首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
PGD for dystrophin gene deletions using fluorescence in situ hybridization   总被引:2,自引:0,他引:2  
Duchenne muscular dystrophy and Becker muscular dystrophy (DMD and BMD) are caused by mutations in the dystrophin gene (Xp21). In two-thirds of DMD/BMD cases, the mutation is a large deletion of one or several exons. We have established PGD for DMD/BMD using interphase fluorescence in situ hybridization (FISH) analysis on single nuclei from blastomeres for the detection of deletions of specific exons in the dystrophin gene. We performed PGD for two carrier females; one had a deletion of exons 45-50 (DMD), and the other had a deletion of exons 45-48 (BMD). An exon 45-specific probe was used in combination with probes for the X and Y centromeres. Using this straightforward approach, we can distinguish affected and unaffected male embryos as well as carrier female and normal female embryos. Three cycles were performed for each patient, which resulted in a pregnancy and the birth of a healthy girl. To the best of our knowledge, this approach for PGD has not been previously reported. The use of interphase FISH is an attractive alternative to sexing or PCR-based mutation detection for PGD patients with known deletions of the dystrophin gene.  相似文献   

2.
We have developed a preimplantation genetic diagnosis (PGD) strategy for Duchenne muscular dystrophy (DMD) allowing the simultaneous amplification of four exons (6, 8, 28 and 32) of the dystrophin gene together with ZFX/ZFY genes for gender determination. Preliminary experiments were carried out on 215 single lymphocytes from male and female individuals. Amplification rates ranged from 90.2% for exon 6 to 96.7% for exons 8 and 32. At least four of the five sequences were successfully amplified in 95.8% of single cells, and sexing was possible in 98.5%. This 5-plex assay was found to be robust enough to be used in a PGD clinical procedure and was therefore applied to a family whose female partner was a heterozygous carrier of a large deletion extending from exon 21 to exon 34 of the dystrophin gene. We have thus analysed two exons located in the deleted region of the gene, two non-deleted exons used as intrasample controls, and ZFX/ZFY genes. Cleavage stage embryo biopsy followed by PCR resulted in transfer of three unaffected embryos. The advantage of the present approach is to identify and subsequently transfer unaffected male embryos in addition to female embryos, and is now applicable to all families displaying a deletion involving at least one of these exons.  相似文献   

3.
We have developed five conventional duplex polymerase chain reaction (PCR) protocols on single lymphocytes and blastomeres from embryos, in order to analyse five exons commonly deleted in deletion-type Duchenne muscular dystrophy (DMD). The five DMD gene exons (17, 19, 44, 45 and 48) can be analysed in separate duplex PCR reactions together with the sex-determining region Y (SRY) gene which enables simultaneous gender assignment. We present here PCR amplification results from single lymphocytes isolated from a normal male (220 cells), a normal female (24 cells) and a male DMD patient (40 cells) carrying a deletion of exons 46-49 within the DMD gene. The method failed to produce a PCR signal for the SRY gene in 8/220 normal male cells (3.6%) and for a DMD exon in 0-4.5% of normal male cells. One negative control out of 112 was positive. When this method was used to analyse two blastomeres from each of five embryos, concordant results were obtained for each pair of blastomeres. All embryos produced signals for the DMD exon tested with four of the embryos found to be male and one female. This method is therefore suitable for preimplantation genetic diagnosis and will allow the transfer of healthy embryos (both male and female) in families carrying DMD gene deletions involving at least one of the five exons 17, 19, 44, 45 and 48.  相似文献   

4.
Large deletions in the dystrophin gene account for > 60% of mutations responsible for Duchenne muscular dystrophy (DMD). We have developed a genetic test that can be used directly for the preimplantation genetic diagnosis (PGD) of a majority of couples at risk of transmitting DMD. The test, a double nested multiplex polymerase chain reaction assay for the amplification of exons 8, 19, 45, 47 and 51 allows the detection of over 70% of all DMD deletions. Amelogenin sequences on the X and the Y chromosomes were also co-amplified to provide a correlation between embryo gender and deletion status. The setting up of reliable single cell assays for preimplantation genetic diagnosis is delicate and time consuming. Assays have to be validated on a large number of single cells for each specific mutation to assess efficiency and accuracy before being applied clinically. The multiplex procedure permitted the validation of all tested loci in the same series of isolated lymphocytes rather than in separate series for each exon. One hundred single lymphocytes, 50 female and 50 male cells, were analysed with an overall amplification rate of 98% and an amplification failure of 2% per exon. We suggest that this test is reliable, easy to set up and much preferable to a mere sex determination with the selective transfer of female embryos.  相似文献   

5.
目的 通过建立三重巢式PCR技术检测单个淋巴细胞的dystrophin基因和Y性别决定区(sex determiningregionY ,SRY)基因 ,探讨该技术对有家族史的缺失型Duchenne肌营养不良症 (Duchennemusculardystrophy ,DMD )家系中肯定携带者进行植入前遗传学诊断 ( preimplantation geneticdiagnosis ,PGD)临床应用的可行性。方法 在倒置显微镜下分别获取一名正常男性和一名正常女性的 5 0个单个淋巴细胞 ,用三重巢式PCR技术检测两组dystrophin基因和SRY基因 :外显子 5 1/外显子 19/SRY ,外显子48/外显子 19/SRY。结果 在外显子 5 1/外显子 19/SRY三重PCR反应体系中 ,正常男性第 5 1、19外显子及SRY的扩增率分别为 96%、94%和 94% ,正常女性第 5 1、19外显子扩增率分别为 94%、94% ;正常男女性假阳性率均为 6.7% ,假阴性率均为 0 ;在外显子 48/外显子 19/SRY三重PCR反应体系中 ,正常男性第 48、19外显子及SRY扩增率分别达 92 %、90 %和 94% ,假阳性率和假阴性率均为 0 ;正常女性第 48、19外显子扩增率分别达 94%和 92 % ,假阳性率和假阴性率分别为 6.7%和 0。结论 建立的三重巢式PCR技术具有较高的敏感性 ,可望在有家族史的缺失型DMD家系中进行PGD临床应用。  相似文献   

6.
We report an improvement in the PGD test for fragile X syndrome (FXS). Recently, multiple displacement amplification (MDA) has been reported to yield large amounts of DNA from single cells. Taking into account this technique, we developed a new PGD test for FXS, enabling combined analysis of linked polymorphic markers with the study of the non-expanded CGG repeat. Single cell amplification efficiency was first assessed on single lymphocytes. Amplification rate of the different markers ranged from 85 to 95% with an allele drop-out (ADO) rate comprised between 7 and 34%. Using this test, eight PGD cycles were carried out for six couples, and 37 embryos were analysed after preliminary MDA. Amplification rate was increased by this technique from 41 to 66% so that embryos with no results were rarer (14 versus 45% without MDA). Reliability of the test was considerably improved by combining direct with indirect genetic analysis. Furthermore, in cases of fully expanded alleles too large to be amplified by PCR, this test gives an internal amplification control. Embryonic transfers were carried out in all but one PGD cycles. One biochemical and one clinical pregnancy resulted, and a healthy child was born. This single diagnosis procedure could be suitable to most patients carrying FXS.  相似文献   

7.
Spinocerebellar ataxia 3 (SCA3) is an autosomal dominant neurodegenerative disorder characterized by variable expression and a variable age of onset. SCA3/MJD (Machado-Joseph disease) is caused by an expansion of a (CAG)(n) repeat in the MJD1 gene on chromosome 14q32.1. A single cell PCR protocol has been developed for preimplantation genetic diagnosis (PGD) of SCA3 to select unaffected embryos on the basis of the CAG genotype. Single leukocytes and blastomeres served as a single cell amplification test system to determine the percentage of allelic drop-out (ADO) and PCR efficiency. Out of 105 tested heterozygous single leukocytes, 103 (98.1%) showed a positive amplification signal, while five cells (4.9%) showed ADO. Amplification in single blastomeres was obtained in 13 out of a total of 14, and ADO was observed in two out of the 13 single blastomeres. PGD of SCA3 was performed in a couple with paternal transmission of the SCA3 allele. Seven embryos were available for biopsy, all biopsied blastomeres showed amplification and no ADO occurred. One embryo was diagnosed as affected whereas six embryos were diagnosed as unaffected. Two unaffected embryos were transferred and resulted in a singleton pregnancy and the birth of a healthy girl.  相似文献   

8.
Preimplantation genetic diagnosis (PGD) of single gene defects following assisted conception typically involves removal of single cells from preimplantation embryos and analysis using highly sensitive PCR amplification methods taking stringent precautions to prevent contamination from foreign or previously amplified DNA. Recently, whole genome amplification has been achieved from small quantities of genomic DNA by isothermal amplification with bacteriophage 29 DNA polymerase- and exonuclease-resistant random hexamer primers. Here we report that isothermal whole genome amplification from single and small numbers of lymphocytes and blastomeres isolated from cleavage stage embryos yielded microgram quantities of amplified DNA, and allowed analysis of 20 different loci, including the DeltaF508 deletion causing cystic fibrosis and polymorphic repeat sequences used in DNA fingerprinting. As with analysis by PCR-based methods, some preferential amplification or allele drop-out at heterozygous loci was detected with single cells. With 2-5 cells, amplification was more consistent and with 10 or 20 cells results were indistinguishable from genomic DNA. The use of isothermal whole genome amplification as a universal first step marks a new era for PGD since, unlike previous PCR-based methods, sufficient DNA is amplified for diagnosis of any known single gene defect by standard methods and conditions.  相似文献   

9.
Dependable methods were developed for preimplantation sexing of human IVF embryos, for use in clinical settings where prospective parents are at high risk for transmission of X-linked diseases. Using single cultured cells and blastomeres from human embryos as model systems, a multiplex protocol was developed for rapid analysis via nested polymerase chain reaction (PCR). Reliability was enhanced by co-amplification of conserved amelogenin gene segments from both X and Y chromosomes, as well as Y-linked DYZ1 repetitive elements. Each cell was manually isolated and individually washed to avoid potential contaminants. Multiplex amplification allowed recognition of spurious amplification failures specific to particular amelogenin single-copy targets. The X-linked internal control and multiple Y-linked markers allowed recognition and exclusion of most aberrant samples, thus averting potential misdiagnosis. The optimized single-cell protocol reduced experimental sexing errors to < 2% (1/60), but also revealed potential pitfalls of single-cell analysis. With human triploid embryos, separate sampling of individual blastomeres provided concordant female or male signals. Slight modification adapted the procedure for diagnosis of biopsy material from blastocyst stage embryos, allowing separate analysis of multiple tubes containing multiple cells for improved reliability.  相似文献   

10.
BACKGROUND: We report the first attempts at preimplantation genetic diagnosis (PGD) and IVF and their accompanying difficulties for achondroplasia (ACH) patients. METHODS: A PGD test was developed using fluorescent single cell PCR on lymphoblasts from patients and controls and from blastomeres from surplus IVF embryos. A specific digestion control based on the use of two fluorochromes was elaborated. Ovarian stimulation and oocyte retrieval were carried out using conventional protocols. RESULTS: We performed 88 single cell tests for which amplification was obtained in 86 (97.7%) single lymphoblasts. Allele drop out (ADO) was observed in two out of 53 (3.7%) heterozygous lymphoblasts. If we combine the results from the blastomere testing from surplus embryos with those from PGD cycles and re-analysis after PGD, we obtained a PCR signal in 84% of cases of which 91% were correctly diagnosed at the G380 locus. A total of six cycles were performed resulting in three embryo transfers. We observed difficulties in ovarian stimulation and oocyte retrieval with affected female patients. No pregnancy was obtained. CONCLUSION: A PGD test for ACH is now available at our centre but our initial practice raises questions on the feasibility of such a test, specially with affected female patients.  相似文献   

11.
Preimplantation genetic diagnosis (PGD) has been applied worldwide for a great variety of single‐gene disorders over the last 20 years. The aim of this work was to perform a double‐factor preimplantation genetic diagnosis (DF‐PGD) protocol in a family at risk for Lynch syndrome. The family underwent a DF‐PGD approach in which two blastomeres from each cleavage‐stage embryo were biopsied and used for monogenic and comprehensive cytogenetic analysis, respectively. Fourteen embryos were biopsied for the monogenic disease and after multiple displacement amplification (MDA), 12 embryos were diagnosed; 5 being non‐affected and 7 affected by the disease. Thirteen were biopsied to perform the aneuploidy screening by short‐comparative genomic hybridization (CGH). The improved DF‐PGD approach permitted the selection of not only healthy but also euploid embryos for transfer. This has been the first time a double analysis of embryos has been performed in a family affected by Lynch syndrome, resulting in the birth of two healthy children. The protocol described in this work offers a reliable alternative for single‐gene disorder assessment together with a comprehensive aneuploidy screening of the embryos that may increase the chances of pregnancy and birth of transferred embryos.  相似文献   

12.
Preimplantation genetic diagnosis (PGD) for chromosomal rearrangements (CR) is mainly based on fluorescence in situ hybridisation (FISH). Application of this technique is limited by the number of available fluorochromes, the extensive preclinical work-up and technical and interpretative artefacts. We aimed to develop a universal, off-the-shelf protocol for PGD by combining single-nucleotide polymorphism (SNP) array-derived copy number (CN) determination and genotyping for detection of unbalanced translocations in cleavage-stage embryos. A total of 36 cleavage-stage embryos that were diagnosed as unbalanced by initial PGD FISH analysis were dissociated (n=146) and amplified by multiple displacement amplification (MDA). SNP CNs and genotypes were determined using SNP array. Epstein-Barr Virus-transformed cell lines with known CR were used for optimising the genomic smoothing (GS) length setting to increase signal to noise ratio. SNP CN analysis showed 23 embryos (64%) that were unbalanced in all blastomeres for the chromosomes involved in the translocation, 5 embryos (14%) that were normal or balanced in all blastomeres and 8 embryos (22%) that were mosaic. SNP genotyping, based on analysis of informative SNP loci with opposing homozygous parental genotypes, confirmed partial monosomies associated with inheritance of unbalanced translocation in surplus embryos. We have developed a universal MDA-SNP array technique for chromosome CN analysis in single blastomeres. SNP genotyping could confirm partial monosomies. This combination of techniques showed improved diagnostic specificity compared with FISH and may provide more reliable PGD analysis associated with higher embryo transfer rate.  相似文献   

13.
Duchenne and Becker muscular dystrophy (DMD/BMD) are X-linked recessive disorders caused by mutation in dystrophin gene. We analyzed the results of a genetic test in 29 DMD/BMD patients, their six female relatives, and two myopathic female patients in Korea. As the methods developed, we applied different procedures for dystrophin gene analysis; initially, multiplex polymerase chain reaction was used, followed by multiplex ligation-dependent probe amplification (MLPA). Additionally, we used direct DNA sequencing for some patients who had negative results using the above methods. The overall mutation detection rate was 72.4% (21/29) in DMD/BMD patients, identifying deletions in 58.6% (17/29). Most of the deletions were confined to the central hot spot region between exons 44 and 55 (52.9%, 7/19). The percentage of deletions and duplications revealed by MLPA was 45.5% (5/11) and 27.2% (3/11), respectively. Using the MLPA method, we detected mutations confirming their carrier status in all female relatives and symptomatic female patients. In one patient in whom MLPA revealed a single exon deletion of the dystrophin gene, subsequent DNA sequencing analysis identified a novel nonsense mutation (c.4558G > T; Gln1520X). The MLPA assay is a useful quantitative method for detecting mutation in asymptomatic or symptomatic carriers as well as DMD/BMD patients.  相似文献   

14.
We describe a highly accurate method for determining the sex of human embryos via real-time polymerase chain reaction (PCR) amplification of highly-conserved, moderately-repeated sequences within the TSPY genes on the Y chromosome and the U2 genes on chromosome 17. Individual male lymphocytes, female lymphocytes, and blastomeres from donated cleavage-stage embryos were lysed prior to PCR using an optimized buffer containing proteinase K. Molecular beacons, a new type of fluorescent probe, were used to detect and quantify accumulating amplicons during each cycle of PCR carried out in closed tubes. The present work is part of an ongoing study to construct and implement a new, convenient and reliable system of preimplantation genetic diagnosis (PGD).  相似文献   

15.
PGD for autosomal dominant polycystic kidney disease type 1   总被引:7,自引:0,他引:7  
Autosomal dominant polycystic kidney disease (ADPKD) is primarily characterized by renal cysts and progression to renal failure. It is a genetically heterogeneous disease, with mutations in the PKD1 gene accounting for the majority of cases. Direct mutation detection for PKD1-linked ADPKD or type 1 is complicated by the large size and complex genomic structure of PKD1. This paper describes a microsatellite marker-based assay for PGD in couples at risk of transmitting ADPKD type 1. During PGD, genetic analysis is carried out on single blastomeres biopsied from preimplantation embryos obtained after IVF, and only embryos unaffected by the disease under investigation are selected for transfer. Single-cell genetic analysis relied on a fluorescent duplex-PCR of linked polymorphic markers followed by fragment length determination on an automated sequencer. The co-amplification of the intragenic KG8 and the extragenic D16S291 marker at the single-cell level was evaluated in pre-clinical tests on lymphoblasts and research blastomeres. The developed assay proved to be efficient (96.1% amplification) and accurate (1.4% allele drop-out and 4.3% contamination), and can be applied in all informative ADPKD type 1 couples. From five clinical cycles carried out for three couples, two pregnancies ensued, resulting in the birth of two healthy children.  相似文献   

16.
BACKGROUND: Trophectoderm biopsy at the blastocyst stage is an emerging approach in preimplantation genetic diagnosis (PGD). This study aimed to compare genotyping success and implantation rates in PGD cycles for beta-thalassaemia following biopsy at the cleavage versus the blastocyst stage, with transfer of blastocysts. METHODS: This pilot study included 20 cycles: Group A: 10 cycles, day 3 blastomere biopsy, day 5 transfer; Group B: 10 cycles, day 5 trophectoderm biopsy, day 6 transfer. Standard-assisted reproduction and laser biopsy procedures were used. Biopsied cells were genotyped using real-time PCR multiplexed with fluorescent microsatellite analysis. RESULTS: In Group A, 131 fertilized eggs developed to 101 embryos suitable for single blastomere biopsy; 76/101 blastomeres were diagnosed (75.2%), 30 unaffected blastocysts were transferred resulting in six pregnancies (eight fetal hearts, 26.7% implantation rate). In Group B, 128 fertilized eggs developed to 53 blastocysts for trophectoderm biopsy (four to five cells), with 50/53 blastocysts diagnosed (94.3%), 21 unaffected blastocysts transferred and 6 pregnancies initiated (10 fetal hearts, 47.6% implantation rate). Overall, nine pregnancies reached >10 weeks gestation and were confirmed unaffected by prenatal diagnosis, with 12 healthy babies born. CONCLUSIONS: This pilot study suggests that trophectoderm biopsy and blastocyst transfer may be more advantageous than cleavage stage biopsy with respect to outcome of PGD for monogenic diseases.  相似文献   

17.
Human preimplantation embryos at various stages of development have been analysed using the polymerase chain reaction to amplify a 680 base pair fragment of the beta-globin gene. Successful amplification was achieved more frequently with DNA from intact embryos containing between one and 11 cells, single cumulus cells, oocytes which had failed to fertilize and polar bodies than from single blastomeres disaggregated from intact embryos and treated in an identical manner. The distribution of nuclei demonstrated using the nuclear chromophore diamino-phenyl-indole showed considerable inter-blastomere variation; however, no clear correlation between staining pattern and successful amplification was observed. The reason for the unreliable amplification of DNA from single blastomeres is unclear but this finding has important implications for preimplantation diagnosis of genetic disease.  相似文献   

18.
目的 探讨与β珠蛋白基因紧密连锁的多态性位点HumTH01在β地中海贫血(β地贫)植入前遗传学诊断(preimplantation genetic diagnosis,PGD)中的作用。方法 对4例已出生重型β地贫患儿的、双方均为β地贫基因携带者的夫妇进行了6个周期的PGD治疗,应用多重巢式PCR同时检测β珠蛋白基因及HumTH01基因,选择健康的胚胎移植入子宫。结果 6个周期共活检44个胚胎,获得44个卵裂球,其中41个卵裂球扩增成功,35个胚胎经PCR分析后获得明确诊断,移植了14个胚胎,获得1例临床妊娠。孕17周时经脐带血穿刺,证实为完全正常胚胎,现已出生一正常女婴。单个卵裂球平均扩增效率为89.7%,等位基因脱扣(allele drop-out,ADO)率为14.4%。HumTH01基因可以帮助检测出ADO及污染的发生。结论 本研究为国内首次报道应用多重巢式PCR同时检测β珠蛋白基因及HumTH01基因对β地贫进行植入前遗传学诊断并成功获得临床妊娠。在PGD中同时检测与β珠蛋白基因紧密连锁的多态性位点可以降低PGD中由于ADO及污染造成的误诊的风险。  相似文献   

19.
We have developed a mathematical model to explore accuracy of preimplantation genetic diagnosis (PGD) using single cell polymerase chain reaction (PCR). The model encompasses both extrinsic technical errors and intrinsic errors related to nuclear and chromosomal abnormalities. Using estimates for these errors, we have calculated the probability of a serious error (affected embryo diagnosed as unaffected) using a variety of strategies designed to increase the accuracy of PGD. Additional information from genotyping a linked marker or a second biopsied cell reduces the probability of replacing an affected embryo, while ensuring that sufficient unaffected embryos can be replaced. For a recessive disease, two genotypes are required to ensure a low probability of replacing an affected embryo (<1%) with a high proportion of unaffected embryos eligible for replacement (68%). These genotypes may be from a single cell with linked marker, or disease genotypes from two cells. PGD of a dominant disease is more difficult, as it relies on the amplification of a single copy of the mutation. Genotypes from two biopsied cells are required to ensure that a high proportion of unaffected embryos are eligible for replacement. This model can be used as a clinical tool to prioritize embryos for transfer in a PGD cycle.  相似文献   

20.
目的探讨单细胞基因扩增时,巢式PCR和引物预扩增(PEP)-巢式PCR两种扩增方法对SRY基因脱扣的影响程度;并应用PEP-巢式PCR方法对单个卵裂球细胞进行SRY基因诊断。方法获取单个正常男女淋巴细胞,随机分为巢式PCR组和PEP-巢式PCR组。同时扩增SRY基因和ZP3基因位点。选用IVF-ET后冻存的4个胚胎,处理后获取单个卵裂球11个,用PEP-巢式PCR扩增,鉴定其性别。结果单个淋巴细胞经巢式PCR和PEP-巢式PCR方法扩增后,其基因扩增成功率分别为92.39%,98.91%;性别诊断正确率分别为86.00%,98.00%;SRY基因的脱扣率分别为16.67%,2.38%。两者有统计学检验均有显著性差异(P<0.05。对单个卵裂球应用PEP-巢式PCR方法进行SRY基因和ZP3基因扩增后,有3个胚胎的8个卵裂球被诊断为男性,而另外1个胚胎的3个卵裂球被诊断为女性。结论1.行单细胞基因扩增时,PCR扩增方法会影响等位基因脱扣的发生率。2.对性连锁遗传病进行植入前遗传学诊断时,采用PEP-巢式PCR方法扩增SRY基因和ZP3基因对单个细胞对进行性别鉴定时,可以有效地降低SRY基因脱扣的发生率,提高性别诊断的特异性和敏感性,能够用于单细胞的性别诊断,可用于性连锁遗传病的植入前遗传学诊断。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号