserved serpin residues and were associated with venous thrombosis occurring at a young age (before age 32). One splice site, one nonsense mutation, three small deletions and one insertion were also identified as a cause for type I antithrombin deficiency. Seven other missense mutations were identified in type II or unclassified AT deficiency; g.5270C>T (p.T147I, T115I) and g.5281A>T (p.I151F, I119F) change residues in the heparin binding region, g.13267C>G (p.P439A, P407A) and g.13271T>C (p.F440S, F408S) affect amino acids in the pleiotropic region, g.2372G>A (p.G25D, G-8D) changes a signal peptide amino acid, g.2456G>C (p.C53S, C21S) affects one of the three disulfide bonds of the protein, and g.7585A>T (p.M347K, M315K) changes a nonconserved residue on strand 2C.  相似文献   

14.
Mucopolysaccharidosis type VI (MPS VI), or Maroteaux-Lamy syndrome, is a lysosomal storage disorder caused by a deficiency of N-acetylgalactosamine-4-sulfatase (ARSB). Seven MPS VI patients were chosen for the initial clinical trial of enzyme replacement therapy. Direct sequencing of genomic DNA from these patients was used to identify ARSB mutations. Each individual exon of the ARSB gene was amplified by PCR and subsequently sequenced. Nine substitutions (c.289C>T [p.Q97X], c.629A>G [p.Y210C], c.707T>C [p.L236P], c.936G>T [p.W312C], c.944G>A [p.R315Q], c.962T>C [p.L321P], c.979C>T [p.R327X], c.1151G>A [p.S384N], and c.1450A>G [p.R484G]), two deletions (c.356_358delTAC [p.Y86del] and c.427delG), and one intronic mutation (c.1336+2T>G) were identified. A total of 7 out of the 12 mutations identified were novel (p.Y86del, p.Q97X, p.W312C, p.R327X, c.427delG, p.R484G, and c.1336+2T>G). Two of these novel mutations (p.Y86del and p.W312C) were expressed in Chinese hamster ovary cells and analyzed for residual ARSB activity and mutant ARSB protein. The two common polymorphisms c.1072G>A [p.V358M] and c.1126G>A [p.V376M] were identified among the patients, along with the silent mutation c.1191A>G. Cultured fibroblast ARSB mutant protein and residual activity were determined for each patient, and, together with genotype information, were used to predict the expected clinical severity of each MPS VI patient.  相似文献   

15.
Multiple sulfatase deficiency (MSD) is a rare autosomal recessive lysosomal storage disease characterized by impaired activity of all known sulfatases. The gene SUMF1, recently identified, encodes the enzyme responsible for post-translational modification of a cysteine residue, which is essential for the activity of sulfatases. Fewer than 30 MSD patients have been reported to date and 23 different mutations in the SUMF1 gene have been identified. Here, we present the characterization of the mutant alleles of two Spanish and one Argentinean MSD patients. While the two Spanish patients were homozygous for the previously described mutations, c.463T>C (p.S155P) and c.1033C>T (p.R345C), the Argentinean patient was homozygous for the new mutation IVS7+5 G>T. A minigene approach was used to analyze the effect of the splice site mutation identified, due to the lack of sample from the patient. This experiment showed that this change altered the normal splicing of the RNA, which strongly suggests that this is the molecular cause of the disease in this patient.  相似文献   

16.
Mucopolysaccharidosis type VI (MPS VI; Maroteaux-Lamy syndrome) is a lysosomal storage disorder caused by mutations in the N-acetylgalactosamine-4-sulfatase (ARSB) gene. These mutations result in a deficiency of ARSB activity. Ten MPS VI patients were involved in a phase II clinical study of enzyme replacement therapy. Direct sequencing of genomic DNA from these patients was used to identify ARSB mutations. Each individual exon of the ARSB gene was amplified by PCR and subsequently sequenced. Thirteen substitutions (c.215T>G [p.L72R] c.284G>A [p.R95Q], c.305G>A [p.R102H], c.323G>T [p.G108V], c.389C>T [p.P130L], c.511G>A [p.G171S], c.904G>A [p.G302R], c.944G>A [p.R315Q], c.1057T>C [p.W353R], c.1151G>A [p.S384N], c.1178A>C [p.H393P], c.1289A>G [p.H430R] and c.1336G>C [p.G446R]), one deletion (c.238delG), and two intronic mutations (c.1213+5G>A and c.1214-2A>G) were identified. Nine of the 16 mutations identified were novel (R102H, G108V, P130L, G171S, W353R, H430R, G446R, c.1213+5G>A and c.1214-2A>G). The two common polymorphisms c.1072G>A [p.V358M] and c.1126G>A [p.V376M] were identified in some of the patients, along with the silent mutations c.972A>G and c.1191A>G. Cultured fibroblast ARSB mutant protein and residual activity were determined for each patient and, together with genotype information, used to predict the expected clinical severity of each patient.  相似文献   

17.
Maroteaux-Lamy syndrome, or mucopolysaccharidosis VI (MPS VI), is an autosomal recessive lysosomal storage disorder caused by a deficiency of N-acetylgalactosamine-4-sulfatase or arylsulfatase B (ARSB). We aimed to analyze the spectrum of mutations responsible for the disorder in Spanish and Argentinian patients, not previously studied. We identified all the ARSB mutant alleles, nine of them novel, in 12 Spanish and 4 Argentinian patients. The new changes were as follows: six missense mutations: c.245T>G [p.L82R], c.413A>G [p.Y138C], c.719C>T [p.S240F], c.922G>A [p.G308R], c.1340G>T [p.C447F] and c.1415T>C [p.L472P]; one nonsense mutation: c.966G>A [p.W322X]; and two intronic changes involving splice sites: c.1142+2T>A, in the donor splice site of intron 5, which promotes skipping of exon 5, and c.1143-1G>C, which disrupts the acceptor site of intron 5, resulting in skipping of exon 6. We also report 10 previously described mutations as well as several non-pathogenic polymorphisms. Haplotype analysis indicated a common origin for most of the mutations found more than once. Most of the patients were compound heterozygotes, whereas only four of them were homozygous. These observations confirm the broad allelic heterogeneity of the disease, with 19 different mutations in 16 patients. However, the two most frequent mutations, c.1143-1G>C and c.1143-8T>G, present in both populations, accounted for one-third of the mutant alleles in this group of patients.  相似文献   

18.
Niemann-Pick disease type C (NPC), a severe neurovisceral lysosomal disorder, is due to mutations on the NPC1 gene or, in a minority of families, the NPC2 gene. Few investigations have been devoted to the NPC2 protein, for which only 13 different disease-causing mutations (including three novel ones in this report) have been described. Among the currently known NPC2 mutant alleles, six resulted in a premature stop codon. Only five missense mutations, c.115G>A (p.V39M), c.140G>T (p.C47F), c.199T>C (p.S67P), c.278G>T (p.C93F), and (this report) c.295T>C (p.C99R) were identified. In the present study, we generated cDNA constructs harboring each of these missense mutations and, upon overexpression in human fibroblasts with a nonsense NPC2 mutation, characterized the mutated proteins by immunoblotting, immunocytofluorescence microscopy, and complementation. Mutation p.V39M, described in the homozygous state in two patients with an adult-onset neurological disease, resulted in the synthesis of apparently functional recombinant proteins correctly targeted to lysosomes. Although a mild functional impact could possibly be overlooked in our overexpression system, comparative studies with NPC1 mutants indicated that mild mutations might not necessarily affect localization of the protein or its quantity in the native state. Conversely, mutations p.C47F, p.C93R, p.C99R but also, less predictably, p.S67P, led to the synthesis of misfolded recombinant proteins that colocalized with an endoplasmic reticulum marker. The four latter proteins were normally secreted but were unable to correct cholesterol storage in NPC2(-/-) cells. Functional characterization of the mutant proteins showed an excellent genotype-phenotype correlation in the three cases for whom a clinical history was available.  相似文献   

19.
The CYP1B1 gene (GenBank: U56438), a member of the cytochrome P450 gene family, has been shown to be mutated in patients with primary congenital glaucoma (PCG), a rare but severely blinding form of glaucoma. Here, we have investigated CYP1B1 mutations in 31 unrelated French PCG patients. Mutations were found in 15 (48%) patients. Six of these mutations were novel. One, g.3979delA, caused a frameshift followed by a stop codon at residue 59. Two mutations, g.4547C>T (p.Q248X) and g.8167C>T (p.R444X), created a stop codon. Three other mutations, g.4499G>C (p.G232R), g.8033T>G (p.I399S), (p.N423Y), induced a significant amino acid change. Seven patients, who were of French descent, were compound heterozygotes. Six patients, whose families came from North Africa or from Portugal, carried a homozygous mutation reflecting their geographic origin. Intriguingly, one mutation, p.E229K, was present in heterozygous state in two unrelated patients. All together, these findings demonstrate the major role and the diversity of CYP1B1 mutations in French PCG patients.  相似文献   

20.
Familial Hypercholesterolaemia (FH) is a clinical syndrome characterised by elevated serum total cholesterol levels due to an increase in low density lipoprotein (LDL) cholesterol, by tendon xanthomata and clinical manifestations of ischaemic heart disease in early life. Typically, it results from mutations in the low-density lipoprotein receptor (LDLR) gene. So far, over 600 mutations have been reported for the LDLR gene and account for FH. The nature of LDLR gene mutations is different in various ethnicities and has also regional distribution within each ethnicity. Eleven mutations have already been described in the Greek population. This report describes seven LDLR gene mutations accounting for FH in Northwestern Greece (81T>G, 517T>C, 858C>A, 1285G>A, 1352T>C, 1646G>A and 1775G>A) and their geographic distribution. We have recently described one of these mutations (1352T>C) as a novel point mutation in a Greek family originating from Northwestern Greece. Furthermore, two previously identified mutations (81T>C, 1775G>A) were also detected in the Greek FH patients for the first time. The 1775G>A mutation was responsible for all the homozygous patients in our area, indicating a founder effect. These data will favor the development of tailed information and screening programs in Northwestern Greece for the primary prevention of cardiovascular disease in FH patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号